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Abstract: Supercapacitors are extensively used in urban rail transit, electric vehicles, renewable
energy storage, electronic products, and the military industry due to its long cycle life and high power
density. Porous carbon materials are regarded as promising anode materials for supercapacitors due
to their high specific surface areas and well-developed pore structures. However, the over-developed
pore structure often results in poor conductivity and reduced cycle stability due to the destruction of
a carbon skeleton. Herein, we introduce an advanced strategy for preparing porous carbon with high
specific surface areas (3333 m2 g−1), high electrical conductivity (68.6 S m−1), and fast ion transport
channels through secondary high-temperature carbonization treatment. As a result, the fabricated
porous carbon anode delivers a high specific capacitance (199.2 F g−1 at 1 A g−1) and outstanding rate
performance (136.3 F g−1 at 20 A g−1) in organic electrolyte. Furthermore, the assembled symmetrical
supercapacitor achieves an energy density of 43.2 Wh kg−1 at 625.0 W kg−1, highlighting the potential
of a secondary high-temperature carbonization strategy in practical applications.

Keywords: supercapacitors; porous carbon; secondary high-temperature carbonization

1. Introduction

Environmental challenges and the restricted availability of fossil fuels have promoted
the great development and application of environmentally friendly renewable energy, such
as solar energy, geothermal energy, wind energy, tidal energy, and hydrogen energy [1–5].
However, sustainable energy is inherently intermittent and unevenly distributed in terms
of time and space. Thus, energy storage devices (ESDs) with a high energy density, long
cycle life, and power density are eagerly demanded. Among various ESDs, supercapacitors
(SCs) have become increasingly important as a short-term energy storage buffer due to their
high power densities, long lifespans, great safety, and adaptability to temperature [6–8].
Nevertheless, the limited energy density hinders the further application of SCs.

Based on the previous research, enlarging the voltage window and increasing capac-
itance are both effective to improve the energy density of SCs [9,10]. Chang et al. [11]
reported a frame-filled C/C composite with coal tar pitch and natural flake graphite as
raw materials, showing both a high specific surface area and electrical conductivity. When
tested in the TEABF4 in the PC electrolyte (3 V) and medium pure EMIMBF4 electrolyte
(3.5 V), the C/C composite exhibited both high gravimetric and volumetric capacitances.
Moreover, it displayed a high energy density as high as 66.3 Wh kg−1. Similarly, Leng
et al. [12] synthesized a three-dimensional carbon framework (3DCF) under H2/Ar at high
temperature, with a high specific surface area and good conductive network, exhibiting
both ultra-fast and high charge storage. Dead leaves of Ginkgo biloba were used as the
precursor to prepare activated carbon by using different activating agents [13]; the carbon
activated by KOH showed the highest specific capacitance of 374 F g−1 at a current density
of 0.5 A g−1. Further, the energy density can reach 9.2 Wh kg−1 at a power density of
48 W kg−1. Compared to SCs with the aqueous electrolyte working within 1 V, organic
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electrolyte-based SCs provide a wider voltage range of 2.5–2.7 V, contributing to the higher
energy density of SCs [14]. However, organic electrolytes always consist of large-sized ions,
resulting in sluggish ion diffusion [15]. Therefore, the preparation of electrode materials
with both plentiful energy storage active sites and rapid transport rates for large-size ions
is crucial for the higher energy density of SCs. Improving specific surface areas (SSAs) of
electrode materials is one effective method to enhance the ion transport rate because it can
expose more active sites for the rapid physical adsorption of TEA+ ions [16,17]. In addition,
according to the definition equation of capacitance: C = εrε0A/d, the increase in SSAs can
help increase the capacitance.

