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Abstract: The worldwide death toll claimed by Acute Respiratory Syndrome Coronavirus Dis-
ease 2019 (SARS-CoV), including its prevailed variants, is 6,812,785 (worldometer.com accessed on
14 March 2023). Rapid, reliable, cost-effective, and accurate diagnostic procedures are required to
manage pandemics. In this regard, we bring attention to quantum spin magnetic resonance detection
using fluorescent nanodiamonds for biosensing, ensuring the benefits of artificial intelligence-based
biosensor design on an individual patient level for disease prediction and data interpretation. We
compile the relevant literature regarding fluorescent nanodiamonds-based SARS-CoV-2 detection
along with a short description of viral proliferation and incubation in the cells. We also propose a
potentially effective strategy for artificial intelligence-enhanced SARS-CoV-2 biosensing. A concise
overview of the implementation of artificial intelligence algorithms with diamond magnetic nanosens-
ing is included, covering this roadmap’s benefits, challenges, and prospects. Some mutations are
alpha, beta, gamma, delta, and Omicron with possible symptoms, viz. runny nose, fever, sore throat,
diarrhea, and difficulty breathing accompanied by severe body pain. The recommended strategy
would deliver reliable and improved diagnostics against possible threats due to SARS-CoV mutations,
including possible pathogens in the future.

Keywords: artificial intelligence; machine learning; deep learning; fluorescent nanodiamonds; spin
relaxometry; COVID-19 biosensing

1. Introduction

Severe Acute Respiratory Syndrome-2 (SARS-CoV-2) is a subclass of coronavirus in-
fections known due to its widespread across almost all countries around the globe. This
virus, with 85% genetic similarity with COVID-19, has a higher infection rate and severe
symptoms [1,2]. SARS-CoV-2 symptoms include fever, cough, and breathing issues. The
virus is dangerous for infants as well as adults. It is estimated using simplified assumptions
that the virus can spread in a thousand individuals within one month and a million in just
two months [3]. Due to person-to-person variation in the virus severity and incubation period,
two weeks’ quarantine period is recommended. Extensive research has been conducted to
develop effective vaccines for treatment and diagnosis. Examples of Food and Drug Ad-
ministration (FDA)-approved vaccines are Pfizer, Cansino, AstraZeneca, and Sinovac. It is
noteworthy that AstraZeneca is widely accepted and regulated in most countries. Since 2019,
the coronavirus pandemic has had profound social and economic impacts worldwide, causing
inflation, economic slowdown, and unemployment. Therefore, the need to develop better
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strategies for healthcare management is realized to tackle a similar pandemic outbreak in the
future. According to the World Health Organization (WHO), currently, the circulating variants
of concern across the United States are the sub-variants of Omicron viz. XBB.1.5, BQ.1, and
BQ.1.1. A recent study investigated the substantially higher transmissibility of XBB.1.5 due to
the strong binding affinity of human angiotensin-converting enzyme 2 (hACE2) compared to
BQ.1 and BQ.1.1 and lower opposition against the immune system [4].

