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Abstract: Traditional printed products have to some extent affected the development of smart
structures and their application in multiple fields, especially in harsh environments, due to their
complex mechanisms and control principles. The 4D printing technology based on magnetically
controlled smart materials exploits the advantages of magnetically controlled smart materials with
good operability and security, and its printed smart structures can be obtained under magnetic field
drive for unfettered remote manipulation and wireless motion control, which expands the application
of printed products in complex environments, such as sealed and narrow, and has broad development
prospects. At present, magnetically controlled smart material 4D printing technology is still in its
infancy, and its theory and application need further in–depth study. To this end, this paper introduces
the current status of research on magnetically controlled smart material 4D printing, discusses the
printing process, and provides an outlook on its application prospects.
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1. Introduction

4D printing technology, developed from 3D printing, enables 3D technology to print
structures that change shape or structure under external stimuli, directly building smart
materials and deformation design of structures into materials, simplifying the process of
building objects from design concepts to physical objects, enabling objects to automatically
assemble conformations, and realizing the integration of product design, manufacturing,
and assembly by adding dimensions that change over time on top of 3D printing [1]. The
shape, properties, or function of the printed structure can change over time in response
to external environmental stimuli (e.g., water [2], light [3], heat [4], electric current [5],
magnetic fields [6], acidic and alkaline environments [7], etc.), as shown in Figure 1.
Magnetically controlled 4D printing is a method of 4D printing that uses magnetic fields
as a driving method. It can be classified as a magnetic thermal deformation based on the
deformation mechanism of shape memory, which uses the characteristics of shape memory
polymer (SMP) materials and, thus, has the characteristics of warming up and shaping,
cooling down, and deforming again using the magnetic field due to power loss and thermal
drive, which can change from a temporary shape to the initial shape [8,9]. In addition,
the drive can be designed, it is lightweight, and it is inexpensive, and coupled with the
unique shape memory effect and deformation capability, it has great potential and practical
value in many fields, but the traditional preparation of SMP limits the application and
development of SMP deformable structures. Products based on the magnetic response
properties of the material are realized by doping the printing material with iron particles,
which are driven by the force in the magnetic field to change the overall structure, and
in order to make the printed products with a large deformation, the printing material is
generally selected from graphene and polydimethylsiloxane (PDMS).
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products with a large deformation, the printing material is generally selected from 
graphene and polydimethylsiloxane (PDMS). 

Magnetic 4D printing has the advantages of a rapid response, higher security, remote 
manipulation, greater controllability, and predictability. Compared to a thermal drive, a 
magnetic drive is instantaneous and has a fast response; compared to a water drive, a 
magnetic drive can be manipulated remotely to achieve non–contact control; and 
compared to an electric drive, a magnetic drive is more secure, and the power of a 
magnetic drive comes from the internal magnetic domain, which is stored more inside the 
printed product. However, due to the limitations of the current 4D printing technology 
and the limited variety of printing materials, there are still many shortcomings of 
magnetically controlled 4D printing, such as the lack of reprogramming ability of the 
materials; the possibility of a slow response or deformation of the printed components to 
meet the design specifications over a long period of time; the inability to program at the 
micron level for fine printing and non–light–cured voxel printing; and the rheological 
properties of the materials. Insufficient research, single printing structure, few available 
printing materials, the urgent need to study the innovative combination of formulations; 
and 4D printing integrating materials, structure, and function are limitations in the 
specific application areas. In order to play the maximum role of 4D printing, printed 
materials, 3D printer types, printing methods, design methods, and programming 
methods are needed to have a certain combination of design. 

As a 4D printing technology, the research related to magnetically controlled 4D 
printing is still in its infancy, and the research mainly includes the development of 
magnetically controlled smart materials, a smart material additive manufacturing process 
and performance, a 4D smart structure design, and a smart structure driving mechanism 
[10,11]. In recent years, research on additive manufacturing for smart materials has shown 
a continuous growth trend and is now widely used in medicine [12], assisted 
rehabilitation [13], fragile body sorting [14], non–structural environment detection [15,16], 
underwater operations [17,18], and other fields with high flexibility requirements for 
human–machine–environment interaction. Magnetically controlled 4D printing has 
received wide attention because of its good manipulability and safety. 
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Magnetic 4D printing has the advantages of a rapid response, higher security, remote
manipulation, greater controllability, and predictability. Compared to a thermal drive, a
magnetic drive is instantaneous and has a fast response; compared to a water drive, a
magnetic drive can be manipulated remotely to achieve non–contact control; and compared
to an electric drive, a magnetic drive is more secure, and the power of a magnetic drive
comes from the internal magnetic domain, which is stored more inside the printed product.
However, due to the limitations of the current 4D printing technology and the limited
variety of printing materials, there are still many shortcomings of magnetically controlled
4D printing, such as the lack of reprogramming ability of the materials; the possibility of a
slow response or deformation of the printed components to meet the design specifications
over a long period of time; the inability to program at the micron level for fine printing and
non–light–cured voxel printing; and the rheological properties of the materials. Insufficient
research, single printing structure, few available printing materials, the urgent need to
study the innovative combination of formulations; and 4D printing integrating materials,
structure, and function are limitations in the specific application areas. In order to play
the maximum role of 4D printing, printed materials, 3D printer types, printing methods,
design methods, and programming methods are needed to have a certain combination of
design.

As a 4D printing technology, the research related to magnetically controlled 4D print-
ing is still in its infancy, and the research mainly includes the development of magnetically
controlled smart materials, a smart material additive manufacturing process and perfor-
mance, a 4D smart structure design, and a smart structure driving mechanism [10,11]. In
recent years, research on additive manufacturing for smart materials has shown a contin-
uous growth trend and is now widely used in medicine [12], assisted rehabilitation [13],
fragile body sorting [14], non–structural environment detection [15,16], underwater op-
erations [17,18], and other fields with high flexibility requirements for human–machine–
environment interaction. Magnetically controlled 4D printing has received wide attention
because of its good manipulability and safety.
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2. Research Status
2.1. Magnetically Controlled Materials

In the 4D printing process, two aspects are required of the material: printability and
intelligence. Printability is a prerequisite for 4D structures to be realized in the process [19].
In the printing process of extrusion, rheology modifiers can be used to provide the proper
material viscosity. Photoinitiators, crosslinkers, and sacrificial agents are also important
factors to consider for printability. Smart materials for 4D printing can be classified into
shape change materials (SCM) and shape memory materials (SMM). Magnetically con-
trolled 4D printed smart materials can undergo a deformation response under the action of
alternating the magnetic field, rotating the magnetic field, and oscillating the magnetic field
and gradient magnetic field. Magnetically controlled smart materials are characterized by
a large deformation rate, easy control, fast dynamic response, high power density, high
electromechanical energy conversion efficiency, and the ability to realize contactless control.
With the development of magnetically controlled 4D printing technology, the research and
development of magnetically controlled smart materials that can be used for this technology
is also in progress, and the variety is increasing.

Currently, magnetically smart materials can be divided into magnetothermally de-
formable shape memory polymers (SMP) and composite elastomers driven by magnetic par-
ticles encapsulated within a matrix material according to indirect and direct responses [20].
The direct response method fixes a substrate mixed with magnetic particles into a tem-
porary shape and places it in a magnetic field. The magnetic field changes the magnetic
domains in the magnetic particles, and when the same magnetic field is applied again,
the magnetic field of the magnetic particles in the substrate responds to the applied mag-
netic field, thus achieving shape memory. The indirect response method is based on the
magneto–thermal interaction of the magnetic particles in the magnetic field and uses a
thermally driven method to achieve shape memory, which is a variation of the thermally
driven method. According to the composition, they can be divided into two categories:
magnetic shape memory composite hydrogels and magnetic shape memory polymers and
their composites [21].

