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Abstract: The aim of this study was to investigate the magnetic properties of mixed nanocrystalline
Zn/manganese oxide compounds synthesized by a hydrothermal method. These compounds are
designed as (ZnO)1−n(MnO)n, where index n ranges from 0.05 to 0.60. The results of magnetic
measurements, including AC magnetic susceptibility as a function of temperature (up to 160 K) and
frequency (from 7 Hz up to 9970 Hz), as well as DC magnetization in magnetic fields up to 9 T and
temperature up to 50 K, are reported. We observed various types of magnetic behavior depending
on the nominal weight content of MnO. Samples with a low nominal content (up to n = 0.10) of
MnO exhibited Curie–Weiss behavior at higher temperatures. For samples with high nominal weight
contribution (from n = 0.30 to 0.60), spin-glass-like or/and weak ferromagnetic behavior is observed.

Keywords: magnetic nanocomposities; zinc oxide; magnetic oxides; paramagnetism; spin-glass;
ferromagnetism

1. Introduction

Inorganic magnetic nanomaterials are crucial materials used in various fields, for example,
biotechnology, medical diagnostics, targeted drug delivery, cancer treatment, high-density
data storage, and magnetic sensors [1–4]. Moreover, magnetic nanoparticles offer significant
potential benefits in environmental protection, such as wastewater remediation [5].

Manganese oxide nanomaterials possess unique magnetic properties that make them
highly useful in technological applications, such as catalysis, magnetic information storage,
and biomedical applications [6–11]. The magnetic properties of magnetic oxides depend
significantly on their aggregate size and shape, chemical composition, degree of agglom-
eration, structural features, and surface effects. As a result, there has been a surge in the
study of nanosized manganese oxides in recent years. Additionally, magnetic nanopar-
ticles in real systems interact with each other, leading to modifications of the magnetic
properties of the nanoparticle system. Long-range dipole interactions are present, which
can lead to frustration effects similar to spin glasses and the appearance of spin-glass-type
behavior [12,13]. Moreover, when magnetic nanoparticles are in direct contact with each
other at high concentrations, short-range exchange couplings occur, further modifying the
properties of the nanoparticle system [14].

The magnetic properties of nanoscopic magnetic materials are strongly influenced by
the type of chemical synthesis and the conditions under which it is performed [5,13,15]. The
synthesis process establishes the basic properties of magnetic nanoparticles, including
particle size, size distribution, morphology, stability, and surface properties. Hydrothermal
synthesis, in particular, is characterized by low preparation temperatures, low synthesis
costs, the ability to obtain relatively large amounts of products, and a relatively low disper-
sion of nanocrystalline sizes. Furthermore, the hydrothermal method enables the control
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of nanocrystallite shapes [4,16]. Our previous studies of mixed systems of Zn/transition
metal oxides demonstrated that the hydrothermal method results in a much lower degree
of agglomeration than the calcination method. Consequently, it reduces the impact of
short-range interactions between magnetic nanoparticles [13,17].

ZnO has gained significant attention recently due to its unique properties and versatile
applications. Its high electron mobility, transparency, wide band-gap, piezoelectricity, pho-
tocatalytic activity, effective photocatalytic activity, and high chemical sensitivity to various
absorbed gases make it an attractive material for various/many electronic, optoelectronic
and environmental applications [18–21]. To broaden the practical use of ZnO nanopar-
ticles, they are often doped with transition metals (TM), and/or hybrid Zn/transition
metal oxides are obtained [3,13,15,17,22–35]. The combination of magnetic particles with
semiconductor oxide nanoparticles enables the material to be separated from its aqueous
medium after a given process [26]. These hybrid nanocomposites exhibit enhanced catalytic
properties compared to their isolated semiconducting counterparts [3]. Previous studies
have shown that combining ZnO with transition metal oxides can significantly enhance
photocatalytic activity [31]. The sensitivity and selectivity of ZnO-based gas sensors can
also be improved by incorporating transition metal oxides into the system [32,33]. ZnO
and α-Fe2O3 composites show promise as photoelectrochemical water-splitting materials
for environmentally friendly hydrogen production [34]. Additionally, incorporation of
transition metal oxides into ZnO-based electrodes significantly improves the ability to
achieve large specific capacities and long cycle life in lithium-ion batteries [35].

