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Abstract: In this paper, we study the effects of viscosity on the evolution of the double tearing mode
(DTM) in a pair of adjacent Harris sheets based on the resistive MHD model in the NIMROD code.
Similar to the tearing mode in the conventional single Harris sheet, a transition is observed in the
generation of both normal and monster plasmoids at Prandtl number Pr = 1. In the Pr < 1 regime of
the DTM, normal plasmoids (small plasmoids) are generated along with monster plasmoid, whereas
in the single tearing mode (STM) cases, such a generation is not observed. When Pr is above the
critical value, the generation of monster plasmoid is halted. Correspondingly, in the Pr < 1 regime,
a quadrupolar flow advects along the poloidal direction, but in the Pr > 1 regime this flow advection
is inhibited.

Keywords: double tearing mode; viscosity; reconnection; plasmoids; Prandtl number

1. Introduction

In recent years, magnetic reconnection and associated mechanisms regarding dou-
ble tearing modes (DTM) have remained hot topics in the domain of space and fusion
plasmas [1–4]. Different studies have reported the possible occurrence of double/multiple
current sheets in space plasma [5–7]. One of the prominent examples to trigger dou-
ble/multiple tearing modes [8–10] is the Earth’s bow shock [11] . Reversed magnetic shear
(RMS) is commonly formed in the modern setup of tokamak functioning [12], which can
produce double tearing modes on two neighbouring rational surfaces having similar safety
factors and the subsequent off-axis sawtooth oscillation/disruptions [13–17]. The magnetic
reconfiguration caused by DTM has been extensively studied [13,14,18,19], which is among
the most significant aspects of DTM’s nonlinear evolution.

Many cases of multiple current sheet systems have been frequently examined during
the observation of laboratory and space plasmas. A notable illustration of this phenomenon
is found in tokamak discharges featuring central reversed magnetic shear [20,21]. Conse-
quently, this configuration becomes a viable candidate for the uninterrupted functioning of
a fusion reactor. However, it is notable that this specific setup may also lead to the initiation
of a DTM [15,22–24], resulting in rapid magnetic reconnection and subsequent degradation
of plasma confinement [17,25,26]. One crucial aspect of DTM’s nonlinear evolution that has
garnered extensive attention [13,14,18,19,27] is the alteration of magnetic configurations. It
is widely known that when two resonant surfaces approach each other closely, the straggly-
ordered islands found at distinct rational surfaces undergo enlargement and triangular
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deformation. This, in turn, leads to the generation of intense current density near the
island’s X-point, exciting subsequent intensive flow and fast reconnection. Many experts
have studied the resistive, shear flow, large guiding field, and current sheet spacing effects
on the nonlinear evolution of DTMs [28–32]. Through the nonlinear growth of a DTM,
thin and lengthy current sheets can appear due to the island’s interaction and detachment,
instigating secondary/tertiary islands [29,33,34], displaying the variety and complicacy of
physics hidden in the large magnetic Prandtl number Pr regime.

Usually, when the elongated current sheet’s aspect ratio reaches a significant value, this
narrow current sheet leads to the formation of plasmoids [34–38]. Plasmoids are distinct,
coherent, and self-contained magnetic structures that can form in a plasma. Plasmoids
typically have a toroidal or quasi-toroidal shape and are often interrelated with the magnetic
reconnection events [39]. The formation of plasmoids often occurs in regions of intense
magnetic fields and high plasma pressure [40–43]. In recent studies [33,44], multiple
plasmoid formations were observed in the absence of viscosity in a simulation of multiple
current sheet systems with high Lundquist number parameters. However, there has been
limited research regarding the viscosity effects on the nonlinear evolution of DTMs. Minor
electromagnetic perturbations may generate viscosity in tokamak plasmas [45]. As a class
of the dissipation-producing effect, viscosity may also drive tearing mode instability, that
can be from one of the plasma disruption causes [46–49]. The viscous tearing modes are
one potential physical mechanism which produce rapid saw-tooth disruptions reported in
experiments [50]. In slab-configuration plasmas, the linear features of DTMs owing to the
viscosity have also been stated [51].