Porous carbons with high SSAs and hierarchical pore structures are the most common
material used for the electrode material of commercial SCs [18]. Due to the physical adsorp-
tion and desorption, charge is stored in the Helmholtz bilayer at the electrolyte–electrode
interface, resulting in the rapid ion storage capability. Moreover, porous carbon materials
can generally be produced by a variety of synthesis methods, with a wide range of raw ma-
terial sources and relatively low costs. Early strategies focused on exposing larger SSAs to
further increase the energy storage active sites and enhance capacitance [19]. Nevertheless,
the excessive increasing of SSAs and porosity will probably block the formation of contin-
uous electron pathways, restricting the rapid charge transport and lowering the electric
conductivity of active materials. Therefore, balancing the relationship among the SSAs,
conductivity, and cycling stability of porous carbon has become the current research focus.

To address these issues, we propose an optimized porous carbon with the secondary
high-temperature treatment strategy after the activation of phenolic resin. On the one hand,
the preferential removal of oxygen-containing functional groups inside the pores at high
temperatures can enlarge the transport channels and reduce the diffusion barriers of ions.
On the other hand, the repeated carbonization treatment promotes the formation of more
micropores and enhanced SSAs, resulting in more energy storage active sites for ion storage.
In addition, the released oxygen impurities lead to the formation of a coherent conductive
carbon skeleton with effectively enhanced electric and ionic conductivity. As a result, the
synthesized porous carbon exhibits excellent specific capacitance (199.2 F g−1 at 1 A g−1)
and rate performance (136.3 F g−1 at 20 A g−1). When assembled as the symmetrical SCs, it
also displays a high energy density of 43.2 Wh kg−1 at a power density of 625.0 W kg−1,
demonstrating significant potential for large-scale application.

2. Materials and Methods
2.1. Materials

The materials used in this experiment included phenolic resin (chemistry), concen-
trated hydrochloric acid (HCl, AR), polytetrafluoroethylene (60 wt%), ethyl alcohol (AR),
potassium hydroxide (AR), N2, foamed nickel, and ketjen black. The heat-resistant phenolic
resin (phenolic resin foam) is formed by the phenolic resin as the matrix and hexam-
ethylenetetramine as the curing agent, which exhibits the internal linear or branched-chain
polymer chains connected by covalent bonds, resulting in a network polymer structure.
The electrolyte used in the system is 1 mol L−1 TEABF4 in PC. The phenolic resin foam was
ball-ground into powder before being used. Other reagents for experiments are purchased
and used directly.

2.2. Preparation of High-Temperature Treated Porous Carbons (HTCs)

The high-temperature treated porous carbons (HTCs) were synthesized by a secondary
high-temperature treatment strategy. Firstly, 1 g of phenol-formaldehyde resin was added
to the solution of KOH (3 g) in deionized water (20 mL). The mixture was stirred for 30 min
to homogenous dispersal. Subsequently, the solution was dried in oven at 100 ◦C, then
the obtained product was ground into powder. Afterward, the powder was carbonized at
900 ◦C for 2 h. After chemical activation, the obtained mixture was immersed in 1 mol L−1

HCl solution for 12 h to remove residual K components. After filtering and drying, the
sample was carbonized for the second time at 1000 or 1100 ◦C for 2 h. The resulting
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samples were named HTC-1000 and HTC-1100, respectively. In addition, the sample
without secondary high-temperature treatment is named HTC-0.

2.3. Material Characterization

Scanning electron microscopy (SEM, Hitachi Regulus 8100, Hitachi, Japan) was used
to characterize the morphology and structure of the HTCs. The X-ray diffraction (XRD,
Bruker Focus D8, Bruker, Germany) was used to characterize the crystal structure of the
HTCs. The HORIBA Scientific LabRAM HR Evolution (Gières, France) spectrometer was
used to characterize Raman spectroscopy. The magnification of the objective lens is 50×,
the focal length of the spectrometer is 800 mm, and the spectral resolution is 1 cm−1 with a
wavelength of 532 nm. The ESCALAB 250 Xi spectrometer (Thermo Fisher, Waltham, MA,
USA) was used to characterize the X-ray photoelectron spectroscopy (XPS) of the HTCs.
The IRTRACER-100, (Shimadzu, Japan) was used to characterize the Fourier-transform
infrared spectrum (FTIR) of the HTCs. The N2 adsorption–desorption isotherms for HTCs
were characterized by Quanta chrome IQ2 at −196 ◦C.