2.1.1. Ferromagnetic Droplets

Liquid magnets [22] are reconfigurable ferromagnetic droplets that can be obtained
with the adsorption of superparamagnetic nanoparticles at the liquid/liquid interface un-
der ambient conditions, enabling the controlled preparation of arbitrary droplet shapes and
the paramagnetic fluid–ferromagnetic fluid transition. Conventional ferromagnetic solid
materials are rigid and cannot be configured. Although ferromagnetic fluids can be config-
ured at a later stage, they must be continuously magnetized under the action of an applied
magnetic field to exhibit specific magnetic properties. In contrast, ferromagnetic droplets
have the fluidic properties of a liquid and the magnetic properties of a solid, they can be
reconfigured while maintaining their magnetic properties, and the attractive/repulsive in-
teractions between ferromagnetic droplets can be manipulated. Separation and patterning
of ferromagnetic droplets is easily achieved and can be reconfigured in different shapes
with relative ease; with their ability to deform according to their surroundings, spherical
droplets can become the shape of a column, a pancake, a hair–thin tube, or even an octopus,
and their magnetic characteristics do not disappear. Moreover, ferromagnetic droplets can
precisely control the motion of the printed object with less energy dissipation through an
external magnetic field.

Ferromagnetic droplets have excellent characteristics on which research breakthroughs
have been made. Fan et al. [23] prepared a scale–reconfigurable magnetic droplet robot
using magneto–fluid droplets, which can not only freely travel through extreme transfor-
mational environments, but can also achieve an on–demand adjustment of its own scale
by splitting or fusion under necessary conditions to adapt to extreme environments as
well as specific tasks, which is currently used in targeted medical–related applications
(Figure 2a–d,f). However, robotic locomotion is characterized by a number of challenges.
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For example, the scales of blood vessels and tissue interstitials within the human body often
span several orders of magnitude, and it is impossible to match such complex environments
with only certain fixed–scale micro–robots; compatible motion control of micro–robots at
different scales has also been a challenge due to the fact that the forces that dominate the
motion behavior of micro–robots at different scales vary with the scale.
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with the red dye. (h) Schematic representation of the magnetic nanoparticles in the aqueous phase 
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Figure 2. (a–d) Controlled motion, deformation, and scale scaling of a scale reconfigurable magnetic
droplet robot in a live dramatic environment (simulation). (e) Schematic representation of magnetic
nanoparticles in the water phase and ligands in the oil phase self–assembling at the water–oil interface
to form dense two–dimensional nanofilms and ferromagnetic droplets. (f) Transmission electron
micrograph of magnetic nanoparticles undergoing blocking phase transition at the water–oil interface.
(g) A ferromagnetic droplet suspended in the oil phase rotates under the action of an external
magnetic field, and the turbulent trajectory of the liquid around the droplet is recorded with the red
dye. (h) Schematic representation of the magnetic nanoparticles in the aqueous phase and the ligands
in the oil phase self–assembling at the water–oil interface to form dense two–dimensional nanofilms
and ferromagnetic droplets (adapted from with the permission from Ref. [23], 2022, Science Advance.
Ref. [24], 2019, Science).

In order to expand the application of ferromagnetic droplets, further research on
their principles is needed. Research on soft robots has been very hot in the past few
years, but their power systems still face a big challenge: small soft robots yet require
huge pneumatic equipment. If this magnetic droplet is embedded in a soft robot, it can
move with only a magnetic field, thus greatly simplifying its power system. Liu et al. [24]
have demonstrated the conversion of ferromagnetic fluids into ferromagnetic droplets
by interfacial interference and magnetization of MNP surfactants. The self–assembly of
magnetic nanoparticles at the water–oil interface can be controlled to eventually guide
the conversion of ferromagnetic fluids from paramagnetic to ferromagnetic. Hysteresis
loops of iron 3O4–carbon monoxide 2H ferromagnetic fluid droplets (Figure 2e) show
the same ferromagnetic fluid droplets with and without magnetic nanoparticle (MNP)
surfactants jamming the interfacial assembly. When the magnetic field is removed, the
moment of the ferromagnetic droplet remains constant until the droplet is exposed to a
magnetic field that exceeds the switching field, and then, the droplet is re–magnetized.
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Reshaping the droplet with other external fields or reducing the binding energy of the
MNP surfactant also causes the MNP surfactant (Mr and Hc) to disappear, providing a
further way to control magnetization. This ability to manipulate magnetization further
distinguishes ferromagnetic droplets from ferromagnetic fluids and common ferromagnetic
materials. Combined with the latest all–liquid–phase 3D printing and microfluidic molding
techniques, researchers can fabricate magnetic liquid devices with arbitrary morphologies
under all–liquid conditions. Figure 2g shows the visualization of hydrodynamic vortices
in FLD collections using oil–soluble dyes in a rotating magnetic field. The bar magnet
attracts ferromagnetic droplets, and using a rotating magnet, the ferromagnetic droplets are
attracted to the center of the magnet and form a dynamically stable pattern that balances
hydrodynamic repulsion and magnetic attraction. Furthermore, the self–assembly of
interfacial magnetic nanoparticles is reversible and can be reconfigured by changing the
aqueous phase acid–base environment (Figure 2h) where an increase in pH from 4.5 to
9 loosens the MNP surfactant, and the droplet shape returns to a spherical shape. The
magnetization strength is lost, but by decreasing the pH, the MNP surfactant is re–clogged,
and the droplet changes back to a ferromagnetic droplet. Thus, the shape and magnetic
state of the ferromagnetic droplet are responsive. It changes the physical experience
that ferromagnetic substances can only be composed of hard materials by studying their
properties, and it has a wide range of potential applications from an application point
of view.

The new ferromagnetic droplets have many peculiar properties and are expected
to be used in the future for magnetically controlled liquid robots, programmable liquid
microreactors, and driving new liquid magnetic material characterization techniques, such
as polarized neutron magnetic field imaging, forward, and researchers will continue to
investigate more complex 3D printed magnetic liquid structures, such as artificial cells
printed with liquid, small propeller–motioned micro–robots, and deliveries to diseased
cells as a targeted non–invasive drug delivery.

2.1.2. Magnetic Shape Memory Composite Hydrogel

Magnetic hydrogels are compounded by magnetic particles and a hydrogel matrix,
which not only have excellent porosity and no killing effect on fibroblasts, but also have
good mechanical stability and special magnetic responsiveness. The development around
magnetic hydrogels has been very rapid in recent years, and they show good prospects
for applications in drug release, photonic crystals, actuators, and artificial muscles. Shape–
memory hydrogels (SMH) are a class of special shape–memory polymers containing large
amounts of water consisting of a permanent cross–linked network and a molecular switch
whose initial shape is determined by the permanent cross–linked network, and the tempo-
rary shape is fixed by the molecular switch [25]. It has been shown that magnetic nanopar-
ticles in hydrogels and their precursors (inks) have an effect on their rheological and
mechanical stability, and magnetic nanoparticles can react with the polymer backbone, thus
changing its physical and chemical properties and also making the bio–nanocomposites
magnetic.