Mostly, the infection occurs through the nose/mouth by contaminated aerosol in-
halation, which can affect healthy subjects even 2 m apart. The virus entry in cells is
facilitated by angiotensin-converting enzyme 2 (ACE2) receptors available in various cells
in the heart, lungs, and blood vessels in the respiratory tract [5]. Initially, the virus affects
the regular functions of ACE2 cells that play a critical role in oxygen supply to cells and
tissues. Before cell penetration, the SARS-CoV-2 surface spike protein, coated with glycans,
strongly attaches to ACE2 receptors. These glycans also provide camouflage from the
body’s immune system. The spike protein can be decomposed into two subunits, S1 and
S2, where S1 exhibits receptor binding and is susceptible to mutations enabling stronger
binding with the ACE2 receptor. The S2 subunit actuates the viral fusion with the target
cell membrane. To initiate the cell entry, the virus utilizes the required protease enzymes
(either Cathepsin-L or transmembrane serine protease 2 (TMPRSS2)) from the host cell [6].
TMPRSS2 is prevalent in the upper and lower respiratory tract, expressed by endothelial
cells, and is considered a strong mediator. Before the cell invasion, the TMPRSS2 breaks the
S2 subunit and pulls the virus closer to the host cell. Later, the spike protein folds itself and
fuses with the cell membrane. The envelope and membrane proteins accommodate the viral
accumulation and germination mechanism through the cell membrane after the injection of
viral ribonucleic acid (RNA) into the cell. In later stages, the viral genetic material replicates
and forms bubble-shaped organelles within the cells. Once the virus grows sufficiently, it
leaves the host cell and spreads further to infect the neighboring cells. A schematic view of
the SARS-CoV-2 structure and its entry into the cell is shown in Figure 1.
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Biosensors can be classified into different categories such as optical, electrochemical,
piezoelectric, microbial, immunological, and enzyme-based biosensors. Each of these
available options is suitable for a specific class of diseases such as infections (human
immunodeficiency virus (HIV), COVID-19, malaria), cancer (lung, breast, prostate), neu-
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rological disorders (Parkinson, Alzheimer, epilepsy), genetic diseases (sickle cell anemia,
thalassemia, cystic fibrosis), and respiratory disease. Optical biosensors rely on the absorp-
tion and emission of the target molecule for detection. In optical detection, the common
choice for sensing material is a fluorescent dye (Rhodamine G6, Fluorescein, Cynanine,
Alexa fluora), which allows high quantum yield and good stability for infectious diseases,
cancer, neurological diseases, autoimmune disease, and genetic diseases [7]. The other
alternatives are quantum dots which are cadmium, indium, or lead-based selenide and
sulfide compounds [8]. The precise control over quantum dots’ particle size and emission
wavelength enables imaging and detection of cancer, HIV, influenza, and cardiovascular
diseases. Electrochemical biosensors employ a sensing platform as a microchip that detects
the electrical signal (current, voltage) near the electrode due to chemical reaction [9], mostly
utilized for infectious diseases, diabetes, and cancer. Microbial and enzyme-based biosen-
sors show high sensitivity and can detect multiple target species [10]. These techniques
utilize living organisms such as bacteria, yeast, or algae, which are genetically modified
to express physiological and metabolic activity in the presence of specific analytes (de-
oxyribonucleic acid (DNA), protein, antibodies) through chemical reactions. The enzyme
biosensor facilitates the target biochemical reaction (immobilized enzymes) to produce
a detectable change in the microorganism’s optical, electrical, and pH value [11]. These
biosensors are useful for diagnosing diabetes, cardiac injury, and kidney and liver diseases.
A flowchart description of the biosensors with disease application is shown in Figure 2.
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2. Virus Load and Capability of Reverse Transcription–Polymerase Chain
Reaction (RT-PCR)

A recent study has quantitatively reported the growth rate and biological mass of
SARS-CoV-2 virions in humans, derived from experiments conducted on monkeys. It
is estimated that an infected person at the peak infection could carry 109–1011 virions
corresponding to a mass of 1–100 micrograms [12]. The study also estimated the possible
number of viral RNA copies in different tissue lines viz. nasal mucosa (106–108), trachea
(106–109), tonsil (106–109), lungs (109–1011), and the digestive system (103–107) [5]. It
is inferred that a patient possibly carries 104–106 infected cells at a given time, leading
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to 10 infectious units per cell. The virus can multiply into the host cells in 10–15 min,
releasing secondary progeny within 7–8 h (yielding 600–700 malicious units per cell) [3].
The infection prevails for 3–4 days, whereas the associated disease lasts about 2–6 weeks.
These data are critical to access the SARS-CoV-2 growth and immune system response to
develop vaccines and diagnostic tools.

The current standard diagnostic method is RT-PCR, which relies upon a nasopha-
ryngeal swab test enabling a detection limit of approximately 100 copies of virus RNA in
the best-case. However, increasing the detection limit by ten is expected to increase the
false negative rate by 13% [13], where the latter drastically changes during the disease.
Alternatively, the rapid antigen test is based on immunochromatography using a test strip
targeting the virus nucleocapsid protein. This method is more advantageous than RT-PCR
due to its fast turnaround time (~20 min) and easy availability of low-cost personal test kits.
The testing can now be conducted in laboratories, hospitals, and by individuals without
specialized knowledge. However, it is recommended that patients having initial symptoms
of SARS-CoV-2 should undergo a rapid antigen test due to its lower accuracy and higher
false negative rate approaching 50%. Consequently, a positive verification of SARS-CoV-2
infection is conducted using the RT-PCR test [2].