Compared to these cases, the magnetic behavior of Zn/Mn oxides has been only
scarcely investigated. However, understanding the magnetic properties of these nanocom-
posites is essential to unlocking their full potential in scientific and technological applica-
tions. For instance, mixed systems of ZnO and transition metal oxides play a crucial role in
various applications such as catalysis, gas sensing, and energy storage. Additionally, these
nanocomposites can exhibit new and improved properties not present in either ZnO or
transition metal oxides individually.

In our previous work, we investigated nanocomposites of Zn/Mn oxides synthesized
using the wet chemical method followed by calcination [36,37]. We observed two different
types of magnetic behavior: superparamagnetism, which we attributed to the presence of
ZnMnO3 nanoparticles, and ferrimagnetism, which was driven by the presence of Mn3O4
nanocrystals. Structural characterization enabled us to unambiguously assign the observed
magnetic features to the appropriate magnetic phase in a multiphase magnetic system.
Additionally, micro-Raman spectroscopy measurements allowed us to detect nanophases
that were undetectable by the X-ray diffraction technique.

This study aims to investigate the magnetic properties of Zn/Mn oxides synthesized
via the hydrothermal method and compare them with the properties of calcined samples.
Our previous research on nanocomposites consisting zinc oxide and iron oxide/cobalt
oxide demonstrated that the magnetic properties can be manipulating by altering the
synthesis method [7,11].

2. Samples and Experimental Methods

The samples were prepared using a microwave-assisted hydrothermal process, which
provided even heat distribution and improved product quality. Zinc nitrate (Zn(NO3)2*6H2O
A.C.S. Chempur) and manganese nitrate (Mn(NO3)2*4H2O A.C.S. Chempur) were used as
precursors. Firstly, the zinc nitrate and manganese nitrate were dissolved in distilled water.
Next, a 2 M solution of KOH was added to the mixture with continuous stirring in ambient
conditions to adjust the pH to 11. After stirring for 0.5 h, the solution was transferred to a
hydrothermal microwave reactor, where the process was carried out for 15 min at a pressure
of 3.8 MPa. The resulting material was washed with distilled water and dried at 100 ◦C for
48 h. The mixed nanocrystalline compounds obtained were labeled as (ZnO)1−n(MnO)n,
with the nominal MnO weight composition index n of MnO ranging from 0.05 to 0.60. This
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notation was consistently used throughout the study to refer to the samples of ZnO mixed
with MnO prepared by hydrothermal and calcination methods [36–38].

The morphology of the samples was examined using a LEO 1530 scanning electron
microscope (SEM).

The magnetic properties of the samples were studied using AC/DC Lake Shore
7229 magnetometer. The real, Re(χ), as well as imaginary, Im(χ) parts of magnetic suscep-
tibility were collected using a mutual inductance method in an AC magnetic field with
frequencies (f ) ranging from 7 to 9970 Hz and amplitude (HAC) not exceeding 20 Oe. The
susceptibility measurements were performed in the temperature range of 4.5 K to 160 K.
Magnetization was measured up to a magnetic field of 9 T using the extraction technique.

3. Results
3.1. Structural and Morphological Characterization

The samples used in this study were the same as those used in our previous work [38].
In that earlier study, only structural and morphological characterization was conducted [38].
A summary of the results is presented below: XRD measurements indicated the presence
of two crystalline phases, hexagonal ZnO and spinel ZnMn2O4. The average size of the
ZnMn2O4 nanocrystallites was between 16 nm and 26 nm, while the mean crystalline size
of ZnO nanocrystals was found to be in the range of 42 nm to 99 nm.