2.4. Electrochemical Measurements

The slurry was mixed with active materials (HTCs), conductive carbon black, and
binder (PTFE) in a mass ratio of 75:20:5. Firstly, a small amount of anhydrous ethanol and
a certain mass of diluted PTFE solution was added to the conductive carbon black and
ultrasonicated homogeneously. Secondly, a certain mass of active substance was added
and ultrasonicated again until they were mixed homogeneously, and the obtained homoge-
neously mixed slurry was put into a vacuum oven for drying. Thirdly, after weighing the
material of ~2 mg cm−2, ethanol was added onto the material by drops for ease of rolling
the material into the sheet and the sheet was pressed into a stainless-steel mesh. Finally,
the pressed electrode sheets were dried in oven at 80 ◦C. The prepared supercapacitor
assembly was pressed into the cell in the order of the negative case, spacer, electrode sheet,
diaphragm, electrode sheet, and positive case. Before pressing, the electrolyte was injected
into the supercapacitor to ensure that the electrolyte fully saturates the electrodes. In
addition, symmetrical SCs were assembled using two identical electrodes in the CR2032
coin cell with cellulose diaphragm TF4035 as the separator. The organic electrolyte was
1 mol L−1 TEABF4 in PC solution with a voltage window of 0–2.5 V. The CHI660E electro-
chemical workstation was used to conduct the electrochemical properties of cells at 25 ◦C.
The rate range of galvanostatic charge-discharge (GCD) was from 1 to 20 A g−1, and the
current density of cyclic voltammetry (CV) was from 10 to 200 mV S−1. The electrochemical
impedance spectroscopy was measured at the frequency range of 0.01 to 100 kHz.

3. Results and Discussion

High-temperature treatment carbons (HTCs) were prepared by a secondary high-
temperature treatment strategy after the KOH activation of phenolic resin (Figure 1). After
high-temperature treatment, the order degree of amorphous carbon increased and the
partial oxygen impurities were removed, resulting in excellent electrical conductivity and
open ions transport channels, which is good for the rate capability of porous carbon ma-
terials [20]. Simultaneously, the pore volume and SSAs increased, which can introduce
more electrochemical active sites and further increase specific capacitance for SCs [21–23].
A scanning electron microscopy (SEM) image of HTC-0 shows a block structure with a size
of 20~40 µm (Figure 2a). After carbonizing at 1000 ◦C for the second time, HTC-1000 still
consists of chunks of different blocks, which is consistent with HTC-0 (Figures 2b and S1).
This means that HTC-0 has excellent structural stability and there was no chalking after
the high-temperature treatment. The excellent strength and toughness make the active
materials bond tightly and maintain integrity during the charge and discharge process.
The corresponding EDS mappings shown in Figure 2d,f demonstrate the uniform distribu-
tion of C and O elements of HTC-1000 (Figure S2). Even when the secondary treatment
temperature increases to 1100 ◦C, HTC-1100 still maintains the original bulk morphology,
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indicating the high stability of the macrostructure (Figure 2c). TEM and HRTEM images of
HTC-1000 have been provided, as shown in Figure S3. It can be seen that a large number
of micropores are evenly distributed in the carbon matrix, which is in accordance with
the BET analysis. In addition, HTC-1000 shows partially formed graphite nanodomains,
indicating that secondary high-temperature carbonization can improve the degree of order
(circled in Figure S3b).
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To explore the pore structure of the three samples, N2 adsorption-desorption tests
were performed. The vast gas uptake in the low-pressure region is dominated by the micro-
porous structures while the adsorption generated in the pressure region of 0.4 < P/P0 < 0.8
is dominated by the mesoporous structures. Therefore, from N2 adsorption–desorption
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isotherms, all three samples exhibit pore distribution with both mesoporous and microp-
orous. Moreover, from the hysteresis loop in the N2 adsorption curve, it is observed that
the internal pore type of the material is a slit pore (Figure 3a). According to the Brunauer–
Emmett–Teller (BET) method, the untreated HTC-0 shows an SSA of 3156 m2 g−1, while
after second high-temperature treatment, the SSA of HTC-1000 increased to 3333 m2 g−1.
The further increased SSA is due to the secondary activation of residual K components and
the release of small gas molecules containing C, H, and O under high temperature [24,25].
The achieved higher SSAs could offer more energy storage active sites for TEA+ ion adsorp-
tion, thus improving capacitance. Moreover, the increased SSAs can increase the effective
adsorption area between the capacitor motor and the electrolyte, shorten the diffusion
adsorption path of TEA+ ions in the electrode material, and increase the diffusion speed of
particles in the electrode material. However, while the secondary treatment temperature
further increased to 1100 ◦C, the pores in HTC-1100 collapsed, leading to a decreased SSA
of 2467 m2 g−1. Consequently, excessively high temperatures would destroy the pore
structure and lead to partial pore blockage, thus adversely affecting the specific capaci-
tance and rate capability of the material. To further investigate the effect of the secondary
treatment on the pore structure, the content of micropores and mesopores was analyzed in
detail. According to Figure 3b, the total pore volume of HTC-1000 is 2.60 cm3 g−1, which
is much larger than the 2.00 cm3 g−1 of HTC-0. Furthermore, compared with HTC-0,
the micropore volume of HTC-1000 slightly decreased from 1.27 cm3 g−1 to 1.24 cm3 g−1