3. Artificial Intelligence in Biosensor Synthesis

Artificial intelligence (AI) is a human intelligence simulation using computer systems.
It can develop expert systems for task automation and accurate decision-making and
create new products and services available [14,15]. AI aims to make the computer system
capable of using new inputs by transforming experiences into expertise. Machine learning
(ML) and deep learning (DL) are the two key enablers of AI. ML can adapt automatically
with the least human involvement. DL is a subset of ML that mimics the human brain
for a learning process powered by an automatic feature extraction strategy. ML and DL
algorithms can be based on supervised, unsupervised, or reinforcement learning types.
In supervised learning, the algorithm is trained on data (input) annotated by experts,
where the target values (output or label) are provided. The resulting optimized model then
makes predictions on new or unlabeled input. Unsupervised learning does not use labeled
input. It identifies hierarchy patterns in the data and groups similar data together, forming
clusters. Reinforcement learning involves training an algorithm to make decisions based
on feedback from its environment. DL algorithms comprise layers of interconnected nodes,
or neurons, that process and transmit information.

Artificial intelligence recently appeared in the spotlight as an innovative tool for
developing SARS-CoV-2-related drugs and predicting the molecular interactions between
spike protein and ACE2 receptors [16]. Deep learning models, an important sub-variant of
AI, predict suitable candidates from a database of natural compounds/proteins chemically
interactive with spike and nucleocapsid proteins, thereby enhancing the accuracy in clinical
trials. One of the available databases is the Zinc-database, a free library of FDA-approved
chemical compounds and anti-viral drugs that undergo a collective strategy of supervised
machine learning, molecular docking, and virtual screening. This helps to evaluate drugs
that exhibit strong binding affinity towards nucleocapsid protein, spike protein, and 2′-o-
ribose methyltransferase [17]. With the available chemical structure of the latter and the
ACE2 receptor binding in the catalytic domain, a 3D homolographic model is generated.
Deep learning (DL)-based chemical selection results have been verified via statistical
analysis (Naïve-Bayes classifier) to generate a binding energy ranking of anti-SARS-CoV-2
drug candidates.

Additionally, the development of SARS-CoV-2 vaccines (Atazanavir, Efavirenzand,
and Ritonavir) has been conducted through genomic sequence identification by using deep
learning (convolution neural networks) [18]. These innovations require a reliable source
of the chemical database, immune informatics, AI algorithms, chemical structural details
of target proteins, and reverse vaccinology [19]. A similar study engaged a DL-based pre-
dictive model for investigating bioactive molecules, potentially 3C-like protease inhibitors
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using a de novo design [20]. Further, transfer learning enabled specific protease feature
recognition, whereas reinforcement learning helped to optimize the desired characteris-
tics of novel molecules. MolAICal, an AI-powered software for designing COVID drugs,
inspects the preexisting FDA-approved compounds. By using this software, genetic and
DL simulations can be performed for model training using the ZINC database and other
medical healthcare resources for a set of predefined rules such as molecular docking and
synthetic accessibility [21]. The results are promising for SARS-CoV-2 protein binding with
various novel ligands.

Another effort towards designing and developing AI-driven SARS-CoV-2 drugs is the
CoronaDB-AI database of natural compounds, proteins, and amino acids, which can train
models to rapidly discover effective drugs and target enzyme inhibitors [16,22]. ML-based
molecular docking is a primary step toward discovering virtual drugs, demanding the
analysis of the molecular structure and chemical bonding of the target molecules. The
derived molecules using this technique fit well over the S1-subunit binding spot of SARS-
CoV-2. The binding affinity of spike protein with the ACE2 receptor and its trend due to
emerging point mutations has been studied using molecular dynamics and free energy
perturbations. It was found that N501Y, E484K, and K417N mutations are susceptible to
stronger binding with ACE2 receptors [23]. It is noteworthy that some of the AI-developed
compounds were also reactive to HIV and other respiratory infections.