In this study, we employ the visco-resistive magnetohydrodynamic (MHD) model
within the NIMROD code [52] to extensively investigate the nonlinear development of
the double tearing mode. Our focus is on examining the impact of viscosity on the gener-
ation and evolution of plasmoids. Normal plasmoids (small plasmoids) [34] along with
monster plasmoids appear in the Pr < 1 regime, whereas in the Pr > 1 regime, only mon-
ster plasmoids appear. The plasmoid dynamics in our simulations are compared with
previous studies [53,54].

We present our numerical simulation details in Section 2. Our linear and nonlinear
results are discussed in Sections 3 and 4, respectively. In Section 5, a summary of this paper
is presented.

2. Model Equations

Our results are described by resistive MHD equations, which are implemented in the
NIMROD code [52]. The visco-resistive MHD model (1)–(4) equations used in our study
(presented below) are all non-dimensional.

∂ρ

∂t
+∇ · (ρv) = 0 (1)

ρ

(
∂

∂t
+ v · ∇

)
v = J× B−∇p + ρν∇2v (2)

N
γ− 1

(
∂

∂t
+ v · ∇

)
T = − p

2
∇ · v (3)

∂B
∂t

= ∇× (v× B− ηJ) = ∇× (v× B− η∇× B) (4)

where B, J, N, γ, v, p, ρ, ν and η are the magnetic field, current density, number density,
specific heat ratio, velocity, pressure, plasma mass density, viscosity, and resistivity, re-
spectively. The Boltzmann constant (k) has been incorporated into the temperature (T).
The particle mass density ρ) and number density (N) are linked through the mass per
ion. Additionally, the total temperature and pressure establish the ideal gas relation,
p = 2NT, while taking into account rapid thermal equilibration and quasi-neutrality con-
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ditions between electrons and ions. The initial equilibrium profiles for B0z(x) , J0y(x) and
pressure are given below.

B0z(x) = 1− tanh
(

x + x0

a

)
+ tanh

(
x− x0

a

)
(5)

J0y(x) =
1
a

sech2
(

x− x0

a

)
− 1

a
sech2

(
x + x0

a

)
(6)

p0(x) = T0 + 0.5
(

1− tanh
(

x + x0

a

)
+ tanh

(
x− x0

a

))2
(7)

where the Cartesian coordinates (x, y, z) are adopted. The equilibrium profiles of B0z(x) ,
J0y(x) and p0(x) at different resonance surfaces are plotted in Figure 1.
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Figure 1. (a) Double Harris sheet equilibrium magnetic field, (b) current density and (c) pressure
profiles at different distances between the rational surfaces.

Here, a controls the width of the profile (throughout this manuscript we have fixed
the value of a = 0.25 ), T0 is the constant equilibrium temperature, we also assume a
uniform mass density ρ. The magnetic flux function is subjected to an initial perturba-
tion, and its dynamic starting is initiated with an amplitude of 10−3 for the initial per-
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turbation. To normalize the magnetic field, B0 is used which is the field magnitude at
x → ±∞. The spatial normalization unit x0 = d/2 represents half of the distance between
the two adjacent current sheets. The mass density is normalized by ρ0 at the center of
the current sheets. To normalize time, pressure, and velocity t0 = τA0 = x0/u0 = x0/uA0,
p0 = B2

0/µ0, and u0 = uA0 = B0/
√

µ0ρ0 are used, respectively. In the above simulation
model, the adiabatic index is γ = 5/3 and the value of heat flux is assumed to be zero.
In the above non-dimensional Equations (1-4), both the viscosity ν and the resistivity η are
the normalised non-dimensional parameters, with ν = Pr

