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Abstract: In this work, we propose a machine learning (ML)-based technique that can learn inter-
atomic potential parameters for various particle–particle interactions employing quantum mechan-
ics (QM) calculations. This ML model can be used as an alternative for QM calculations for predicting
non-bonded interactions in a computationally efficient manner. Using these parameters as input to
molecular dynamics simulations, we can predict a diverse range of properties, enabling researchers to
design new and novel materials suitable for various applications in the absence of experimental data.
We employ our ML-based technique to learn the Buckingham potential, a non-bonded interatomic
potential. Subsequently, we utilize these predicted values to compute the densities of four distinct
molecules, achieving an accuracy exceeding 93%. This serves as a strong demonstration of the efficacy
of our proposed approach.

Keywords: quantum mechanics; molecular dynamics; artificial intelligence; machine learning;
nanotechnology

1. Introduction

The chemical compound space (CCS) is the theoretical space consisting of every
possible compound known (and unknown) to us [1,2]. Even some of our largest databases
consisting of approximately 108 known substances are a mere drop in the ocean compared
with an estimated 10180 substances that possibly make up the CCS [3,4]. Needless to say,
the next big discovery of a compound that can revolutionize energy storage devices of the
future is far from trivial.

The status quo for techniques used in the discovery of new and novel materials to en-
hance battery technologies has progressed from expensive and time-consuming empirical
trial and error methods to the more recent first principles approach of using quantum me-
chanics (QM) [5–9], Monte Carlo simulations and molecular dynamics (MD) [10–14]. QM
calculations evaluate electron–electron interactions bby solving the complex Schrödinger
equation, thereby enabling accurate results for a wide variety of properties. However,
the computational cost is a bottleneck for molecules larger than a couple hundred atoms.
Hence, for multi-component or multi-layer structures such as the solid electrolyte in-
terface layer, QM is not a feasible approach. Additionally, many battery components
including ionic and polymer electrolytes, crystal structures and electrode–electrolyte inter-
actions [11,15–18] are better analyzed on larger length and time scales that are inaccessible
with QM. MD simulations simplify particle–particle interactions to five main types of
interactions, namely nonbonded, bonded, angle, dihedral and improper interactions.
These interactions, which can be obtained using a simple algebraic equation, reduce the
computational cost significantly and are applicable to systems almost 106 times larger.
To analyze ion migration in perovskite nickelate with 200 atoms, QM techniques, even
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using deensity functional theory (DFT) approximation to reduce computational costs, re-
quire about 105 core-hours of computational time in a picosecond range simulation. On the
other hand, MD simulations with 105 atoms required only 104 core-hours of computational
time [19]. Thus, MD simulations enable the analysis of a wide variety of properties and
behavior of materials at the atomic scale, such as the crystal structure, thermal properties
and mechanical properties, which are often too complex to model using QM calculations.
In a recent review, Sun et al. [20] presented the use of MD simulations to optimize lithium
metal batteries, investigating the transport structure of Li ions, the electrochemical pro-
cess at the electronic, atomic or molecular level, the Li+ transport mechanism and the Li
deposition behavior in detail.

Though MD simulations are widely used to investigate the properties of materials at
the atomic level, these simulations rely on experimentally derived interatomic potential
parameters that determine the forces between particles [21]. This dependence on prior
experimental data poses a challenge in using MD to design new and novel materials.
To address this issue, Lanjan et al. [22] recently proposed a novel computational framework
that couples QM calculations with MD simulations. This generates a wide range of crystal
structures by varying a single system parameter (e.g., bond length) while keeping other
parameters relaxed at their minimum energy level. The QM calculations are then used
to evaluate the system’s energy as a function of these changes, and the resulting data
points are used to fit the interaction equations to estimate the potential parameters for
each type of particle–particle interaction. Employing this framework enables the study of
crystal structures with the accuracy of QM calculations but at the speed and system sizes
permissible by MD techniques. While this framework enhances nano-based computational
methods, the QM calculations still need massive amounts of computational power, which
can be significantly reduced with the AI-based technique proposed in this work.