4. AI Optimization in Nanosensors and Nanomedicine

Optimization of the chemical properties of nanobiosensors can be established by using
sequential modeling based on the Bayesian optimization algorithm. This method employs the
basic material properties (electrical, optical, and chemical structures). It predicts the optimal
conditions that fit the desired parameters for actual experimentation (time, temperature,
concentration) by iteratively minimizing an error function. The procedure for the synthesis
of biosensors can be extended to a multi-dimensional solution in the chemical space, fusing
several fundamental features or key elements. The outcome generates a list of possible
reactive candidates for a specific biosensing application. Additionally, the inverse design
of biosensors using predefined nanomaterials allows for the formation of a programmable
biosensor to achieve the desired optical and chemical characteristics with enhanced sensitivity.
In this regard, machine learning algorithms have been used to synthesize different types
of nanoparticles (metallic, polymers, and carbon-based), some of which are also useful in
nanomedicine [24–28]. A flowchart representing the general principle of using AI techniques
to predict biosensors’ characteristics is illustrated in Figure 3.

Nanomedicine employs nanomaterials for various imaging, diagnosis, and therapeutic
purposes to deliver effective treatment options in healthcare. Generally, hybrid magnetic
biosensors are used to detect paramagnetic molecular species, enabling opportunities such
as the intracellular identification of free radicals, proteins, and enzymes [29]. There are
several ways where biosensors can effectively enhance the diagnosis, drug delivery, and
targeted treatment. A high signal-to-noise ratio is desirable in diagnosing tumors, where
magnetic nanoparticles carefully monitored using biosensors can be used as Magnetic Res-
onance Imaging (MRI) contrast-enhancing agents [30]. The blood–brain barrier restricts the
proliferation of nanomedicine in glial cells (brain). Here nanodiamonds and chemotherapy
drugs have proved to be efficient drug delivery agents [31,32]. Under the influence of
precisely tailored external magnetic fields, magnetic nanoparticles can introduce localized
magnetic hyperthermia for targeted therapy and treatment of breast and lung cancer [29,33].
The utility of magnetic biosensors in nanomedicine is illustrated in Figure 4.
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5. Fluorescent Nanodiamond Role in SARS-CoV-2 Diagnosis

Nitrogen-vacancy centers (NV-centers) in fluorescent nanodiamonds (FNDs) have
been extensively used as quantum nanosensors for biosensing and imaging. Due to
high photostability, biocompatibility, low toxicity, and surface conjugation with various
functional groups, FNDs are ideal candidates for conducting in vivo nanothermometry and
magnetic microscopy [34]. The electronic spin of NV-centers allows optical manipulation
and readout for high-sensitivity measurements enabling nanoscale spatial resolution and
nanotesla sensitivity for stationary and time-dependent fields [35]. By employing the NV
spin relaxometry protocols, magnetic field sensitivity can be sufficiently enhanced to detect
single and compound biomolecules such as protein, RNA, and DNA [36–41]. The search
for high-sensitivity optical diagnosis revealed the successful application of NV-centers in
FNDs to detect SARS-CoV-2-related pathogens [36,42]. The novel technique employs a
microfluidic device carrying surface-functionalized FNDs as nano-biosensors, where the
SARS-CoV-2 RNA extracted from patients is loaded [36]. The FNDs are surface-coated with
cationic polyethyleneimine polymer (PEI) so that the SARS-CoV-2 complementary DNA
(cDNA), derived earlier from the virus RNA, can be adsorbed. CDNA is chemically bound
with Gadolinium (Gd3+) complex molecules and shows a detachment from FNDs in the
presence of virus RNA. The separation of Gd3+ magnetic molecules from the FND surface
can be detected and translated into the change in fluorescence intensity by using magnetic
microscopy. The optical measurements can be quantitatively evaluated to determine the
change in the T1 relaxation time of the NV-spin due to the remaining Gd3+ magnetic
noise. The outcomes of experimental results supported with simulations disclose that a few
hundred copies of virus RNA can be detected in approximately one second with a false
negative rate (FNR) of <1%, significantly lower than that of the RT-PCR test. A graphical
illustration of the SARS-CoV-2 detection using FNDs is shown in Figure 5. This experiment
demonstrates rapid optical biosensing of the SARS-CoV-2 pathogen with high accuracy
and substantially lower FNR.
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Recent work in this domain highlighted the detection of nucleocapsid and spike protein
of different SARS-CoV-2 mutations (alpha, beta, delta, wild-type and Omicron) using Spin-
Enhanced Lateral Flow Immunoassay (SELFIA) [42]. The FNDs were coated with SARS-CoV-2
antibodies (S44F, S8-IgG) using bovine serum albumin and phosphate-buffered saline solution
and were then subjected to the SELFIA platform. The FNDs exhibit strong binding affinity
with the virus antigens leading to a highly sensitive and accurate diagnosis. The SELFIA
scheme relies upon the magnetic modulation of NV fluorescence, which is collected using
an optical microscope. As mentioned above, the results show that the S44F can effectively
detect spike protein antigens for all the mutations. Using a competitive SELFIA assay, the
sensitivity can be enhanced by ~50 fold compared to direct SELFIA, pursuing a detection
limit of (0.77–1.94) ng/mL, equivalent to (4.4–11) pM concentration. The strategy reported
here enables accurate diagnosis and screening at an early stage of infection. The NV-spin
relaxometry offers a robust and reliable optical biosensing technique for sensing paramagnetic
species with additional benefits such as detecting radicals, pH levels, and redox states in
the biological environment [43,44]. The spin relaxation time lowers under the influence of
magnetic noise due to quantum decoherence, where typically, it falls within the range of a few
hundred microseconds. NV spin relaxometry offers a versatile mode of room-temperature
optical biosensing, utilizing low sample volumes as in the case of single mitochondria and a
wide range of other intracellular biosensing applications [37,45].