In recent years, magnetic hydrogels have been widely used in 4D printing. It has
promising applications in soft electronics, flexible robotics, biomedical devices, wastewater
treatment, etc. Gang et al. [26] developed a novel self–healing magnetic double mesh
gel using multiple interactions between magnetic Fe3O4 and chitosan–polyolefin groups,
which showed excellent performance in magnetoacoustic effect and magnetic resonance
imaging, further revealing the hydrogel 3D printing potential. Magnetic self–repairing
hydrogels show excellent biosafety properties in animal experiments, demonstrating their
potential as injectable implantable materials for biological and medical applications. In
addition, 4D printing technology can maintain the morphology and strength of hydrogels
for a certain period of time. Hydrogels, such as poly(N–isopropylacrylamide–co–acrylic
acid) (pNIPAM–AAc), can be photopatterned to create a wide range of actuatable and
self–folding microstructures; Breger et al. [27] designed, manufactured, and characterized
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photopatterned, self–folding microclamps based on this hydrogel. Conventional hydrogel
grippers have low modulus and limited gripping ability, but the self–folding micro–fixtures
obtained through experiments and modeling have good gripping ability and can be respon-
sive and remotely guided according to the magnetic field. It is better used in soft robotics
and surgical applications.

Magnetic hydrogels are not only used in our daily lives, but also in bionic technology.
Chen et al. [28] proposed a new method of 3D printing with rheological modifiers and
produced a magnetic hydrogel octopus using ink direct printing technique where the mag-
netic hydrogel octopus structure was printed directly without any structural processing
and its motion and deformation could be controlled by a program. Hydrogels are very
biocompatible and can be used to develop soft robots for biomedical applications, bioactua-
tors, and so on. Simińska–Stanny et al. [29] introduce a printable magnetic hydrogel that
can be effectively applied to multi–material soft bodies for direct printing and allows for a
non–contact aerial control of hydrogel motion. This magnetic hydrogel can be successfully
used for multi–material direct ink printing of soft actuators.

The assembly of non–magnetic and magnetic hydrogels into a single structure by ad-
ditive manufacturing provides excellent adhesion between the magnetic and non–magnetic
hydrogel layers, and the interaction between the magnetic nanoparticles and the precursor
network of the hydrogel gives the ink a good shear thinning capability. By testing the
deflection angle for different content of magnetic nanoparticle content, it was found that
the deflection angle was strongly related to the magnetic nanoparticle content, 4D mode,
and exposure surface. When a magnetic field is applied, the magnetic cantilever shows in-
stantaneous bending. The average bending angles of the 4D printed cantilever beams with
different 3D patterns are shown in Figure 3. The multi–material direct printing based on
this structural hydrogel is well able to obtain high resolution, high shape fidelity, adjustable
distribution of magnetic nanoparticles, and an induction of macroscopic anisotropy of the
3D structure.

2.1.3. Magneto–Thermally Deformable Shape Memory Polymers

Magneto–thermally deformable shape memory polymer is usually a ferromagnetic
material incorporated into a thermally deformable SMP and thermally driven in a magnetic
field due to power loss. The laboratory of Xi’an Jiaotong University chose temperature–
sensitive PNIPAm hydrogels as a matrix and added oleic acid–coated Fe3O4 magnetic
nanoparticles to prepare magnetic temperature–sensitive hydrogels, which were printed by
extrusion to fabricate integrated structures of magnetic hydrogels and elastomers [30]. The
integrated structures were fabricated by curing the elastomeric ink by heating and curing
the hydrogel ink with UV irradiation.

As shown in Figure 4, Zhang et al. [31] printed Fe3O4/PLA composite scaffolds using
FDM technology, the printed scaffolds can be uniformly heated to 40 ◦C, driven by an
alternating magnetic field at a frequency of 27.5 kHz, which leads to morphology changes,
and the prepared scaffolds have a promising application in the field of bone tissue repair.
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Figure 3. Average bending angles of 3D printed cantilever beams with different 3D patterns and
their corresponding magnetic response photos. P0, nonmagnetic hydrogel consisting of one-type ink
(contains 0% magnetic nanoparticles); P10, magnetic hydrogel consisting of one-type ink (contains 10%
magnetic nanoparticles); P20, magnetic hydrogel consisting of one-type ink (contains 20% magnetic
nanoparticles); PAA, polyacrylic acid; PG, hydrogel assembled from 3 inks (thirteen layers of 0%
MNPs, thirteen layers of 10% MNPs and fourteen layers of 20% MNPs); PG0, hydrogel assembled
from 3 inks, measuring the bending angle for the cantilever where the magnet was on the side of the
layers with 0% MNPs; PG20, hydrogel assembled from 3 inks, measuring the bending angle for the
cantilever where the magnet was on the side of the layers with 20% MNPs (adapted from with the
permission from Ref. [29], 2021, Additive Manufacturing).

Magnetochemistry 2023, 9, x FOR PEER REVIEW 7 of 28 
 

 

layers of 0% MNPs, thirteen layers of 10% MNPs and fourteen layers of 20% MNPs); PG0, hydrogel 
assembled from 3 inks, measuring the bending angle for the cantilever where the magnet was on 
the side of the layers with 0% MNPs; PG20, hydrogel assembled from 3 inks, measuring the bending 
angle for the cantilever where the magnet was on the side of the layers with 20% MNPs (adapted 
from with the permission from Ref. [29], 2021, Additive Manufacturing). 

2.1.3. Magneto–Thermally Deformable Shape Memory Polymers 
Magneto–thermally deformable shape memory polymer is usually a ferromagnetic 

material incorporated into a thermally deformable SMP and thermally driven in a 
magnetic field due to power loss. The laboratory of Xi’an Jiaotong University chose 
temperature–sensitive PNIPAm hydrogels as a matrix and added oleic acid–coated Fe3O4 
magnetic nanoparticles to prepare magnetic temperature–sensitive hydrogels, which 
were printed by extrusion to fabricate integrated structures of magnetic hydrogels and 
elastomers [30]. The integrated structures were fabricated by curing the elastomeric ink 
by heating and curing the hydrogel ink with UV irradiation. 

As shown in Figure 4, Zhang et al. [31] printed Fe3O4/PLA composite scaffolds using 
FDM technology, the printed scaffolds can be uniformly heated to 40 °C, driven by an 
alternating magnetic field at a frequency of 27.5 kHz, which leads to morphology changes, 
and the prepared scaffolds have a promising application in the field of bone tissue repair. 

 
Figure 4. FDM printing magneto–thermal effect driven deformation structure (adapted from with 
the permission from Ref. [31], 2019, Composites: PartA). 

2.1.4. Magnetic Particle–Driven Composite Elastomers 
A composite elastomer driven by magnetic particles encased in a matrix material is 

usually a polymer grid using magnetic nanoparticles (MNP) physically or chemically. 
Compared to magnetothermally deformable SMP, the use of magnetic nanoparticles to 
directly drive the elastic matrix for reversible deformation results in fast response, large 
deformation, and rapid deformation. 