while the mesopore volume has an obvious increase from 0.75 cm3 g−1 to 1.35 cm3 g−1,
suggesting that high-temperature treatment generates ordered mesoporous pores [26–28].
The expanded pores volume and micropores can effectively promote the transport of the
TEA+ ions and provide plenty of space to store the electrolyte [29,30]. However, the total
pore volume of HTC-1100 decreased to 1.69 cm3 g−1 with the micropore volume decreasing
to 0.95 cm3 g−1 and mesopore volume decreasing to 0.74 cm3 g−1 due to the pore shrink-
age and collapse caused by excessive high-temperature treatment (Table S1). Compared
to aqueous systems, organic electrolyte ions are larger (the non-solvated TEA+ ion sizes
are 0.67 nm, respectively), requiring larger pore volumes and higher mesopore ratios to
store and transport electrolyte ions [31–34]. The high-temperature treatment at 1000 ◦C
significantly expands the pore volume and increases the mesopore ratio of the material
without significant changes in morphology, providing HTC-1000 with an increased spe-
cific capacitance and improved rate performance under high current densities. The pore
diameter distribution of the three samples is shown in Figure 3c. The micropore diameter
is centered at 1.17 nm, which is beneficial for ion transport, while the mesoporous diameter
is centered at 2.7–4 nm, which can form a repository for the electrolyte, quickly providing
ions for energy storage during charging and discharging.
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The X-ray diffraction (XRD) patterns of HTCs are shown in Figure 4a. The peaks in the
low-angle scattering region of all samples indicate that the material HTCs have a porous
structure [35–37]. Due to the non-graphitic disordered stacking and amorphous structure
of the porous carbon material, the XRD pattern appears as a bread-like shape and the
broad diffraction peaks at around 26◦ and 43◦ correspond to the reflections of the (002) and
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(100) planes, respectively [38,39]. It can be observed from the pattern that the low-angle
scattering intensity of HTC-1000 increases after secondary high-temperature treatment,
indicating that HTC-1000 has a more developed porous structure. However, there is no
obvious peak shift for HTC-0, HTC-1000, and HTC-1100, illustrating that secondary high-
temperature treatment cannot affect the interlayer spacings of graphite nanodomains in
these three samples [40]. The intensities of peaks in HTC-1000 and HTC-1100 are stronger
than that of HTC-0, indicating an increase in the ordered degree, which contributed to the
improvement of conductivity. The Raman spectra of HTCs are shown in Figure 4b. The
Raman spectra of three samples showed D and G peaks located at 1350 and 1580 cm−1.
The Raman spectra were fitted with four peaks located at 1150, 1350, 1510, and 1580 cm−1,
which characterize the T band, D band, D’ band, and G band, respectively, where the D
band and G band represent sp3-type disordered carbon and sp2-type graphitic carbon,
respectively (Figure 4c and Figure S4). The area ratio of the D band and G band (AD/AG)
can be used to characterize the defect content of the sample. After areas fitting, the AD/AG
of HTC-0, HTC-1000, and HTC-1100 are 3.28, 2.87, and 2.76, respectively. The decrease in
AD/AG ratios with an increasing treatment temperature demonstrates the improvement
in the crystallinity and graphitization degree, which is identical to the XRD results [41].
As the internal crystal structure of the material becomes more ordered, more conjugated π