Magnetic nanoparticles, used as contrast-enhancing agents in magnetic resonance
imaging [30,46–48], strongly affect the measured T1 relaxation times, enabling us to visu-
alize labeled intracellular organelles. Commercially available FNDs mostly suffer from
lower coherence time due to surface defects and active paramagnetic impurities such as 13C
and 15N [34]. The sensitivity of spin relaxometry can be enhanced significantly (100 times)
by involving magnetic nanoparticles (Gadopentetate dimeglumine) attached to the tip of
the atomic force microscope, which is brought into the vicinity of NV centers [49]. This
strategy evolves faster relaxation in NV spins, enabling possibilities for sensing paramag-
netic spin in proteins (Hemoglobin, Myoglobin, Cytochrome, Ferredoxin) and enzymes
(Cytochrome-P450, Superoxide dismutase, Xanthine).

6. Limitations and Challenges for Virus Detection

Relaxometry-based quantum nanosensing faces several challenges due to variations
in the response of individual nanosensors and their surface impurities. The NV photolumi-
nescence intensity detected using commercially available FNDs shows strong fluctuations
because of the wide size distribution. Therefore, calibration of individual FNDs as nanosen-
sors is necessary before the actual measurements. The magnetic signal acquired from a
large FND is generally interpreted as an average response of all the localized quantum
defects, where the sensitivity depends inversely on the detected photons. Therefore, using
FNDs with high NV concentrations is desirable to acquire a high count-rate and adequate
signal-to-noise ratio.

Moreover, the optical excitation and readout must be taken repeatedly for a fixed
time delay to reduce the optical noise. There is also a restriction on the distance between
the nanosensor and the target biomolecule, which confines this technique toward de-
tecting stationary targets. Further, the complexity of the problem can also be affected if
the target species contains magnetic impurities with unknown concentrations. In con-
clusion, quantum spin relaxometry appears as a versatile technique that offers a broad
range of biosensing applications, including magnetic molecules [50–52], chemical redox
reactions [53], localized chemical reactions [54], electrolytes [55], pH measurement [56],
chemical potential [57], protein binding [58], and free radicals detection in biochemical
reactions [59–62].