The research group of Prof. Yusheng Shi at Huazhong University of Science and 
Technology adopted the idea of material compounding [32] to combine additively 
fabricated magnetoelectric materials, thus realizing a new type of flexible magnetoelectric 
device. The flexible magnetoelectric device consists of a highly homogeneous porous 
structure that generates a magnetic field due to its permanent magnetism and a 
conductive spiral structure (equivalent to a conductive coil) in this magnetic field. It 
consists of a highly identical porous structure with a helical structure. It can be 
compressed or recovered periodically under the influence of external pressure, during 
which the magnetic flux through the coil changes, and it is known from Faraday’s 
principle of electromagnetic induction that a voltage will appear between two parallel 
plates. Therefore, additive manufacturing of magnetic composites, i.e., 4D printing of 
magnetic smart materials, produces components with piezoelectric properties and the 
ability to sense external pressure. The properties and functions above are not present in 

Figure 4. FDM printing magneto–thermal effect driven deformation structure (adapted from with
the permission from Ref. [31], 2019, Composites: PartA).

2.1.4. Magnetic Particle–Driven Composite Elastomers

A composite elastomer driven by magnetic particles encased in a matrix material
is usually a polymer grid using magnetic nanoparticles (MNP) physically or chemically.
Compared to magnetothermally deformable SMP, the use of magnetic nanoparticles to
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directly drive the elastic matrix for reversible deformation results in fast response, large
deformation, and rapid deformation.

The research group of Prof. Yusheng Shi at Huazhong University of Science and
Technology adopted the idea of material compounding [32] to combine additively fabricated
magnetoelectric materials, thus realizing a new type of flexible magnetoelectric device. The
flexible magnetoelectric device consists of a highly homogeneous porous structure that
generates a magnetic field due to its permanent magnetism and a conductive spiral structure
(equivalent to a conductive coil) in this magnetic field. It consists of a highly identical
porous structure with a helical structure. It can be compressed or recovered periodically
under the influence of external pressure, during which the magnetic flux through the coil
changes, and it is known from Faraday’s principle of electromagnetic induction that a
voltage will appear between two parallel plates. Therefore, additive manufacturing of
magnetic composites, i.e., 4D printing of magnetic smart materials, produces components
with piezoelectric properties and the ability to sense external pressure. The properties and
functions above are not present in the original magnetic porous and conductive structures.
This work has enriched the 4D printing research ideas.

2.1.5. Magnetic Inorganic Composites

Magnetic inorganic composites are also a theme for future development, using the
properties of the material to provide new possibilities in many fields. Current studies on
magnetic inorganic composites focus on magnetic memory metals, magnetic ceramics, and
magnetic concrete.

4D printed shape memory alloys (SMAs) are a class of special metal alloys capable of
shape memory effects (SME) when stimulated by temperature or magnetic fields. SMAs
can be used in applications such as temperature control systems, actuators, biomedicine,
and aerospace. The driving mechanism of magnetically responsive shape memory alloys
is twin grain boundary motion, also known as magnetically induced reorientation (MIR)
or magnetoplasticity [33]. MIR leads to an increase in magnetization intensity, which
results in shape change. Caputo et al. [34] investigated an additive manufacturing route
to produce functional net–shape parts from pre–alloyed magnetic shape memory Ni–Mn–
Ga powder using binder jetting technology to print Ni–Mn–Ga magnetic shape memory
alloys with various porosities. The printed Ni–Mn–Ga parts undergo reversible martensitic
transformation during heating and cooling, which is a prerequisite for the shape–memory
behavior. Under the action of applied magnetic field, Ni–Mn–Ga magnetically responsive
shape memory alloy has a magnetic field–induced strain of about 0.01%. The additive
manufacturing is a viable technology in solving the design issues of functional parts made
of Ni–Mn–Ga magnetic shape–memory alloys (MSMA).

At present, although metal implantable tissue engineering scaffolds have been widely
used in clinical practice, they still have many problems, such as non–degradability, migra-
tion, embolization, corrosion, and nickel allergy. Lin [35] designed and prepared novel
blockers and intestinal scaffolds based on 4D printed biocomposite wires. A variety of
4D printed biocomposite wires with controllability and functionality were designed and
prepared with the introduction of plasticizer polyethylene glycol, which enabled them
to move at near body temperature (42.5–43.1 ◦C). In addition, the photothermal agent
graphene oxide and magnetic nanoparticles of ferric tetroxide were introduced to enable
the biocomposite wire to be optically and magnetically driven for remote and precisely
controlled unfolding of tissue engineering scaffolds. The magnetically driven biocomposite
enables remote and controlled deployment of the blocker.

The introduction of magnetic elements into bioglass ceramics to prepare magnetic
bioglass ceramics to obtain biomaterials with structure and properties similar to those of
human tissues, making them both magnetic and biologically active and allowing their
functions to be regulated and controlled by changing their composition to suit different
requirements, has become one of the most active fields in the development and research of
biomaterials [36]. Ceramics have high mechanical strength and hardness, good chemical
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stability, and excellent acousto–optic–electromagnetic thermal properties, and they are
widely used in chemical, mechanical, electronic, aerospace, and biomedical fields. In the
1990s, Marcus et al. [37] and Sachs et al. [38] proposed the concept of 3D printed ceramics,
which provided a new possibility to solve the problems and challenges of traditional
ceramic manufacturing processes. By implanting magnetic bioactive glass ceramics into
the lesion site, the material can generate heat at the site under an applied alternating
magnetic field, killing tumor cells without harming normal tissues and promoting tissue
repair by forming a chemical bond with the tissue through the bone–like apatite layer.
He et al. [39] used NH4HCO3 as a pore–forming agent to produce porous lithium–iron–
phosphorus magnetic ceramics with a biological coating by sintering. The fabricated
ceramics have good magnetic properties, and the porous structure is necessary as a carrier
of chemotherapeutic drugs so that the combination of chemotherapy and thermotherapy
can be achieved through the ceramics to improve the efficacy of cancer treatment. Martin
et al. [40] used oriented anisotropic reinforcement particles during magnetic field printing
of composites to produce bionic reinforced structures with ceramic particles of 90 µm
characteristic size. These architectures resulted in composites with higher stiffness, strength,
and hardness properties. This approach is robust, low–cost, scalable, sustainable, and
will enable a new class of robust, lightweight composite prototypes with programmable
properties. Based on the current research status and new developments of ferrite magnetic
materials, their development will move from monolithic ferrite materials to composite
ferrite materials, large particle materials to nanoparticle level materials, and a wider range
of applications.

In recent years, concrete 3D printing technology has achieved rapid development and
application in civil engineering, construction, etc. In the 1990s, Pegna [41], an American
scholar, was the first to use cement–based materials for 3D printing, printing concrete
(mortar) structures by accumulating mortar layer by layer and using steam curing for rapid
curing. After nearly 30 years of development, concrete 3D printing technology has been
able to complete the printing of concrete products and structures and print low–rise houses.
Concrete printing currently has two methods, adding additives to the initial concrete mix
and the print head to improve buildability through pre (on–demand settings), the former
method is the most widely studied; however, it can affect pumping capabilities. The latter
includes mixing accelerators, heating, ultrasound, or magneto–rheological control, forming
in the print head and rapidly increasing the yield strength of the material immediately
before extrusion [42].

As one of the most used construction materials, the performance and quality of
concrete construction also have higher requirements with the continuous development and
progress of civil construction. Based on its characteristics, people continue to innovate it,
Jin et al. [43] studied a 3D printed magnetically oriented steel fiber reinforced cementitious
composite material, which significantly improved the tensile strength, ductility properties,
and crack resistance of concrete, making it with good deformation capacity. It was found
that the higher the steel fiber admixture in the same cementitious material, the higher the
required magnetic induction strength of steel fiber orientation. In the same cementitious
material, the smaller the length–to–diameter ratio, the smaller the required magnetic
induction strength of fiber orientation and the better the orientation effect.