The utilization of micro-Raman spectroscopy measurements provided a deeper un-
derstanding of the crystalline phase composition of the samples. Unlike XRD, Raman
spectroscopy is capable of detecting impurities and traces of nano-inclusions, making it a
highly sensitive analytical tool [39]. The Raman analysis confirmed the presence of two
phases registered by XRD ZnO and ZnMn2O4, in all the studied samples. Additionally,
other magnetic oxide phases were detected. It is worth noting that the locally formed
phases are not detectable by XRD. For samples with n = 0.05, 0.20, the presence of the MnO
phase was additionally confirmed. The formation of MnO, Mn3O4, and ZnMnO3 phases,
apart from ZnO and ZnMn2O4, was demonstrated for samples with higher n index. The
concentration of all manganese oxide phases was found to increase with an increase in the
nominal MnO weight contribution, as revealed by Raman spectroscopy measurements.

SEM images for three samples of (ZnO)1−n(MnO)n with n = 0.10, 0.30, 0.50 are pre-
sented in Figure 1a–c. SEM measurements of samples with n = 0.05, 0.40, and 0.60 were
previously reported [38]. The images show small oval and larger non-oval agglomerates.
For samples with a higher n index, only oval agglomerates are present. These images
suggest that the degree of agglomeration increases with the increase in nominal MnO
weight contribution, which is the opposite of what was observed in samples containing Fe
and Co [7,11].
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Figure 1. SEM images for samples of (ZnO)1−n(MnO)n with (a) n = 0.10, (b) n = 0.30, (c) n = 0.50.

3.2. Magnetic Studies

Figure 2 shows the temperature dependence of the inverse magnetic susceptibility for
samples with n = 0.05 and 0.10. The inset displays the susceptibility versus temperature
curve for n = 0.05. We did not include the curve for n = 0.10 in the inset as it would reduce
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the clarity of the graph. Nevertheless, we observed a similar paramagnetic dependence
for both samples. The imaginary part of the AC magnetic susceptibility was temperature-
independent and close to zero for these two samples. At high-temperatures, the inverse
low-field susceptibility exhibited nearly linear behavior, and the samples followed Curie–Weiss
law. To obtain the susceptibility data, we subtracted the diamagnetic AC susceptibility of
ZnO (−0.33 ×·10−6 emu/g [40]) from the collected susceptibility. We fitted the χ versus
T data at high temperatures to the Curie–Weiss law χ = C/(T − θ) with C = N µ2/3kB,
µ2 = g2J(J + 1)µB

2, and θ—the Curie–Weiss temperature. The determined parameter values
are shown in Table 1. Negative values of the Curie–Weiss temperature indicate that
antiferromagnetic interactions prevail in the studied samples.
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hydrothermal method. The inset shows the AC susceptibility measurement result as a function of
temperature. The solid line represents the Curie–Weiss law fitted to the experimental data.

Table 1. The values of parameters C and Θ determined from fits to Curie–Weiss law.

Nominal
Contribution C [emu/K g] Θ [K]

0.05 0.00008 −7.33

0.10 0.0002 −3.83

The prevailing magnetic phase for samples of (ZnO)1−n(MnO)n with n = 0.05 and
0.10 is the spinel ZnMn2O4. The observed Curie–Weiss-type paramagnetic behavior can be
explained by the presence of an additional nanosized spinel phase. Our previous studies
of nanocomposites based on ZnO and cobalt oxide [11] also found a similar paramagnetic
behavior attributed to nanoscopic spinel phases, namely Co3O4 and ZnCo2O4.