electrons are formed, and electrons can move freely inside the material, leading to good elec-
trical conductivity [42]. The increase in graphitization during high-temperature treatment
produces a more stable crystal structure. This structural stabilization improves the chemical
stability of HTC-1000, which results in better cycling stability. The Fourier-transform in-
frared spectrum of HTC-0 exhibits specific absorption peaks, including 700 cm−1 belonging
to -CH in the aromatic ring, 1200 cm−1 caused by C=O, 1500 cm−1 belonging to -CH3 con-
nected to the aromatic ring, 1600 cm−1 caused by C=C vibration, 2850 cm−1 and 2950 cm−1

belonging to the -CH2 peak connected to the aromatic ring, and 3700 cm−1 belonging to
-OH (Figure 4d, Table S2). After secondary high-temperature treatment, the -OH peak and
the C=O peak are significantly weakened in HTC-1000 and HTC-1100, suggesting that the
unstable -OH and C=O are further released at high temperatures [43–45]. The removal
of oxygen-containing functional groups is beneficial to the properties of porous carbon
materials. Firstly, the removal of oxygen-containing functional groups promotes the forma-
tion of carbon six-membered rings, which is conducive to the construction of a continuous
carbon conductive network and thus improves electrical conductivity. Secondly, since
oxygen functional groups are highly reactive, removing them can avoid overmuch side
reactions and improve the electrochemical stabilization of the material in SCs. Finally, the
removal of oxygen-containing functional groups reduces the impediment for ion transport,
creating abundant channels for rapid ion transport. As shown in Figure 4e, the total XPS
spectra of HTCs all show O 1s peaks at 532.8 eV and C 1s peaks at 284.8 eV, and the C/O
ratio of HTC-0, HTC-1000, and HTC-1100 are 16.1, 19.2, and 21.7, respectively, proving the
decreased O content and increased C content after secondary high-temperature carboniza-
tion. The enhanced C content illustrates that the secondary high-temperature treatment
can effectively remove the unstable oxygen-containing functional groups [46]. As shown
in Figure 4f, high-resolution C 1s spectra can be fitted into three peaks centered at 287.9,
285.8, and 284.5 eV, corresponding to C=O, C-O, and C=C bonds, respectively. The ratios of
C=C and C-O are 57% and 23% of HTC-0, respectively. After secondary high-temperature
treatment, HTC-1000 shows an increased ratio of C=C (60%) and a decreased ratio of C-O
(16%). The increase in the C=C bonding ratio indicates the formation of a more complete
carbon conducting network in HTC-1000, while the decrease in the C-O bonding ratio
suggests that the O impurities are effectively removed.
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To evaluate the electrochemical performance of HTCs, GCD, CV, rate performance,
and cyclic stability, tests were conducted [47]. The active mass loadings of electrodes were
2.0 mg cm−2. CV tests are carried out from 0 to 2.5 V at the scan rate of 10 mV s−1, and
the CV curves of HTC-0, HTC-1000, and HTC-1100 are all rectangular-shaped, indicating
good double-layer capacitance behavior (Figure 5a). Compared with HTC-0 and HTC-1100,
HTC-1000 shows a larger area at the same current, indicating a higher capacitance. The
excellent energy storage properties of HTC-1000 benefited from its larger SSAs and more
abundant pore distribution, which can provide sufficient active sites. Moreover, the CV
tests were carried out at a series of scan rates of 20, 50, 100, and 200 mV s−1. From Figure S5,
the shape of CV curves is maintained well, indicating the good stability of HTC-1000. GCD
tests were conducted and based on the equation (m is the active mass loading on the single
electrode), and HTC-1000 exhibits a high capacitance of 199.2 F g−1 at 1 A g−1, which is
higher than the 170.4 F g−1 of HTC-0 (Figure 5b). When the current densities increase
to 2, 3, 4, 5, and 10 A g−1, HTC-1000 exhibits a high capacitance of 189.8, 182.9, 177.9,
173.6, and 158.2 F g−1, respectively. In addition, the GCD curves of HTC-1000 exhibit a
standard isosceles triangular shape, meaning that there is no redox reaction in HTC-1000,
resulting in the fast charge-discharge capability [48]. As shown in Figure 5c, HTC-0 exhibits
a specific capacitance of 170.4 F g−1 at 1 A g−1 and a specific capacitance of 107.5 F g−1