The emergence of ML, deep learning (DL) and artificial intelligence (AI) has helped
alleviate the bottlenecks posed by QM and MD simulations and has made it possible to
expand the scope of our search for novel materials in the CCS. ML and DL algorithms are or-
ders of magnitude faster than ab initio techniques. Unlike the QM-based simulations, which
can take days to complete, ML algorithms can produce results within seconds. The use
of AI has brought a paradigm shift in research related to improving battery technology
as well as molecular property prediction and material discovery in general. For example,
Sandhu et al. [23] used DL to examine the optimal crystal structures of doped cathode
materials in lithium manganese oxide (LMO) batteries. Failed or unsuccessful synthesis
data were used to predict the reaction success rate for the crystallization of templated
vanadium selenites [24]. Using QM and ML techniques, Lu et al. [25] developed a method
to predict undiscovered hybrid organic-inorganic perovskites (HOIPs) for photovoltaics.
Their screening technique was able to shortlist six HOIPs with ideal band gaps and thermal
stabilities from 5158 unexplored candidates. To identify material compositions with suitable
properties, Meredig et al. [26] built an ML model trained on thousands of ground state
crystal structures and used this model to scan roughly 1.6 million candidate compositions
of novel ternary compounds to produce a ranked list of 4500 stable ternary compositions
that would possibly represent undiscovered materials.

The broad approach employed when using AI-based property prediction models
consists of three overarching components: a reference database consisting of relevant
quantum mechanical data which is used to fit the AI model; a mathematical representation
that not only uniquely describes the attributes of the reference materials but also enables
effective model training; and finally a suitable AI model that can accomplish the learning
task itself. In the ensuing sections, we describe these components in further detail.

1.1. Database

The fundamental premise of AI is the ability to draw inferences from patterns in data
and enable an accurate prediction in unknown domains. Hence, the data, which make up
the training examples for our learning task, becomes a critical aspect for successful predic-
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tion. With the introduction of the Materials Genome Initiative in 2011 [27], the United States
signaled the importance of unifying the infrastructure for material innovation and harness-
ing the power of material data. In lieu of the same goal, there has been an advent of various
materials databases, such as the Inorganic Crystal Structure Database (ICSD) [28], the Open
Quantum Materials Database (OQMD) [29], the Cambridge Structural Databases [30], the
Harvard Clean Energy Project [31], the Materials Project [32] and the AFLOWLIB [33].
Specifically, the size of the training examples, the diversity of the dataset and the degrees
of freedom all contribute to how effective the learning task for a specific objective can
be [34]. In predicting properties such as the band gap energy and glass-forming ability for
crystalline and amorphous materials, Ward et al. [35] methodically selected a chemically
diverse set of attributes taken from the OQMD. Similarly, for electronic-structure problems,
Schütt et al. [36] noted that the density of states at the Fermi energy is the critical property
of concern. In predicting this property, around 7000 crystal structures from the ICSD were
used, observing higher predicted variance for certain configurations and the need to extend
the training set in these specific areas. The process of material discovery is complex and
diverse, and it is not surprising that there is no one-size-fits-all database that can accurately
predict the properties of all materials. The physical and chemical characteristics of materials
vary widely, requiring different methods and techniques for precise analysis and prediction.
Moreover, the current methodologies rely on the availability of well-curated data or the
ability to manually generate such data, which is a daunting and often infeasible task, espe-
cially for new and unexplored materials. Thus, there is a need to develop generalizable and
adaptable approaches that can efficiently handle a diverse range of materials, properties
and configurations without the need for extensive data generation or curation.