7. AI Integration with FND Biosensing

There are several ways that AI can enhance FND-based biosensing in biological species.
Most of the FND biosensing applications utilize the photoluminescence of NV centers as a
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nanoprobe. The sensitivity of magnetic field sensing depends on the inverse square root of
the detected photons. Hence, the FNDs with high integrated count rates are desirable to
achieve the required sensitivity and signal-to-noise ratio. Unfortunately, the commercially
available FNDs have shown wide distribution in size (20–25%), brightness, low quantum
yield (5–20%), and non-uniformity in shape, due to which only 20% of FNDs have been
found suitable for practical applications [63]. In this regard, AI algorithms (ML, DL) can
potentially be used to synthesize high-brightness and high-quantum yield FNDs with
predefined orientations of NV centers [64]. The idea has been implemented to fabricate
high-quantum yield carbon dots and carbon nanotubes [65,66]. In the next stage, the
FND surface conjugation and chemical interaction with biomolecules (proteins, enzymes,
antigens, intracellular organelles, therapeutic nanomedicines) can also be predicted for
preparing different combinations of test samples, including the concentration of precursors
and their reaction time [67–69]. Once the biosensor is merged with biological media,
the optical signal acquired from FNDs through the experimental procedure can also be
improved and supervised for biomarker identification and any unpredictable anomalies in
real-time [70,71]. Additionally, the experimental data can be processed, interpreted, and
reconstructed to remove undesired autofluorescence background [72,73]. The process flow
of AI-integration through ML for SARS-CoV-2 is illustrated in Figure 6.
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Recent reports have shown a few experimental demonstrations of AI-based enhancement
of FNDs’ nano-biosensing capabilities. The in vivo tracking of fluorescent biomarkers is criti-
cal for the screening and testing of the uptake and efficacy of novel medicines. The fluorescent
biomarkers are optically excited, and their fluorescence emission is detected, typically mixed
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with an autofluorescence background from the cellular media. The background autofluores-
cence can restrain the detection of a biomarker available at low concentrations. Using the
inverse problem for the separation of biomarker signal from the background artificial neural
network (ANN) algorithm has been tested to determine the concentration of 100 nm FNDs
from the samples of human urine [74]. The technique combines Raman and fluorescence
spectroscopy to acquire NV emission within the 640–800 nm band. The method is applicable
for 1–20 mg/L solutions with an accuracy of 0.3 mg/L. A similar study reported the detection
of low concentrations (3 µg/mL) of FNDs from chicken egg white [75]. The presence of
magnetically labeled cancer cells in human lung and breast tissues has been realized using DL-
based algorithms, which can reconstruct the density of magnetic nanoparticles from optical
images [76]. The technique is used for immunomagnetic microscopy of the Epidermal Growth
Factor Receptor. It can deliver a spatial resolution of ~20 µm with the additional benefits of
background noise correction and tumor growth monitoring. AI-based optimization of con-
centration and treatment time in combinational drug therapy using different drugs in clinical
research has direct employment in diseases such as diabetes, HIV, and cancer [77]. Accounting
for safety, the production of nanomedicine with high efficacy and minimal side effects is a
challenging task at a large scale. AI-based feedback control system with FND-conjugated
nanomedicine has been tested on different breast cancer cells (MCF7, DA-MB-231, BT20) [78].
The study has revealed the successful implementation of AI in optimizing drug delivery
with the required viability. A tabulated summary of the AI-based SARS-CoV-2 diagnosis
techniques is shown in Table 1.

The enhancement in the speed of FND-based magnetic sensing can directly contribute
towards the visualization and measurements of dynamic intracellular reactions such as
metabolic heat generation, interneuron signaling, and chemical redox. The sequential
Bayesian approach combined with statistical analysis has shown enhancement in the speed
of magnetic field reconstruction by an order of magnitude [79]. Another experiment
revealed that Gaussian regression could be used to estimate the magnetic field with an
accuracy of 2 µT for low fields ~2.2 mT [80]. Finally, we suggest different scenarios
under which AI can be integrated with FND biosensing for SARS-CoV-2 detection. This
challenging task will require AI algorithms to screen the available database of existing drugs
and molecules to select specific biomolecules that exhibit strong binding with the spike
protein and surface-enhanced FNDs. Some ongoing projects relating to AI for exploring
the drugs which show binding with spike protein are exscalate4cov, benevolent, and
atomwise. If chemically bound with magnetic nanoparticles, these selected biomolecules
can be directly used for spin relaxometry measurements using microfluidic devices. The
procedure will assist in identifying the presence of virus entities at very low concentrations.
Overall, the main role of AI will be to develop novel biomolecules or identify the existing
ones that fit for FND-based SARS-CoV-2 biosensing.

Table 1. AI-based published research work for SARS-CoV-2 diagnosis.