2.1.6. Overview of This Section

As the number of programming cycles increases, the responsiveness and accuracy
of the printed component will be greatly affected. Currently the most widely used are
unidirectional shape memory materials, i.e., when reprogramming, an external load often
needs to be applied to accomplish temporary shape fixation. However, bidirectional
memory materials can achieve bidirectional conversion between the original shape and the
temporary shape without any external load [44]. In order to make the printing material with
better reprogramming ability and the determined pattern of the magnet not be completely
fixed, researchers need to keep focusing on the research of reprogramming lifetime and
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reversible programming of memory materials and focusing on the development of what
kind of materials can break the current dilemma.

In order to solve the problem of 4D printing accuracy and more flexible control of
printed components, some scholars proposed the use of structural voxelization [45], which
defines 4D printed materials as digital materials and defines the parts with the same
properties and structure as a voxel. Each voxel contains only one material and has its
own unique properties. The collection of different voxels can achieve a multi–material
deformable structures. In order to find good digital materials for 4D printing, it is necessary
for researchers to invest in deeper rheological research of materials to study the properties
and structure of materials to improve the response rate of print builds; to obtain better
shape memory properties, strength, and stiffness; to discover new physical mechanisms;
and to create innovative combinations of material formulations.

However, in practice, the choice of printing materials is often matched to the type
of printer and printing method. For example, in 4D printing with SLA technology, the
material used should be a photosensitive liquid material with fast curing, low viscosity,
and suitable depth of throw; in printing with SLM technology, the material used should be
a powder with good flowability, high sphericity, high bulk density, small particle size, and
uniform distribution; and in printing with FDM technology, the filament used should have
a uniform and moderate filament diameter, low melting point, low fluidity, low viscosity,
low shrinkage, and good adhesion.

4D printing achieves the structural and functional integration of its printed objects.
The effect of magnetically controlled 4D printing can be influenced by various aspects,
including: printing materials, types of 3D printers, printing methods, design methods, and
programming methods. A certain combination of design is needed to make 4D printing
work to its maximum effect, so designing a good 4D printing model is a comprehensive
problem.

3. Magnetically Controlled 4D Printing Process
3.1. Direct Ink Writing Magnetically Control 4D Printing

Direct ink writing is one of the main methods of magnetically controlled 4D printing.
The magnetization of the uncured elastomeric compound containing magnetic particles
during the printing process is treated as a small permanent magnet, and when it is mag-
netized to saturation, its shear yield stress prevents the dispersed magnetic particles from
coalescing in the composite ink. During the printing process, due to mechanical properties
such as shear deformation and shear yielding, the composite ink can be extruded by the
micro–nozzle, and the deposited ink can form multiple stacks without changing its shape.
The magnetic poles of the deposited ink can be adjusted by changing the applied magnetic
field or the printing direction. At the end of printing, the shear yield stress in the uncured
ink keeps the programmed ferromagnetic domains from being thermally randomized by
the aligned particles.

Yoonho Kim [46] proposed a method for printing soft materials with direct inks writing
based on uncured elastomer composites. The process involves applying a magnetic field
to the dispensing nozzle (as in Figure 5a), thereby repositioning the magnetic particles
along the direction of the applied magnetic field, i.e., printing the magnetic domains
directly on the 4D printed soft body, creating a magnetic pole pattern. The composite
ink used for 4D printing was composed of neodymium–iron–boron (NdFeB) particles
and silica nanoparticles embedded in a silicone rubber matrix with a silicon catalyst and
cross–linker, and it was subjected to a pulsed field of approximately 2.7 T for magnetization.
A permanent magnet or electromagnetic coil is placed on the printer nozzle during printing
to apply a magnetic field along (or in the reverse direction of) the flow of the printed
material. To prevent the magnetic field applied to the nozzle from affecting the structure of
the print, a magnetic shield is placed under the tip of the nozzle to attenuate the magnetic
flux density. After printing, the printed structure is cured at 120 ◦C for 1 h. After the
solidification process, the ferromagnetic soft body was able to rapidly transform into a
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complex three–dimensional figure under the action of a magnetic field and took on different
morphologies with the direction and intensity of the applied magnetic field.

Based on Kim’s research, the researchers have developed a variety of composite
inks for 4D printing, whose structures are enhanced in different directions by an external
magnetic field, depending on their application requirements. Zhu et al. [47] mixed iron
nanoparticles with PDMS to make a printable composite ink, the printed structure changed
shape under the action of an alternating magnetic field, and the response time is shortened
by this external magnetic field. Due to the low magnetic force and high magnetic permit-
tivity of the soft magnetic iron particles in this composite ink, the printed structures can
gain or lose high magnetization immediately when the external magnetic field is switched
on or off. As an example of a 3D butterfly with rapidly flapping wings under an applied
magnetic field, as shown in Figure 5b, the butterfly structure printed with PDMS/Fe ink
deformed under magnetic stimulation and the butterfly wings flapped from the lowest
to the highest position in only 0.7 s; Podstawczyk [48] formulated a bio–nanocomplex
synthesized from alginate, methylcellulose, and magnetic nanoparticles as a novel 4D
printing ink to print predefined 3D structures that can retain their shape for a long time
after printing and have high mechanical stability. The thixotropic inks developed in this
study are expected to be ideal for direct printing of high–fidelity, magnetically–activated,
stimulus–responsive hydrogel structures, whereas conventional DIW printing techniques
can only achieve programmable magnetic orientation and constant magnetic density. Wu
et al. [49] introduced a method for DIW printing using voxel–encoded hard magnetic soft
active materials (hmSAMs) and combined it with an evolutionary algorithm (EA)–based
design strategy to achieve the desired magnetic drive as well as complex geometry and
curvature distribution. Magnetization density and magnetization direction distribution
can be programmed simultaneously during hmSAMs. Using the novel voxel–encoded
DIW printing technique, hmSAM functions with the required curvature distribution were
obtained, such as the bionic motion function of a rattlesnake performing a side–to–side
motion. In this printing method, each voxel includes multiple hmSAM layers with high
aspect ratio DIW printing, as shown in the actual DIW printed voxel elements in 5c. By
controlling the printing direction of each voxel, the overall magnetization intensity can
be achieved. Greater adjustability of magnetic flux density and magnetic field direction
distribution in DIW printing is achieved by increasing the number of layers of DIW voxels.
This printing method greatly broadens the application potential of hmSAMs.