1.2. Molecular Representation

ML algorithms draw inferences from data to establish a relationship between the
atomic structure and the properties of a system. To enable the best possible structure-
property approximation, a good representation of the material (also referred to as the
‘fingerprint’ or ‘descriptor’) is crucial. The first Hohenberg–Kohn theorem of DFT proves
that the electron density of a system contains all the information needed to describe its
ground state properties, and it is a ‘universal descriptor’ that can be used to predict these
properties without knowledge of the details of the interactions between the electrons [37].
Crucially, for ML, a good molecular representation is invariant to rotation and translation
of the system as well as permutation of atomic indices [38]. Therefore, unfortunately, the
electronic density is not a universally suitable representation of a system. Additionally, a
good descriptor must be unique, continuous, compact and computationally cheap [38].
Often, there are multiple molecular geometries that possess similar values for a property.
Hence, there is no single universal representation for all properties leading to hundreds
of molecular descriptors that are suitable only for a small subset of the CCS and a small
subset of properties [39]. A commonly used molecular representation that satisfies the
above-mentioned criteria of a good representation is the ‘Coulomb matrix’. It uses the
same parameters that constitute the Hamiltonian for any given system, namely the set
of Cartesian coordinates RI and nuclear charges ZI [40]. While the Coulomb matrix
representation has shown tremendous success for property prediction in finite systems,
it is unable to do the same for infinite periodic crystal structures [36]. Hansen et al. [41]
proposed a new descriptor called ‘bag-of-bonds’ that performed better due to incorporat-
ing the many-body interactions of a system. In fact, the use of different descriptors in an
ML endeavor for material property prediction is so common that there are open-source
software packages that provide implementations for a myriad of different descriptors [38].
Unfortunately, a lack of clarity on the right descriptor makes the use of AI inaccessi-
ble to researchers that possess domain expertise but lack the needed knowledge of AI.
Additionally, the lack of generalizability of a chosen descriptor makes the current AI-
based techniques inaccurate and narrow in scope. For overcoming these challenges, the
novel technique proposed in this work makes material discovery and property prediction
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easier and more accessible without the time-consuming process of selecting a suitable
descriptor. Specifically, our approach leverages a two-stage process combining AI with
MD simulations.

1.3. AI Model

In addition to an appropriate database and the precise molecular representation, a
critical aspect in the material property prediction process is the choice of the AI algo-
rithm. AI algorithms can be categorized into supervised learning, unsupervised learning
and reinforcement learning. Supervised learning uses a standard fitting procedure that
attempts to determine a mapping function between the known input features and the
corresponding output labels. The goal is to make accurate predictions for new, unseen data.
In contrast, unsupervised learning does not have prior knowledge of the desired output,
and the goal is to find patterns and structures in this unlabeled data. Reinforcement
learning uses an iterative trial-and-error process where the actions are determined based
on reinforcement in the form of a reward-penalty system. The goal here is to maximize
the cumulative reward over time. Supervised learning is the most widespread category
of learning used in materials research. Different models may be better suited for certain
types of materials or properties, and the choice of model often depends on the available
data and the specific goals of the prediction task. Akbarpour et al. [42] found that artifi-
cial neural networks (ANNs) performed better in predicting the synthesis conditions of
nano-porous anodic aluminum oxide at the interpore distance in comparison with both
multiple linear regression and experimental studies. On the other hand, for the modeling
and synthesis of zeolite synthesis, Manuel Serra et al. [43] found that support vector
regression (SVR) outperformed ANNs and decision trees. Fang et al. [44] proposed a novel
hybrid methodology for forecasting the atmospheric corrosion of metallic materials where
the optimal hyperparameters for an SVR model were automatically determined using a
generic algorithm. These examples highlight the need for AI expertise when choosing
the right algorithm for a given application, which can be a barrier to making AI methods
accessible for materials-based research.

In this work, we have presented an ML model to predict the non-bonded potential
parameters for conventional elements in the periodic table. We propose a novel approach
that uses ML to learn a common empirical non-bonded interatomic potential—the Bucking-
ham potential [45]—and we successfully demonstrate the ability of this machine-learned
potential to predict a wide range of properties when used as an input to classical MD
simulations. We also demonstrate a marked improvement in the time taken to determine
such properties compared with a traditional first principles approach.

2. Materials and Methods

Due to the enormity of the CCS, it is impossible to generate exhaustive datasets and
consequently difficult for AI models to generalize well beyond the dimensional space of the
training data. Additionally, the lack of a general representation that can scale well to very
different properties results in AI-based techniques that fail to provide both the accuracy
and generalizability that comes with ab initio techniques. Therefore, it is essential to use
techniques that combine the speed of AI with the accuracy and generalizability of QM
and MD simulations [46]. Hence, while most AI-based approaches follow the three-step
process described above to predict a confined set of properties in a narrow subset of the
CCS, our approach generalizes well to a large set of properties. We delve into the details of
our process in the ensuing paragraphs.