Ref. Authors AI Model Method
Description

Imaging
Technique Prediction Accuracy Comments/Limitations

[81] Singh et al. ML

Hybrid Social
Group Optimization

Algorithm-based feature
extraction and Support

Vector Machine
(SVM) classifier

X-rays 99.65%

High-class imbalance in
the dataset due to a

limited number
of COVID-19

positive images

[82] Elaziz et al. ML

Feature selection using an
optimization algorithm and
classification using k-nearest
neighbors (k-NN) classifier

X-rays
96.09% and 98.09% for

datasets 1 and 2,
respectively

The class imbalance was
present in both datasets
(1 and 2) with 216 and
219 COVID-19 positive

images respectively;
cross-validation of

results was not
implemented
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Table 1. Cont.

Ref. Authors AI Model Method
Description

Imaging
Technique Prediction Accuracy Comments/Limitations

[83] Biswas et al. DL

Transfer learning based on
an ensemble of visual

geometry group (VGG)-16,
residual network
(ResNet)-50, and

Xception architectures

CAT * scans 98.79%

Stack generalization
was used as an

alternative to the
cross-validation of the

prediction model

[84] Jangam et al. DL

Stacked heterogeneous
ensemble classifier of
VGG-19, ResNet-101,

densely connected
convolutional network

(DenseNet)-169, and wide
residual network

(WideResNet)-50-2

CAT scans
85.71%, 99%, and

93.5% for datasets 1, 2,
and 3, respectively

Training and testing
times were high which
can be alleviated with

parallel computing
algorithms using
NVIDIA graphics

processing unit
(gpu)-boost cards

[85] Shankar et al. DL

Cascaded recurrent neural
network (barnacle mating

optimization (BMO)-cRNN)
using BMO for

feature extraction

X-rays 97.31%

High-class imbalance
with instances spread as

27:220 (normal:
COVID-19)

[86] Sarki et al. DL

Transfer learning from
scratch by employing
VGG-16, Inception V3,

and Xception

X-rays 93.75% (second case)

Limited availability of
high-quality COVID-19
public image was the

main problem, resulting
in lower test images

[87] Mansour et al. DL

Variational auto-encoders
(VAE) for unsupervised

learning and classification
using Inception V4 for

feature extraction
(Adagrad technique)

X-rays 98.7%

Metaheuristic
parametric learning

strategy may be used to
improve the

results further

[88] Elmuogy et al. DL
Transfer learning using

worried deep neural
network(WDNN)

CAT scans 99.046% The algorithms are
without cross-validation

[89] Wang et al. DL

Modified inception
(M-inception) model using

region of interest
(ROI) images

CAT scans 89.5%
The CT images in

training were reported
deficient by the authors

[90] Kumar et al. ML and DL

Feature extraction by
ResNet152 with ML

classifiers such as k-NN,
decision trees, and
adaptive boosting

X-rays 97.7%

Synthetic images used
during training with the

help of the synthetic
minority oversampling

technique (SMOTE)
* Computer Aided Tomography (CAT).

8. Conclusions

In this paper, we emphasize the role of FNDs-based quantum nanosensing for sen-
sitive and accurate SARS-CoV-2 diagnosis and any possible pathogenic outbreak due to
continuing mutations. The full benefit of FND-based biosensing can be harnessed by
assessing the worldwide SARS-CoV-2 database available by WHO and healthcare centers.
Machine learning tools can now mimic the chemical interaction between the commercially
available natural and synthetic molecules with different classes of spike proteins. In this
regard, AI can determine the composition of bio-conjugated FNDs while the efficacy and
side effects can be analyzed in clinical trials. These AI-developed biosensors combined
with spin relaxometry measurements could have the potential for SARS-CoV-2 detection at
extremely low concentrations. In case of a pandemic outbreak, the availability of an accu-
mulated molecular database using simulations and clinical trials would greatly enhance the
efficiency of machine learning tools in understanding the biochemical nature of pathogens
at the molecular level and the design of customized biosensors. FNDs-based biosensing
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currently faces challenges regarding implementation in the complex biological environment
such as precise intracellular control on the location of the sensor and signal reproducibility
in the presence of strong background auto-fluorescence. The consequences of free radical
detection can be further extended to investigate several physiological processes, such as
intercellular signaling, cellular metabolism, and biochemical reactions, due to the immune
system’s response to viral infection.
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