3.2. Laser–Selected Sintered Magnetically Controlled 4D Printing

Laser–selective sintering (SLS) is a promising technique for powder–based additive
manufacturing that uses an infrared laser as the emission energy source, and the laser
beam is computer–controlled to selectively sinter based on the layered cross–sectional
information to melt adjacent powders, cool and solidify them into a pre–defined forming
surface after the irradiation stops, and sinter the layers to obtain pre–defined parts. It is
used to manufacture polymer composites with high mechanical strength [50–52], which
can be magnetically controlled 4D printing.
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Deng [53] developed a laser rewritable magnetic composite film whose deformation in
response to a magnetic field can be digitally programmed with simple direct laser writing
and with transient laser heating to temporarily melt the phase change polymer so that the
orientation of the magnetic particles can be rearranged when the programmed magnetic
field changes. The NdFeB@PCL MPs were randomly oriented on the prepared MRSM
film using NdFeB@PCL MPs so that they were not fully magnetized. On the melting of
the polycaprolactone (PCL) shell due to local laser heating, the magnetic orientation of
the magnetic particles was re–adjusted to the programmable magnetic field orientation
(e.g., Figure 6a). PCL was chosen because its melting temperature is much lower than
that of silicone, allowing for the effective control of the laser power and minimizing its
damage. When the laser is moved out of the exposure zone, the PCL cures quickly, and
the programmed magnetic field direction of the NdFeB MPs is fixed. Depending on the
digitally controlled laser scan and dynamically changing the programmed magnetic field
direction, magnetic domains with complex magnetic field anisotropy can be formed on
the MRSM film. Because the phase transition of PCL is reversible, the magnetic field that
was rewritten according to the same program has anisotropy and can be constructed in
the same MRSM film with different shape transformations. Using this printing method,
polymorphic electronic switches for electronic devices can be fabricated, and reconfigurable
magnetic soft robots with motion modes, such as creeping, crawling, and moving, can be
constructed, which is promising in the field of adaptive and reconfigurable soft robots. Wu
et al. [54] developed a new gripper using SLS–based 4D printing technology, discussed
the 2D/3D distribution of magnetic induction intensity and scalar magnetic potential of
the gripper, conducted an in–depth analysis of its deformation mechanism by adjusting its
magnetic composition and distance from the external magnet, and established a quantitative
relationship between the magnetic excitation and the gripper, which provides guidance for
future 4D printing controlled deformation, and driving force calculation research provides
guidance, as shown in Figure 6b. Future research is required to optimize the structure of
the gripper for more effective controls. The energy consumption in the driving process
should also be considered.
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3.3. All–Liquid Printing

All–liquid printing is a new printing technology that uses a special 3D printer to
deposit “water lines” into a silicone oil substrate that can be used to build liquid electronics
and chemical synthesis. Berkeley Lab scientists lock the water in a special nanoparticle
surfactant that prevents pipes from breaking into droplets and call the surfactant a super
soap. The super soap is achieved by dispersing gold nanoparticles into water and polymer
ligands into oil. The gold nanoparticles and polymer ligands are interconnected and remain
in their respective water and oil media, and shortly after the water is injected into the oil, the
resulting super soap has glass–like properties that stabilize the water–oil interface and keep
the liquid structure in place. So far, the researchers have printed water droplets between 10
microns and 1 mm in diameter, each containing a large number of iron oxide nanoparticles
with a diameter of 20 nanometers. Magnetometry shows that about a billion nanoparticles
are “packed together” and that they exhibit magnetic properties when excited by a magnetic
coil. These external nanoparticles transfer the magnetic orientation to the nanoparticles
at the core of the droplet, giving the entire droplet permanent magnetic properties. The
process of printing water in oil is accomplished by nanoparticles binding to polymer
ligands in the oil to form an elastic film (Figure 6c), and based on this principle, scientists
have created several different types of structures, including complex spiral and branched
patterns up to several meters long. The Chinese and American research team [55] used
all–liquid–phase 3D printing technology to prepare a new type of droplet with permanent
magnetic properties. This ferromagnetic fluid droplet is about 1 mm in diameter and
consists of a large number of iron oxide nanoparticles with a diameter of 20 nm. The
clustered nanoparticles exhibit magnetic properties under the action of magnetic coils.
When the nanoparticles on the surface are magnetized, they transfer the magnetism to
the nanoparticles in the center, and the entire droplet becomes permanently magnetic.
Using all–liquid–phase 3D printing and microfluidic molding, the researchers were able to
create magnetic droplets of arbitrary shapes, they remain magnetic after being divided into
smaller droplets, and the molded liquid can also be reversibly magnetized or demagnetized
by changing the acid–base environment. This technology can be applied to provide artificial
cells for targeted cancer therapy, deformable liquid robots, etc.

3.4. Light–Curing Molding Magnetically Controlled 4D Printing

Light curing molding technology is divided into stereo light curing (SLA) and digital
light processing technology (DLP). Light curing molding is the use of a specific wavelength
and intensity of light focused on the surface of photosensitive materials so that they are
sequentially cured from point to line and line to surface, completing a level of molding
operations, after which the lifting table moves a level of height in the vertical direction,
thus constituting a three–dimensional entity. SLA manufactures workpieces with high
dimensional accuracy (e.g., Figure 7a) [56] and was the first commercialized 3D printing
technology. DLP technology [57] differs from SLA’s laser progressive scanning by curing
the entire input slice layer at once, and the surface of the resin used in the printing process
is in constant contact with the platform, which ensures the accuracy, resolution, and quality
(e.g., smoothness) of the print.

DIW and fused filament fabrication (FFF) have been used to manufacture fast response
drives, inks with highly loaded magnetic fillers [58], and the folding and extension of 2D
planar structures [59], but DIW and FFF currently still have some shortcomings in terms of
resolution, filler dispersion, and compatibility of temperature and filler. The alternative is
DLP. DLP has the following advantages: the print resolution of DLP is of pixel size, which
is usually higher than DIW and FFF [60,61]; the use of liquid formulations in DLP allows for
better control of filler dispersion; and it can be prepared directly at room temperature. This
reduced polymerization 3D printing technique involves the use of photosensitive (liquid)
resins, and the resins can be cured under appropriate light conditions. In DLP, a digital
light projector (digital microscope device) illuminates the light–curable resin with a 2D
pixel pattern to cure individual slices of a 3D object [62,63]. Lantean et al. [64] investigated
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the use of DLP for printing magnetically responsive polymers with tunable mechanical
and magnetic properties by mixing butyl acrylate and polyurethane–acrylic resins, which
can be adjusted as needed for the magnetic response mechanical properties of the polymer
to achieve a 6% loading of Fe3O4 nanoparticles to regulate the magnetic response of
the printed samples. Following this strategy, magnetoresponsive active components are
fabricated with programmable complex functions using external magnetic fields.

Ma et al. [65] developed a magnetic multi–material DIW (M3DIW) technique for the
integration of complex structures with light–cured M–SMP and MSM. The technique is
based on the complex structural integration of magnetic soft materials and magnetic shape
memory polymers (M–SMPs) for composite printing, which is synergistically thermally
and magnetically driven to obtain various morphological variations and further improve
the tunability of the active material. As an example, the magnetization distribution and
four morphology types are shown in Figure 7b. The success or failure of DIW printing of
M–SMP/MSM composites is determined by the ink’s print suitability, curing efficiency,
and curing quality. The two main properties of the ink, i.e., ink rheology and curing depth,
influence the printing and curing process. The former can be adjusted by adjusting the
rheology of silica nanoparticles; the latter mainly depends on the size, loading, UV irradia-
tion time, and intensity of NdFeB particles. Magnetic multi–material printing technology
is a powerful method of fabricating magnetic materials with integrated multi–physics
fields and multifunctional response, offering further possibilities for the development of
deformable structures, soft robotic systems, and biomedical devices.
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permission from Ref. [56], 2020, Applied Materials Today. Ref. [65], 2021, ACS Applied Materials &
Interfaces. Ref. [66], 2022, Advanced Materials).