2.1. Database Generation

To train our ML model, we generated a database employing the QM approach and
Quantum Espresso (QE) software package [47–49]. QE uses the principles of QM and
computational methods to solve the Schrödinger equation using DFT approximation and
can predict the electronic structure and properties of a system at the atomic scale. The
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database consists of QE-generated non-bonded atom pair energies for each element in
the periodic table. Self-consistent field calculations (QE configurations in Table 1) were
performed for every possible same atom pair system. Furthermore, for each atom pair,
various plausible total charges, each with multiple interatomic distances, were considered.
We refer to each such combination of atom pairs with their respective total charge as a
system charge configuration. The interatomic distance in each simulation was chosen to
include different energy levels, from extremely close and unstable to far apart. There were
more data points around the equilibrium range and fewer at farther distances. By exploring
identical atom pair combinations for each element in the periodic table and introducing
a range of charge values for each atom pair, we conducted simulations for 340 unique
system charge configurations. For each configuration, we evaluated the interactions over
20 different distances, totaling nearly 700 h of computational time. This effort resulted in
the creation of a comprehensive database comprising non-bonded atom pair energies for
6400 distinct configurations. It must be noted that not all system charge configurations were
simulated with the same number of distance values. Some systems with larger elements
may be unstable at close distances, and the QM simulations will not work well for those
cases. Similar behavior may be seen for systems with higher charge values, owing to the
repulsion between atoms.

Table 1. The summary of settings for QM calculations in this work.

Properties Value Method

XC Functional PBE
Convergence Tolerance 1.0 × 10−6Ry
W.F. Cutoff 1.0 × 102

Charge Cutoff 1.0 × 102Ry
Maximum Force 1.0 × 10−3Ry/Bohr
Smearing Factor 1.0 × 10−2Ry
K-Point Mesh Size 3 × 3 × 3

2.2. Data Preprocessing
2.2.1. Curve Fitting

For the system charge configuration of carbon–carbon, for instance, the plot of relative
non-bonded energy versus distance is shown in Figure 1 for various partial charges. In order
to learn the interatomic potential for each configuration, the Buckingham potential was
selected as the appropriate measure:

Unon-bonded = Ae
−r
B − C

r6 . (1)

In the above equation, r is the interatomic distance for a non-bonded atom pair.
By fitting each configuration’s energy and distance values to the above equation, the
constants A, B and C in the Buckingham potential were obtained using the ‘Levenberg–
Marquardt’ algorithm. This algorithm starts with an initial guess for the parameters (A,
B and C) of the function and then calculates the gradient of the residuals with respect to
the parameters and iterates until the residuals are minimized or a maximum number of
iterations is reached. To optimize the initial starting values for this algorithm, the grid
search technique was utilized. As a result, a set of Buckingham constants was obtained for
each system charge configuration.
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Figure 1. The Buckingham potential for carbon atom pairs for various partial charges.

2.2.2. Clustering

From the Buckingham potential equation, it is intuitively clear that for a given value
of energy and distance, there can be multiple combinations of Buckingham constants. Now,
it is prudent to choose a combination that could best enable the learning process of our
model. This was accomplished by clustering the system charge configurations representing
the same element. To cluster configurations for the same elements, the configuration with
the highest R2 value was first chosen for each element. All the Buckingham potentials
obtained previously were recomputed while providing upper and lower bounds to the
algorithm centered around this chosen configuration bearing the highest R2. The origi-
nal computed configurations and the resulting recomputed configurations are shown in
Figure 2 and Figure 3, respectively.

Figure 2. Original unbounded Buckingham potential constants show a lack of element clustering,
thereby making model training difficult.
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Figure 3. Clustered Buckingham potential constants show grouped system charge configurations for
same elements.

2.3. AI Model and Training
2.3.1. Fingerprint

The task of training an AI model for predicting non-bonded interatomic potentials,
such as the Buckingham potential, requires a careful selection of both the configuration
representation and the algorithm. The goal of this work is to determine a potential that
can be used as input for MD simulations, giving researchers the flexibility to adjust ad-
ditional parameters for their specific applications. To this end, we have chosen the most
basic properties of a system charge configuration as the input for our AI model. These
include the atomic mass, atomic radius, atomic number and partial charge of each atom.
The task of selecting the appropriate representation or ‘fingerprint’ of each configuration
is thus simplified, as we are only concerned with modeling the non-bonded interactions
between atoms.

2.3.2. Training

To achieve an optimal model, all labels generated using the Levenberg–Marquardt
algorithm with an R2 value of less than 90% were eliminated. The remaining dataset
was then split into training and test sets at a ratio of 75% to 25%, respectively, due to the
small size of the dataset. Instead of further dividing the training data into training and
validation sets, k-fold cross-validation was used to train and evaluate the model. K-fold
cross-validation divides data into k subsets and trains a model k times, using a different
subset as the test set and the remaining ones as the training set each time. The performance
is then averaged across all iterations to estimate the model’s performance on unseen data.
This technique helps utilize all the data, reduces the impact of sampling bias and reduces
the risk of overfitting, especially in small datasets.