at 20 A g−1, with a capacity retention ratio of 62.9%. After secondary high-temperature
treatment, HTC-1000 displays a high specific capacitance of 199.2 F g−1 at 1 A g−1. In
addition, the capacity retention ratio of HTC-1000 at 20 A g−1 increases from 62.9% to
68.3%, with a specific capacitance of 136.3 F g−1 (Table S3). The improved capacitance and
rate performance benefit from the increased SSAs, abundant mesoporous, and excellent
conductivity, which can provide more energy storage sites and promote the transport
kinetics of ions and the conduction of electrons [49,50]. In addition, the commonly used
YP-50F was also tested for comparing cycling stability. Compared with YP-50F, which
displays a specific capacitance of 90.0 F g−1 at 1 A g−1 and 26.0 F g−1 at 20 A g−1, HTC-
1000 has a significant advantage (Figure S6). As for HTC-1100, due to the excessively high
temperature during secondary high-temperature treatment, some pores collapse and merge,
resulting in a decreased specific capacitance of 168.0 F g−1 at 1 A g−1 and 80.0 F g−1 at
20 A g−1. Furthermore, the HTC-1000//HTC-1000 symmetric SCs were also assembled
and measured at 1, 5, 10, 20, 30, 40, 50, 70, and 100 A g−1. According to the equation:
E = C(∆V)2/(8 × 3.6), P = 3600E/∆t, the HTC-1000//HTC-1000 symmetric SCs exhibit
an excellent energy density of 43.2 Wh kg−1 at the power density of 625.0 W kg−1, which
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is much higher than the other reported carbon material (Figure 5d, Table S5) [48,51–60].
Furthermore, the cycling performance of symmetric organic SCs assembled with HTC-1000
was tested at 5 A g−1. As shown in Figure 5e, even after as long as 50,000 cycles, the
symmetric supercapacitor still maintains a high capacitance of 179.0 F g−1, with a high
capacity retention ratio of 90%. The outstanding cycling stability of symmetric organic
supercapacitors derives from the excellent structural stability of the electrode material
and the few side reactions. SEM images of HTC-1000 after cycling for 50,000 cycles still
maintain a blocky structure of 20–40 µm, which is in accordance with the pristine HTC-
1000 (Figure S7). It shows that the electrode material can maintain the structural integrity
during charging and discharging, thus improving the cycle stability. Under high pressure
in the organic electrolyte, the -COOH groups and C-O groups are easily decomposed to
produce H2O, CO2, CO, and other gas molecules, which can raise side reactions and affect
electrode stability. Moreover, the oxygen-containing functional groups can react with the
electrolyte and catalyze the decomposition of the electrolyte. Therefore, the removal of
oxygen-containing functional groups can effectively hinder the occurrence of side reactions
and enhance the cycling stability of electrode materials. In general, due to the excellent
structural stability of the materials and the decrease in side reactions, symmetric organic
supercapacitors assembled with HTC-1000 exhibit outstanding cycling stability.
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2 mg cm−2 at 5 A g−1.