S , and S−1 = η, where S = τR/τA0
represents the Lundquist number, τR = µ0x2

0/ηD, here, ηD shows the un-normalized non-
dimensional resistivity, and Pr = µ0νD/ηD represents the magnetic Prandtl number, νD is
the un-normalized non-dimensional viscosity, having ν = νDτA0/x2

0.
To solve the above resistive MHD equations, a rectangular domain is employed

with the form [−Lx, Lx]×[−Ly, Ly], with ranges (−2.5, 2.5) × (−5, 5), respectively. Here,
we define the wave number as Ly = 2πm/k, where k represents the mode wave number
in y direction, and m being the mode number. All boundary conditions along the
y direction are periodic, whereas along the x direction all perturbations vanish.

3. Linear DTM Evolution

To understand the nonlinear behaviour of the DTM, we first examine a specific linear
scenario. Linear mode structures of magnetic field, velocity and pressure are illustrated
in Figure 2. Quadropolar flow cells can be observed in the velocity contours plots, which
significantly influence magnetic reconnection [55]. When the rational surfaces are widely
separated, these quadrupolar flow cells are partially advected along the current sheet.
Understanding the role of these flow cells is crucial for the generation of plasmoids dur-
ing the nonlinear dynamics of the DTM. Moreover, in the vicinity of the current sheet,
the quadrupolar flow might either generate or annihilate.

In Figure 3a, the growth rate is drawn against η for different distances between
the adjacent current sheets. In this study, kinetic energy is analyzed to determine the
linear growth rate of the DTM. In this regime, this energy evolves exponentially: EK ∼ eγt.
By using γ = ∂t(ln EK), γ can be obtained. For a fixed distance between the current
sheets, a good agreement with existing theory is found at small value of η. However,
for large values of η, it is observed that our results deviate from the existing theory [24].
From Figure 3a, we can also conclude that for a highly unstable system the power of η
remains near to 0.33 which matches the scaling law for small distances between adjacent
current sheets [24]. In Figure 3b, for different d within the range [0.5, 3], the parameter α
(where α is γlin = ηα) is plotted against distances between the current sheets. The transition
between the scaling α = 3/5 for large d and α = 1/3 for small d is clearly observed in
previous studies [56]. Our results do not match with the previous results because in their
case the simulations were performed in cylindrical geometry whereas in our case we used
Cartesian geometry. Additionally, the coupling of the flow eigen-function with the rational
surfaces could be another reason. Due to this coupling, the mode represents the resistive
kink mode. Furthermore, even in situations where the rational surfaces are distant from
one another (d = 1.6), the tearing scaling with α = 3/5 cannot be found due to the coupling.
For small d, both effects, i.e., close rational surfaces and strongly coupled flows, might be
the reason for the decreasing dependency with the resistivity (α→ 0.3). This regime is well
documented in [1,57].

It is found in Figure 4a that as the viscosity increases, the growth rate quickly slows
down. The reduction in linear growth rates due to viscous dissipation is evident when
viscosity is increased, as it counteracts resistive destabilization. Additionally, for a fixed
value of distance between those rational surfaces, the growth rate exhibits a shift at Pr = 1.
In the Pr < 1 regime, the impact of viscosity is insignificant whereas within the Pr > 1
regime, the growth rate decreases sharply. The viscous scaling for our simulations at
d = 0.5, 1 and 2.5 are γ ∼ ν−0.27, γ ∼ ν−0.22 and γ ∼ ν−0.25, respectively. These scaling
results are very close to the theoretical scaling results [51,58]. From Figure 4b, for a fixed
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Prandtl number, the growth rate decreases by increasing the distances between the current
sheets or vice versa. It is observed that for d < 0.5, for a fixed Prandtl number, the growth
rate remains constant but for d > 0.5, the growth rate decreases quickly.