2.3.3. Algorithm

The use of ML was determined to be the most appropriate choice for this dataset, as
DL models are often prone to overfitting with smaller datasets. After evaluating several ML
algorithms, the random forest regressor was selected as the most suitable candidate due to
its enhanced accuracy and robustness compared with traditional decision tree algorithms.
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The random forest regressor operates by combining multiple decision trees, each of which is
trained on a different subset of the training data and a randomly selected subset of features.
The final prediction is made by averaging the predictions from all decision trees in the
forest. The model was optimized for maximum accuracy with the grid search technique,
which focused on tuning three hyperparameters: the number of estimators in the forest,
the minimum number of samples required to split a node and the utilization of bootstrap
samples for each tree. The trained model was able to predict the Buckingham potential
constants for test data with an accuracy of 93%.

2.3.4. MD Simulations

With a trained model, we can predict the Buckingham potential parameters for the
same element atom pairs for any given partial charge. We then use the mixing rule to
calculate the Buckingham constants for dissimilar atom pairs using the following equations:

Amn = (Amm × Ann)
0.5 (2)

Bmn =
1

( 1
Bmm

× 1
Bnn

)0.5
(3)

Cmn = −(C6
mm × C6

nn)
1/12 (4)

where A, B and C represent the Buckingham potential parameters. Also, m and n represent
the index of the atom type in the system.

The non-bonded potentials obtained could subsequently be used for computational
investigations at the atomic-molecular scale. Potential constants for the other types of
interactions apart from non-bonded interactions were taken from the work by Lanjan
et al. [22]. In this work, the ‘LAMMPS’ software package [50] was employed with the
settings and potentials described in Tables 2 and 3, respectively.

Table 2. A summary of the settings for MD simulations in this work.

Properties Description or Specification

Energy minimization Conjugate gradient for 2 × 104 steps
Equilibrium 1 ns NVT run and 10 ns NPT run
Production run 10 ns
Motions integrator Stoermer–Verlet, 1 fs time step
Temperature coupling 25 ◦C, Nose–Hoover thermostat
Pressure coupling 1 bar, Parrinello–Rahman barostat
Constraint solver Constraining all bonds
Periodic boundary x, y and z directions
Long-range interactions Ewald summation with 1.0 × 10−5 accuracy
Trajectory output Every 1000 time step (fs)
Neighbor list updating Every 10 fs
Dynamic load balance Yes

Table 3. The potentials used in the MD simulations using the LAMMPS software package.

Interaction Type Potential Style Equation

Non-bonded Buckingham or Coulombic E = Ae
−r
B − C

r6

Bonded Harmonic E = K(r − r0)
2

Angle Harmonic E = K(θ − θ0)
2

Dihedral Quadratic E = K(ϕ − ϕ0)
2

Improper Harmonic E = K(χ − χ0)
2

3. Results and Discussion

To evaluate the effectiveness of our method, we selected four molecules with different
levels of complexity: (1) H2O, a simple molecule, (2) (CH2O)2CO ethylene carbonate (EC),
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a relatively complex molecule with a ring section, (3) C2H5OH (ethanol), a short-length
hydrocarbon, and (4) C8H18 (octane), a long-chain molecule. Firstly, we used the partial
charges from the literature [22] for all possible unique similar atom pair combinations for each
molecule to predict the corresponding Buckingham potential parameters using our trained
ML model. We then computed the Buckingham potential parameters for the dissimilar atom
pair combinations using the mixing rules outlined in Equations (2)–(4). The accuracy of the
predicted potential parameters is provided in Table 4. The comparison of the predicted values
with the experimental values is shown in Figure 4. Next, we used these predicted potential
parameters as inputs for the MD simulations to predict the density of these molecules.

Table 4. Buckingham potential prediction using the trained ML model for the atoms and their respective
partial charges constituting the four molecules: water, ethylene carbonate, ethanol and octane.