Electrochemical impedance tests were conducted to explore the ionic and electronic
conductivity. According to the Nyquist plots of HTCs, HTC-1000 treated at high tempera-
ture exhibits better electronic transport efficiency and conductivity compared with HTC-0
(Figure 6a) [61,62]. To further analyze the effects of secondary high-temperature treatment
on ionic conductivity and electronic conductivity, the Nyquist plots have been fitted and
the corresponding equivalent electrical circuit diagram is shown in Figure S8. The electrode
resistances obtained from equivalent circuits by fitting the experimental data of HTCs
electrodes are shown in Table S4. According to the fitted data, the Rct of HTC-1000 and
HTC-1100 are 5.7 Ω and 2.5 Ω, which are much lower than that of HTC-0 16.2. It shows
that secondary high-temperature treatment can effectively improve electronic conductivity.
As shown in Figure S9, the slope between Z′ and ω−1/2 represents the Warburg coefficient
(σw). The slopes of HTC-0, HTC-1000, and HTC-1100 are 2.9, 2.7, and 4.1, respectively,
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indicating the highest diffusion coefficient of HTC-1000. This is because after secondary
high-temperature treatment, the porosity of HTC-1000 is expanded and more mesoporous
is formed. However, the high temperature of HTC-1100 leads to the collapse of pore
structures, resulting in lower ion transport efficiency. To further verify the conductivity
of the samples, we measured the I-V curves of the sample HTCs with an electrochemical
workstation. From Figure 6b,c, it can be found that the conductivities of HTC-0, HTC-1000,
and HTC-1100 are 58.4, 68.6, and 97.4 S m−1, respectively, which is consistent with the
Rct results.
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4. Conclusions

In conclusion, we have fabricated a kind of porous carbon with both high SSAs and
excellent conductivity via the secondary high-temperature treatment strategy. Firstly, the
enhanced SSAs and micropores of the porous carbon material provide more reactive active
sites, leading to increased specific capacitance. Moreover, the more complete carbon six-
numbered rings due to oxygen elimination effectively improve the conductivity of the
material, which results in better rate performance. In addition, rapid ion transport has
been achieved and benefited from the elimination of oxygen. As a result, the synthesized
anode displays a high specific capacitance of 199.2 F g−1 at 1 A g−1, and the assembled
symmetrical supercapacitor has an outstanding energy density of 43.2 Wh kg−1 at a power
density of 625.0 W kg−1. The strategy can provide novel enlightenment for designing
porous carbon in the energy storage field.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries10010005/s1, Figure S1: SEM images of (a,b) HTC-0,
(c,d) HTC-1000, (e,f) HTC-1100; Figure S2: The EDS spectrum of HTC-1000; Figure S3. (a) TEM images
of HTC-1000 and (b) HRTEM images of HTC-1000; Figure S4: Raman spectra of (a) HTC-0, (b) HTC-
1100; Figure S5: CV curves at different scan rates and galvanostatic charge–discharge curves at
different current densities of the (a,b) HTC-0, (c,d) HTC-1000, (e,f) HTC-1100; Figure S6: Gravimetric
capacitance of YP-50F; Figure S7: SEM images of after cycling HTC-1000; Figure S8: (a) Nyquist
plots and (b) the corresponding equivalent electrical circuit; Figure S9: line plots between Z’ and
ω−1/2. Table S1: Texture properties of HTCs measured by N2 adsorption–desorption isotherms;
Table S2. Peaks attribution in FTIR spectra of porous carbons; Table S3: Specific capacitance of HTC-0,
HTC-1000, HTC-1100, and YP-50F; Table S4: Fitting experimental resistances of HTCs electrodes;
Table S5: Electrochemical performance comparison between the HTC-1000//HTC-1000 symmetric
device and other devices.
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