It has been established that the spinel ZnMn2O4 exhibits antiferromagnetic proper-
ties [41–45], with a reported Néel TN temperature of around 250 K for bulk samples [41].
However, for nanocrystalline samples, TN has been observed in the temperature range
of 15 K to 150 K [42,44,45]. Furthermore, it has been reported that the low-temperature
ferromagnetic behavior of ZnO(Mn) samples can be attributed to nanosized ZnMn2O4 [46].
Experimental evidence has shown that even antiferromagnetic bulk materials can exhibit
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ferromagnetic properties when they are in nanosized oxide form. This difference in mag-
netic properties between nanoparticles and bulk materials is often attributed to surface
or/and size effects [47–49]. In our study, we observed a significant decrease in the absolute
values of the Curie–Weiss temperature as the n index increased, indicating the breakdown
of the predominant antiferromagnetic interactions. Structural measurements revealed an
increase in the content of ZnMn2O4 with increasing n index. A similar trend was observed
for nanocomposites containing Co synthesized via the hydrothermal method [11], where
the absolute values of the Curie–Weiss temperature decreased with the increase in the
n index, corresponding to an increase in the content of the magnetic ZnCo2O4 phase.
This provides a means to manipulate the value of the magnetic parameter θ, making it
technologically significant.

As previously mentioned, the nanosized spinel phase of ZnMn2O4 is present in all the
studied samples and is the dominant magnetic phase. The magnetic response in samples
with the lowest nominal MnO content is attributed to ZnMn2O4, and this contribution to
the paramagnetic response is also evident in the remaining samples.

In Figure 3, the temperature dependence of the real part of AC magnetic susceptibility
is presented for a sample with a nominal n index of 0.30. Figure 3 illustrates the temperature
dependence of the real part of AC magnetic susceptibility for a sample with a nominal n
index equal to 0.30. Once again, a clear paramagnetic contribution is observed, which can
be attributed to the ZnMn2O4 phase. Moreover, a broad maximum at of 34.4 K is clearly
evident. Further measurements of the AC magnetic susceptibility conducted as a function
of frequency f indicate that the positions of the observed maxima do not change remain
unchanged with the driving frequency, as shown in the inset of Figure 3.
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In addition to the predominant ZnMn2O4 phase, micro-Raman spectroscopy identified
the existence of other magnetic oxides, such as MnO, Mn3O4, and ZnMnO3. This finding
presents a challenge in assigning the AC magnetic susceptibility peak to a specific phase,
given the presence of multiple magnetic oxide phases.
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The results of AC magnetic susceptibility for samples with nominal n index 0.50 and
0.60 are shown in Figure 4, indicating a clear multiphase behavior with two broad maxima.
In addition, a paramagnetic contribution was observed in both samples. The peak at
approximately 35 K is similar to the sample with n = 0.30, while the low-temperature peak,
observed around 14 K, is evident only in samples with n = 0.50 and 0.60. The inset in
Figure 4 displays the frequency dependence of the low-temperature maximum for a sample
with n = 0.50. The real and imaginary parts of the magnetic susceptibility were measured
by warming up the sample after cooling it down in a zero magnetic field. The position
of the maxima (Tf) shifts towards higher values of the driving frequency, indicating the
presence of superparamagnetic or spin-glass-like systems.
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To classify the observed freezing/blocking process, we utilized a helpful criterion:
R = ∆Tf/(Tf ∆log10(f )), where ∆Tf is the difference between Tf measured in the ∆log10(f )
frequency interval. The empirical parameter R represents the relative shift of the tempera-
ture Tf per decade of frequency f [50]. For interacting nanoparticles, experimental studies
have shown that R values between 0.05 and 0.10 indicate superparamagnetic systems, while
R < 0.05 indicates spin-glass systems [7,51]. In our case, the value of the R value parameter
was 0.045 for both studied samples, indicating the presence of spin-glass-like behavior.