(a) (b)

(c) (d)

(e)

Figure 2. Linear mode structures of (a) magnetic field component Bx, (b) magnetic field component Bz,
(c) velocity component vx, (d) velocity component vz and (e) pressure P at d = 1.
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Figure 3. (a) Linear growth rates as functions of the resistivity for different distances between
the rational surfaces using ν→ 0. (b) α (from γlin = ηα ) is function of the distances between the
rational surfaces.
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Figure 4. Cont.
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Figure 4. (a) Linear growth rates as functions of the viscosity at different distances between the
rational surfaces for fixed value of η = 0.00028. (b) Linear growth rates as functions of the distances
between the rational surfaces for different Prandtl numbers.

4. Nonlinear DTM and Plasmoids
4.1. Nonlinear DTM Evolution

To study the effects on the nonlinear DTM evolution, one particular case with wave
vector ka = 0.15 is selected. The viscosity is varied in the form of the Prandtl number
in the range Pr = 0.33, 0.5, 1, 5, 10, 100 with the fixed resistivity η = 0.00028 and d = 1.1
as the current sheets spacing. A total of 96× 96 2D finite elements along a 5th order
polynomial basis function in both 2D directions are used in our simulations to ensure
numerical convergence (Figure 5).

Figure 5. Kinetic energy evolution for different numerical resolutions at d = 2(x0) = 1.1.

Plasma kinetic energy evolution with different values of the Prandtl number are com-
pared in Figure 6, where the black arrows indicate the moments of monster plasmoids
generation and the red arrows show the subsequent moments of the normal (small) plas-
moid formation. In the case of Pr = 0.33, the kinetic energy evolves rapidly during the
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linear phase and attains the maximum very quickly due to the generation of normal plas-
moids, see Figure 6a. By increasing the Prandtl number, such as Pr = 10 , the kinetic energy
evolves through four stages: first is the linear growth evolution stage, second is the slow
nonlinear Rutherford phase, third is the fast flux-driven reconnection stage, and the fourth
is the decay phase. In our results, by increasing the Prandtl number, the early linear evolu-
tion phase and the second phase (Rutherford) evolve for a longer time. Additionally, by
increasing Pr = 100, the fast flux-driven reconnection phase becomes absent, see Figure 6c.

(a) (b)

(c)

Figure 6. Kinetic energy evolution for (a) Pr = 0.33, 0.5, (b) Pr = 1, 5 and (c) Pr = 10, 100 at d = 1.1.

4.2. Plasmoid Formation

The reconnection rate and plasmoids generation in DTMs is different as compared to
the STM due to the the different physics between the STM and DTM. A comparison between
Pr = 0.33, 1, 10 and 100 presents that, due to reconnection, the current sheet becomes
much narrower and longer for Pr = 0.33, see Figure 7c. After approaching a certain large
critical aspect ratio, this current sheet begins tearing, becomes unstable and generates a
monster plasmoid in the middle of current sheet which grows in size with the growth of
tearing instability, see Figure 7d. With the growth of the monster plasmoid, the secondary
current sheets on both sides of the monster plasmoid become more thinner and longer,
and will eventually generate two small plasmoids (normal plasmoids), see Figure 7e.
Throughout their evolution, as illustrated in Figure 7, all plasmoids within each current
sheet merge together, resulting in a significant enlargement of the monster plasmoid, see
Figure 7f. As the monster plasmoid grows in size, it moves left and applies force on the
primary double tearing mode island. In our results, the primary island makes a curve
around the monster plasmoid, see Figure 7f. From this we can conclude that this type of
secondary tearing instability can be the reason for the fast increase in kinetic energy from
t = 85 to 100 (Figure 6).