3.5. Reduced Photopolymerization Magnetically Controlled 4D Printing

Reduced photopolymerization (VP) is also a popular 4D printing method for making
magnetic miniature robots. VP is used to generate 3D structures by curing the resin layer by
layer using an ultraviolet (UV) photonic energy source. A major advantage of the printing
technology is the ability to achieve high quality prints on a smaller scale. Two–photon
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multimerization is a VP–based printing technique that is now widely used to produce
magnetic soft micro–robots (MSMR) with complex 3D structures [67–70]. However, these
magnetic robots cannot be actively deformed to achieve complex mechanical functions.
While obtaining realistic 3D initial geometry and deformation, the fabrication of MSMRs
with homogeneous, highly magnetic materials using VP 3D printing remains a problem
worth exploring. Zhou proposed a new cyclic reduction photopolymerization (CVP)
technique to print MSMRs [66]. The unique cyclic system of CVP allows the magnetic
composite resin to remain homogeneous (Figure 7c), such that parts with high homogeneity,
high particle loading, and strong magnetic response can be printed using relatively large
micron–sized particles.

3.6. Other Magnetically Controlled 4D Printing Processes

As magnetically controlled 4D printing technology continues to develop, more and
more new materials are being developed and applied, requiring corresponding printing
processes to accompany them, and multidisciplinary research in multiple fields needs to be
further strengthened.

Positively influenced by covalent dynamic polymers (DPs) in the welding and reman-
ufacturing of materials, Kuang et al. [71] designed a reprogrammable and reconfigurable
deformable magnetic dynamic polymer (MDP) composite. This MDP includes hard mag-
netic particles (NdFeB) and a reversible cross–linked DP matrix (e.g., Figure 8). MDPs have
excellent properties, such as flexible, fast, and reversible transmission as well as welding,
reprogramming, reconstitution, and recycling, providing a new process for the production
of functionalized unstressed 3D structures.
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Kuang et al. [71] used a combination of both bending and bending–folding into a closed
shape at a magnetic field of 100 mT (as in Figure 9) and verified the validity of the structure
and response of the finite element method under magnetic force by comparing numerical
simulations with experimental data; at a heating temperature of 110 ◦C and a magnetic field
of 35 mT, it was verified that the magnetization strength of the 45◦ oriented reprogrammed
MDP film was sufficient to achieve magnetization. In addition, the reprogramming intensity
of the remanent magnetization can reach 100% when the applied magnetic field reaches
140 mT. Using the synergistic effect of temperature and magnetic field to adjust the DP
network and magnetic dipole rearrangement, the functional features and applications of
MDP are demonstrated, which include seamless welding of modular components based
on objective functions, magnetization reprogramming for reconfigurable drive methods,
and structural reorganization for remote control. Magnetic modular components are based
on a combination of magnetized reprogramming and permanent shaping functions for
programmable and reconfigurable architectures and deformed structures. The investigated
MDPs will provide new directions for the design and fabrication of future multifunctional
components and reconfigurable deformable architectures and devices.
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Materials).

Soft magnetic materials show promise in a variety of applications because of their fast
response, remote driveability, and wide penetration range. Song et al. [72] prepared a new
soft magnetic composite and proposed a new printing method that reprograms the mag-
netization without affecting the intrinsic magnetic properties of the embedded magnetic
particles and the molecular properties of the matrix. The reprogrammable magnetic com-
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posites consist of spatially separated magnetic microspheres embedded in an elastic matrix,
each of which consists of magnetizable NdFeB particles with an average particle size of
5 µm (e.g., Figure 10). The solid–liquid phase transformation allows the magnetic particles
within the microspheres to be rearranged, thus changing their magnetization direction, and
the structure can also be heated to induce a transformation of the microspheres; an applied
magnetic field can also be applied during the cooling process to program the elastomeric
substrate with non–uniform magnetization into the desired programmed structure.
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microspheres. (c) Process for reconfiguring a programmable magnetic composite (adapted from with
the permission from Ref. [72], 2020, Advanced Materials, Nano letters).

4. The Application of 4D Printing for Magnetically Controlled Smart Materials

Nowadays, 4D printing has played an irreplaceable role in many fields. Printing
time can be greatly saved through the evolution of the shape and function of the smart
materials and structures in manufacturing smart devices. It is confirmed that self–folding
can accelerate rapid prototyping of 3D objects by saving 60–87% of printing time and
material consumption. In addition, the storage space can be saved by taking advantage
of stimulus–responsive shape change features. The application space for 4D printing is
increasing. With the development of 4D printing technology and magnetically controlled
smart materials, the new magnetically controlled smart materials have been widely used in
many fields and show good application prospects.

4.1. Biomedical Applications

Due to the need for the development of personalized implantable devices and drug
delivery devices, magnetically controlled 4D printed SMP structures with biocompatible,
programmable, and reversible properties are now proven for potential applications in many
targeted drug delivery in the biomedical field, where they offer minimally invasive, locally
effective, and controlled therapeutic approaches [73–76]. The biodegradability, low inva-
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siveness and remote intervention, and non–contact control of 4D printed bioimplantable
devices with magnetically controlled smart materials offer significant advantages in clinical
operations. Traditional drug delivery can have undesirable consequences due to drug
overdose and off–target delivery, and the introduction of magnetized microrobots allows
for access to hard–to–reach lesions through a minimally invasive approach. In recent years,
magnetized microrobots have played an increasingly important role in the field of targeted
therapy. Lin et al. [77] designed and prepared a personalizable and biodegradable SMP
composite blocker by doping Fe3O4 magnetic particles into a shape–memory polylactic acid
matrix, which was able to achieve remote controlled deployment under a magnetic field of
certain strength. As shown in Figure 11, for the therapeutic procedure of shape memory
heart blockers, the blocker can be packaged, delivered, and released smoothly through the
catheter and can be deployed in less than 16 s with cellular adhesion and granulation tissue
growth into the occlusion, thus promoting rapid endothelialization. In addition, the 4D
printed shape memory occluder allows for a perfect fit and provides adequate support for
the defect. Thus, 4D printed shape memory occluders can be used as a potential alternative
to metal occlusion devices.
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Figure 11. Biomedical applications. (a) Blocker intervention ASD schematic. (b) Blocker frame
structure. (c) Blocker structure. (d) Blocker deployment process in the body. (e) Blocker covered by
new tissue (adapted from with the permission from Ref. [77], 2019, Advanced Functional Materials).

From a tissue process perspective, manipulation of the orientation and intensity of
the magnetic field will lead to specific changes in the morphology and any shape of the
scaffold, which can be used for certain tissues that require structural regeneration [78–80],
mechanical stimulation [81], and dry cell differentiation [82]. Tracheal stents designed
based on biological SMPs materials have excellent performance of being actuated without
contact, showing great potential to replace conventional tracheal stents. Zhao et al. [83]
designed a 4D printed tracheal scaffold with the ability to adapt to the complex environment
in the patient’s soft tissue based on the microstructure of a glass sponge, which can be
implanted in a programmed form and controlled by alternating magnetic fields to change
its morphology. The shape memory properties of bio–inspired 4D printed scaffolds help
to match the geometry of the trachea and allow it to exhibit better support and stability
compared to conventional scaffolds [84].

Yim et al. [85] developed a magnetically driven untethered soft capsule robot for
wireless biopsy, which comes with an endoscope that carries and releases a large number
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of thermal sensitizers to grasp the sample by micro gripping jaws after the desired location
in the stomach, as shown in Figure 12.
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Micro–bio–printing technology in medicine is still in its infancy, with limited print
speed, resolution, and complexity of print patterns. The use of MNP in the life support
system requires consideration of biocompatibility, the type of MNP, and its strategy for
incorporation into polymers.