The presence of multiple magnetic oxide phases in the samples makes it challenging
to attribute a specific phase to the observed magnetic behavior. We observed the superpara-
magnetic behavior in (ZnO)1−n(MnO)n samples obtained by calcination and associated it
with the presence of ZnMnO3 nanocrystals [36]. The blocking temperatures determined for
these samples were in the low-temperature range between 6.3 K and 10.5 K. It is important
to note that spin-glass-like behavior can arise from agglomeration, interparticle interactions,
and surface effects.

To expand our analysis and establish a connection between the observed features in
AC susceptibility and the magnetic oxide phases present in the sample, we conducted
magnetization measurements.

The DC magnetization data for the sample with n = 0.30 collected at 4.5 K and 40 K is
presented in Figure 5. The results of the DC magnetization measurements indicated the
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presence of a hysteresis loop at low temperatures, with a coercive field of approximately
0.2 T at 4.5 K.
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The literature indicates that Mn3O4 exhibits much higher values of coercivity fields.
Previous studies have experimentally established that bulk Mn3O4 behaves as a ferrimag-
net with TC at 20 K [52]. However, different Curie temperature values were observed for
nanocrystalline Mn3O4 [53,54], and superparamagnetic behavior has also been reported [55].

Various methods of Mn3O4 preparation lead to a specific range of high-coercivity field
values observed at low temperatures. For instance, coercivity from 0.7 T up to 1.1 T was
reported for nanosized Mn3O4 [35,36,56] at around 5 K. In addition, in our earlier research
on ZnO(MnO) nanocrystals synthesized via calcination, we associated high values of the
coercivity field HC (0.7 T) with the presence of the ferrimagnetic Mn3O4 nanosized phase.

On the other hand, previous studies have reported superparamagnetic, ferrimagnetic,
and spin-glass behavior of ZnMnO3 nanoparticles [57–59]. We attributed the observed mag-
netic behavior of the calcined ZnO(MnO) samples to the presence of ZnMnO3 nanocrystals,
exhibiting superparamagnetic behavior above a blocking temperature (TB below 10 K) [36].
Below the blocking temperature, we observed very narrow hysteresis loops in DC mag-
netization with very low coercivity values (HC~0.04 T at 4.5 K) for the calcined ZnMnO3
phase [58]. In contrast, the DC magnetization measurements in this work showed much
higher coercivity field values, as seen in Figure 5. The Raman spectroscopy measurements
revealed the existence of the MnO phase in all the studied samples, even in those with the
lowest n index. The content of this phase increases with the increase in n, as demonstrated
by Raman spectroscopy measurements. Although bulk MnO is an antiferromagnet with a
Néel temperature of 122 K, weak ferromagnetic, superparamagnetic, or spin-glass-like be-
havior has been reported for MnO nanocrystals at low temperatures [60–62]. The reported
ferromagnetic behavior of MnO nanoparticles may be attributed to size or spin surface
effects. A similar coercivity field value of 0.18 T, as reported for MnO nanoparticles at low



Magnetochemistry 2023, 9, 139 8 of 11

temperatures [60–62], was observed for a sample with n = 0.30 at 4.5 K. The peak observed
at 34.4 K in the AC magnetic susceptibility could be associated with the MnO phase.

The measured magnetic response depends on the size and the distribution of the size
of nanocrystals, their shape, degree of agglomeration, exchange interactions, and dipolar
interactions. With the increase in the n index, the nonmagnetic ZnO content decreases, and the
amount of four different magnetic phases increases along with the degree of agglomeration.

Figure 6 shows DC magnetization curves collected for (ZnO)1−n(MnO)n samples with
n = 0.50 and 0.60 at 4.5 K. The observed coercivity field values (0.2 T at 4.5 K) and high
remanence are much higher than those reported for samples with lower nominal MnO
weight content. The complex shape of the hysteresis is due to the magnetically multiphase
system obtained for these samples. The magnetic response of hydrothermal samples is
more complex when compared to samples prepared via the calcination method.
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4. Summary and Conclusions

We present a study on the magnetic properties of composite samples of Zn/manganese
oxides prepared via hydrothermal synthesis.