However, as we increase the Prandtl number further, the possibility for the produc-
tion of normal plasmoids decreases quickly because of the wider secondary current sheet.
Figures 8 and 9 show the 2D magnetic field lines and 2D contours of current density dis-
tribution for the Pr = 1 and the Pr = 10 cases, respectively. Due to magnetic reconnection,
a current sheet forms that surrounds the primary double tearing mode island as an arc, see
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Figures 8a and 9a. In these cases we only observe the monster plasmoid, and the produc-
tion of normal plasmoids was not found in these cases. Figures 8 and 9 show that along
with the increase in the size of the plasmoid, it moves towards the left and primary island
making an arc-type position around the plasmoid. This current sheet finally disappears and
the islands’ positions exchange as shown in Figures 7f, 8d and 9d. It is also observed from
Figure 10 that for the ν = 0.028, i.e., Pr = 100 case there is no monster plasmoid formation
(Figure 10). This process shows the dissipation and damping nature of large viscosity.
Finally, the reconnection finishes and we obtain the straight field lines after the exhaustion
of the initial flux.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Two-dimensional contours of current density distribution and 2D magnetic field lines with
Pr= 0.33 and d = 1.1. (a) t = 0; (b) t = 25; (c) t = 85; (d) t = 90; (e) t = 95; (f) t = 100.

Figure 11 shows the evolution of monster plasmoids for different Pr cases and also ex-
hibits the relation among Pr numbers and monster plasmoid width. At lower Pr, with the in-
crease in viscosity, the size of the monster plasmoid grows quickly up to Pr = 1. The Prandtl
number Pr = 1 also divides two regimes for the monster plasmoid width. By increasing the
viscosity magnitude in the Pr < 1 regime, the plasmoid’s width enlarges significantly on
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the other hand in the Pr > 1 regime, it decreases with the rise of viscosity. This behaviour of
plasmoid dynamics with viscosity is interestingly matching with the linear and nonlinear
reconnection dependence on viscosity in the STM [59].

(a) (b)

(c) (d)

Figure 8. Two-dimensional contours of current density distribution and 2D magnetic field lines with
Pr = 1 and d = 1.1. (a) t = 85; (b) t = 95; (c) t = 100; (d) t = 115.

(a) (b)

(c) (d)

Figure 9. Two-dimensional contours of current density distribution and 2D magnetic field lines with
Pr = 10 and d = 1.1. (a) t = 116; (b) t = 120; (c) t = 124; (d) t = 132.
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(a) (b)

(c) (d)

Figure 10. Two-dimensional contours of current density distribution and 2D magnetic field lines
with Pr = 100 and d = 1.1. (a) t = 160; (b) t = 185; (c) t = 250; (d) t = 270.
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Figure 11. (a) Monster plasmoid evolution; (b) monster plasmoid width as a function of Pr with
Pr = 0.33, 1, 5 and 10.
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4.3. Flow Pattern and Vortices

The flow pattern and vortex structure developed around the magnetic islands
and plasmoids show unique features of the DTM. The viscous effects on the flow
pattern associated with the DTM and the corresponding plasmoid formation are also
significant (Figures 12–15).

(a) t = 85 (b) t = 90

(c) t = 95 (d) t = 100

(e) t = 85 (f) t = 90

(g) t = 95 (h) t = 100

Figure 12. Two-dimensional contours of the current density distribution and flow field stream lines (a–d),
2D contours of the flow field in the z-direction and 2D magnetic field lines (e–h), Pr = 0.33 with d = 1.1.
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(a) t = 85 (b) t = 95

(c) t = 100 (d) t = 115

(e) t = 85 (f) t = 95

(g) t = 100 (h) t = 115

Figure 13. Two-dimensional contours of the current density distribution and flow field stream lines (a–d),
2D contours of the flow field in the z-direction and 2D magnetic field lines (e–h), Pr = 1 with d = 1.1.
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(a) t = 116 (b) t = 120

(c) t = 124 (d) t = 132

(e) t = 116 (f) t = 120

(g) t = 124 (h) t = 132

Figure 14. Two-dimensional contours of the current density distribution and flow field stream lines (a–d),
2D contours of the flow field in the z-direction and 2D magnetic field lines (e–h), Pr = 10 with d = 1.1.
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(a) t = 160 (b) t = 185

(c) t = 250 (d) t = 270

(e) t = 160 (f) t = 185

(g) t = 250 (h) t = 270

Figure 15. Two-dimensional contours of the current density distribution and flow field stream lines (a–d),
2D contours of the flow field in the z-direction and 2D magnetic field lines (e–h),Pr =100 with d = 1.1.