Element Name Partial Charge R2 (A) R2 (B) R2 (C)

Carbon −0.4656 100.00% 97.75% 94.18%
Carbon −0.0257 100.00% 97.75% 94.18%
Carbon 0.7305 99.15% 96.15% 94.18%
Carbon −0.3101 100.00% 97.75% 94.18%
Carbon −0.0714 100.00% 97.75% 94.18%
Hydrogen 0.222 37.19% 76.07% 47.82%
Hydrogen 0.4053 31.15% 99.83% 11.42%
Hydrogen 0.1899 37.19% 76.07% 47.82%
Hydrogen 0.1968 37.19% 76.07% 47.82%
Hydrogen 0.4153 31.15% 99.83% 11.42%
Hydrogen 0.1783 37.19% 76.07% 47.82%
Oxygen −0.3745 99.75% 98.94% 98.04%
Oxygen −0.711 98.91% 98.94% 98.04%
Oxygen −0.5357 98.91% 98.94% 98.04%
Oxygen −0.2865 99.75% 98.94% 98.04%

Figure 4. A 3D plot of the Buckingham potential parameter values for different elements and partial
charges from Table 4, obtained experimentally and using our trained ML model.

Density is an important property of molecules as it can provide information about their
packing and intermolecular forces. An accurate prediction of density requires an accurate
modeling of interatomic forces and interactions, including both bonded and non-bonded
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interactions. Non-bonded interactions are sensitive to temperature and pressure changes
and have a significant impact on the density of a molecule. As such, calculating the density
precisely is a good indicator that the proposed ML-based technique can be employed to
determine other molecular properties such as the mechanical properties, thermal properties
and electrochemical properties, which are influenced by similar interatomic interactions.
Furthermore, density is a thermodynamic property that can be measured experimentally
and accurately calculated using QM techniques. Hence, comparing the predicted densities
of materials with the experimental values is an effective approach to assessing the accuracy
and reliability of our ML-based method. This comparison is summarized in Table 5, where
our predicted densities are shown to have an accuracy greater than 93% with respect to
the experimental data. Also, the densities obtained with MD simulations (specifications
in Table 2) using our ML-predicted potential parameters are shown as a function of time
in Figure 5. The density results in our MD simulations align closely with the expected
values for ethylene carbonate (EC) and octane, with slight deviations well within the
permissible range for computational models. The dynamic density fluctuations observed
in the H2O and ethanol simulations are characteristic of the inherent complexities of
molecular dynamics. Such variations are anticipated in MD simulations, reflecting the
system’s responsiveness to changing conditions and interactions, while the overall trends
remained consistent with the experimental expectations, demonstrating the reliability of
our computational approach.

Table 5. Comparison of density results from this work with experimental values.

Density Experimental This Work Error

H2O 0.99 0.95 4.04%
Octane 0.7 0.73 4.29%
Ethanol 0.79 0.78 1.27%
EC 1.33 1.42 6.77%

Figure 5. Density as a function of time. Comparison of density values of EC, H2O, octane and
ethanol molecules obtained from MD simulations using the non-bonded potential parameters from
the trained ML model with the corresponding experimental data.

4. Conclusions

This work presents a novel ML-based technique that can learn the interatomic potential
parameters for various particle–particle interactions with the accuracy of conventional
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computational techniques like QM. When used as input to MD simulations, these learned
potential parameters can predict a diverse range of properties, enabling the rapid screening
and comparison of large databases of material properties for battery applications.

In this study, we demonstrate the efficacy and validity of our proposed technique
by learning a non-bonded interatomic potential: the Buckingham potential. We used the
non-bonded potential parameters predicted in this work in conjunction with the potential
parameters obtained from the literature for other types of interactions to predict the den-
sities of four different complex molecules. The obtained values were in close agreement
with the experimental values for all four molecules, establishing the accuracy and efficacy
of our proposed technique for the nanoscale evaluation of new and novel materials. Our
technique can help quickly eliminate materials that are unlikely to meet the desired criteria,
narrowing down the list of potential candidates for further evaluation. By identifying the
most promising battery compositions and materials for further testing and development,
this technique can accelerate the discovery of novel materials and the improvement of
existing battery technologies.

In conclusion, the proposed ML-based technique provides a promising path toward
discovering and developing novel materials with enhanced properties for applications such
as next-generation batteries with superior electrochemical performance. Our technique can
accelerate the search for new materials with desirable properties, allowing for the rapid
screening and comparison of large databases of material properties for such applications.
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