4.2. Applications in the Field of Robotics

The field of robotics requires a high degree of structural complexity and structural
automation. There has long been a commitment to create untethered, intelligent robots
capable of performing tasks on a small scale. The use of magnetic control is of great
importance for robot actuation because the driving magnetic field can easily and harmlessly
penetrate most synthetic and biological materials [86–88].

There are many such robots: small, untethered robots that can noninvasively enter con-
fined spaces can be used in bioengineering, such as single–cell manipulation and biosensing,
and microfactories, such as building tissue scaffolds via robotic assembly, and in healthcare,
such as targeted drug delivery and minimally invasive surgery. However, existing small
robots are unable to recognize changes in texture or material in unstructured environments
or autonomously bypass obstacles, and they have limited mobility. Xu et al. [89] designed
a spiral miniature swimming robot driven by a magnetic field that can achieve three states
of forward, dynamic stationary and backward, and can accomplish movement in complex
environments (Figure 13a). It is expected that the dynamic swimming phenomenon found
in soft–tailed swimmers can be used for agile and fine motion control of soft micro–robots;
soft robots have higher degrees of freedom compared to rigid machines and can achieve
high maneuverability through multimodal motion. Hu et al. [90] designed a small soft robot
that can accomplish multimodal movement by controlling a magnetic field to accomplish
control of its movement, and the robot can not only swim inside and on the surface of
liquid, but also roll and walk on solid surfaces, jump over obstacles, and crawl in narrow
tunnels.
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microgripper. (c) Flower robot. (d) Quadruped soft rRobot. (e) Nanosoft robot fish (adapted from
with the permission from Ref. [89], 2019, IEEE ASME Transactions on Mechatronics. Ref. [91],
2021,ACS Applied Materials & Interfaces. Ref. [92], 2016, ACS Applied Materials & Interfaces.
Ref. [93], 2021, IEEE Robotics and Automation Letters. Ref. [94], 2016, Small).

As analyzed in the above studies, flexible magnetic mini–robots utilize patterned
magnetization to achieve rapid transformation of complex three–dimensional (3D) shapes,
solving current problems faced by micro–robots in drug delivery, object manipulation,
and minimally invasive surgery. However, micro–robot design is limited by existing
methods for patterning magnetic particles of flexible materials. To address this problem, Xu
et al. [91] developed a UV lithography–based method for conforming permanent magnetic
particles in planar composites, resulting in a six–armed soft microgripper with complex
geometry that can perform translation in three directions: yaw, pitch, and transverse
rocking rotation (Figure 13b). UV lithography–based methods allow for the fabrication
of multiple planar micro–robots with different sizes, different geometries, and arbitrary
magnetization profiles in a single precursor. In addition, 3D magnetization profiles allow
for multiple combinations of bending and torsion on a single piece of polymer, enabling
previously unattainable shape variations and micro–robotic motions, such as multi–arm
force grasping and multi–legged paddle crawling.

Nature–inspired actuators that can be driven by various stimuli are an emerging
application in mobile microrobotics and microfluidics. Gao et al. [92] used ferromagnetic
particles and silicon–based polymers to fabricate a flower–like magnetically controlled
soft robot (Figure 13c); Venkiteswaran et al. [93] developed an untethered magnetically
controlled quadruped soft robot with a rotating magnetic field as the driving field to deform
the legs to move perpendicular to the body plane (Figure 13d); and Li et al. [94] developed
a magnetically–controlled nanosoft robotic fish with a maximum velocity of 30.9 um/s by
applying an oscillating magnetic field to drive its lateral displacement with a backward
traveling wave generated by the interaction between the body and the tail fin (Figure 13e).

4.3. Applications in the Field of Intelligent Device Manufacturing

Magnetically controlled 4D printing opens a new door for the field of smart sensor de-
vices as well. In recent years, there has been a strong demand for flexible electronic devices
and wearable electronic devices, and magnetically controlled 4D printing technology for
smart materials has given new ideas and approaches to this research field. For example, the
polymer–based substrates of deformable RF devices reported by Fu et al. [95] are expected
to be prepared with the aid of 4D printing devices [96]. Fundamental studies of multistable
flexural modes and associated probabilistic geometric transformations underlie robust and
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reproducible engineering behavior. These concepts have the potential for a wide range of
applications compatible with state–of–the–art planar thin–film materials and microsystems
technologies; Wu et al. [32] proposed a material combination concept to build 4D printed
devices whose properties and functions can be changed in a controlled manner. 4D printed
devices consist of conductive and magnetic components that enable the integrated devices
to display piezoelectric properties, even though neither component is a separate piezoelec-
tric device, using a composite material consisting of PU powder and NdFeB particles to
print devices that can perform piezoelectric conversion functions under external magnetic
field excitation, which can be used as a manometer, as shown in Figure 14. This work
opens a new manufacturing method of flexible magnetoelectric devices and provides a new
material combination concept for the property–changed and functionality–changed 4D
printing. As the research and development of magnetron 4D printing technology continues
to advance, the application of this technology in the above fields will continue to deepen
and, at the same time, will expand the application space in more fields.
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5. Conclusions

This paper presents a systematic study of the current status of research on magnetically
controlled 4D printing technology, the process, and its applications. Magnetically controlled
4D printing fully applies magnetic smart materials on the basis of 3D printing to achieve
controllability of shape, performance, and function of components under the action of
controlled magnetic fields.

Magnetically controlled 4D printing technology has made great progress in the past
few years, but it is still in its infancy. Printing methods have significant limitations; DIW
printing is currently the most likely practical application of the technology, with low
equipment requirements, low manufacturing costs, a wide range of raw materials, high
molding accuracy, manufacturing flexibility, and other advantages, but curing, sintering,
and other processing are needed after direct writing, and the accuracy of its molding
components are influenced by a variety of factors. Existing 4D printing equipment does
not have specific standards, and the functionality is limited. The future development of 4D
printing requires the participation of multiple fields to create 4D printing devices with more
comprehensive functions. Nowadays, there are few types of existing printing materials,
and printing products have great limitations. Researchers should pay attention to the
innovation of new materials, printing schemes, and printing processes; otherwise, there
will be stagnation. 4D printing is a disruptive new manufacturing technology that will
have broad applications in many fields. People are already using 4D printing technology
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to achieve organ printing and minimally invasive printing in situ [97]. With technological
innovation, we expect to achieve 4D printing of human organs, 4D printing of autonomous
detection in outer space, etc.

New magnetically controlled printing technologies, new smart materials, new struc-
tural design, and development of modeling tools and software will continue to drive the
progress of magnetically controlled 4D printing technology, and its application areas will
be more extensive. A great deal of research and application development work will be
needed for magnetically controlled 4D printing technology in the future.

In order to develop and improve magnetically controlled 4D printing technology, the
following aspects need attention.

(1) There is an urgent need to standardize experimental equipment and develop high–
precision printers. The current equipment on printing is all developed by the labora-
tory itself, which has limited capacity, and there will be a more rapid development
with the participation of professional manufacturers in the research.

(2) There is a need to focus on the original innovation of 4D printing materials, encourage
more systematic research on original solutions, increase the research on the trans-
formation mechanism of 4D printing materials, explore more optimal design and
methods of 4D printing controllable deformation components, and innovate 4D print-
ing processes. There is also a need to develop more highly sensitive materials to
improve the dynamic characteristics of the device and to reduce the impact of the
required shape, property, or function transformation on the component itself during
the printing process.
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