In the early stages before the current sheet formation, the size of the magnetic island
is so narrow that the plasma flows are restricted within the separated islands. When the
width of the island reaches a specific dimension, the plasma converges into the islands,
and the currents from both sheets merge, giving rise to the formation of global vortices
(Figure 12a). After the collapse of current sheet, thin and intensive shear flow layers form
and are localized around the plasmoid on each resonant surface. Observing Figure 12f,



Magnetochemistry 2023, 9, 205 16 of 19

it becomes evident that the inner region of the island contains two extreme points at its
centers, where a current sheet forms. The outer part of the potential cells flow into the
island through the X-point, resulting in a flow through the sheet towards the island around
x = 1.25. This process causes the expansion of the field lines and intensifies the current
sheet, leading to a significant dissipation of magnetic energy. This flow cannot readily
leave the island as it is exposed to some kind of force, which produces gradients and
the loss of magnetic energy, particularly near the separatrices. As a consequence, at time
t = 95 (Figure 12g), we notice that the cells are increasingly concentrated to the island’s
center. Concurrently, the two sets of cells bearing opposite signs draw nearer, fostering
an intensified flow between them caused by the elongation of the two secondary current
sheets. Consequently, this leads to the compression of the island. The cells have obviously
faded and twisted towards the flow’s center at time t = 100 (Figure 12h), whereas the
lengths of the two secondary current sheets have increased. The current sheet around
the island, however, is no longer concentrated in the outflow zone along the separatrix.
Second, opposite sign cells have generated that drive in the opposite direction and make
the sheet thin and long. It is also worth noting that the primary cells’ exteriors are not
entirely destroyed in the area of the sheet. Upon the coupling of magnetic separatrices, thin
poloidal shear flow layers and vortex structures still remain long (Figure 12d,h). As we
increase the viscosity up to 0.00028 (Pr = 1), the vortices formation becomes slower and
larger in size. At a larger viscosity, the reconnection and the production of intensive thin
poloidal shear flow layers are more inhibited. This fact may contribute as a mechanism
to the oscillating decay of kinetic energy at a considerably faster pace when Pr = 10 and
Pr = 100 than when Pr = 0.33 and Pr = 1 (Figure 6).

5. Summary

In this paper, our focus is on investigating the impact of viscosity on the evolution of
DTM-induced plasmoid formation using MHD simulations. We observe that the occurrence
of the first peak in the kinetic energy plot aligns with the appearance of the significant
plasmoid, referred to as the “monster” plasmoid. When Prandtl numbers (Pr) are small,
the production of normal plasmoids causes a sudden increase in kinetic energy at higher
levels. Interestingly, we observe a shift occurring at Prandtl number Pr = 1, resembling
the plasmoid generation pattern seen in the STM case. Adjusting the spacing between the
current sheets or modifying the Prandtl number can influence the generation of normal
plasmoids, either enhancing or diminishing their production. Additionally, beyond a critical
value of the Prandtl number (Pr), the formation of monster plasmoids ceases. The magnetic
and flow structures of the DTM, along with the induced formation of plasmoids, differ
notably from the STM case. At higher Pr values, the DTM growth becomes slower, and the
scales of the magnetic island, the plasmoid, and the flow vortices tend to be larger and more
global. Our future research aims to precisely determine the critical Pr value at which the
formation of massive plasmoids cease. Additionally, we plan to investigate the influence of
two-fluid and 3D effects in our subsequent work.
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