At higher temperatures, samples of (ZnO)1−n(MnO)n with a low n index exhibited
Curie–Weiss paramagnetic behavior, with ZnMn2O4 being the major magnetic phase in this
region. Negative values of the Curie–Weiss temperature (θ) were also observed, indicating
the predominance of antiferromagnetic interactions. However, as the nominal MnO weight
contribution increased, a breakdown of the predominance of antiferromagnetic coupling
was observed. We conclude that the observed paramagnetic behavior is related to the
presence of the ZnMn2O4 phase, which dominates as the magnetic phase for all samples
studied, including those with a high n index. In comparison to the magnetic results ob-
tained for calcined samples, we observed superparamagnetic blocking for calcined samples
with a low n index. This occurrence was associated with the forming of single-domain
ZnMnO3 nanocrystallites [36].
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We attribute the observed feature in the AC magnetic susceptibility of sample with
n = 0.30 to the presence of the MnO phase. For samples with a higher n index, the complex
with two broad maxima responses in AC magnetic susceptibility was observed. The weak
ferromagnetic behavior observed up to TC ≈ 35 K can be attributed to the MnO phase.
Additionally, spin-glass-like behavior with a freezing temperature of ~14 K was visible. In
these two samples, we expected much more significant effects associated with many of the
magnetic phases, agglomeration, and the interaction between magnetic particles. In this
range of a high n index, a comparison of the results obtained with those from the calcination
method reveals a stark contrast in the observed magnetic behavior [36]. In contrast to the
hydrothermal method, the calcination method produced a completely different magnetic
behavior, where we observed ferrimagnetism associated with the Mn3O4 phase. Despite
many magnetic phases in the calcined samples, other magnetic phases did not disturb this
magnetic response. In conclusion, the hydrothermal method produced a more complex
magnetic response for Mn-based nanocomposites than the calcination method.

Author Contributions: Conceptualization, I.K.-K. and W.D.; magnetic investigations, I.K.-K. and M.A.;
Raman measurements, B.H., N.R. and M.R.; data analysis, I.K.-K. and B.H.; synthesis, SEM, measure-
ments, D.S. and U.N. All authors have read and agreed to the published version of the manuscript.

Funding: Research in Serbia was supported by the Science Fund of the Republic of Serbia, Grant No.
7504386, Nano object in own matrix—Self composite—NOOM-SeC.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8, 107.

[CrossRef]
2. Knobel, M.; Nunes, W.C.; Socolovsky, L.M.; De Biasi, E.; Vargas, J.M.; Denardin, J.C. Superparamagnetism and other magnetic

features in granular materials: A review on ideal and real systems. J. Nanosci. Nanotechnol. 2008, 8, 2836. [CrossRef]
3. Huong Nguyen, T.; Thanh Vu, M.; Son Nguyen, N. Hybrid Magnetic-Semiconductor Oxides Nanomaterial: Green Synthesis and

Environmental Catalytic. In Photocatalysts—New Perspectives; Awwad, N.S., Alarfaji, S.S., Alomary, A., Eds.; IntechOpen: Rijeka,
Croatia, 2022; Volume 9. [CrossRef]

4. Lu, A.-H.; Salabas, E.L.; Schüth, F. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew.
Chem. Int. Ed. 2007, 46, 1222. [CrossRef]

5. Shukla, S.; Khan, R.; Daverey, A. Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater
treatment: A review. Environ. Technol. Innov. 2021, 24, 101924. [CrossRef]

6. Fiorani, D.; Testa, A.M.; Tronc, E.; Lucari, F.; D’Orazio, F.; Nogués, M. Magnetic properties adjustment of ZrO2:Mn nanocrystals
by changing hydrothermal synthesis conditions. J. Magn. Magn. Mater. 2001, 226, 1942. [CrossRef]
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