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Abstract: Effective thermal management is essential for ensuring the safety, performance, and
longevity of lithium-ion batteries across diverse applications, from electric vehicles to energy storage
systems. This paper presents a thorough review of thermal management strategies, emphasizing
recent advancements and future prospects. The analysis begins with an evaluation of industry-
standard practices and their limitations, followed by a detailed examination of single-phase and
multi-phase cooling approaches. Successful implementations and challenges are discussed through
relevant examples. The exploration extends to innovative materials and structures that augment
thermal efficiency, along with advanced sensors and thermal control systems for real-time monitoring.
The paper addresses strategies for mitigating the risks of overheating and propagation. Furthermore,
it highlights the significance of advanced models and numerical simulations in comprehending
long-term thermal degradation. The integration of machine learning algorithms is explored to
enhance precision in detecting and predicting thermal issues. The review concludes with an analysis
of challenges and solutions in thermal management under extreme conditions, including ultra-
fast charging and low temperatures. In summary, this comprehensive review offers insights into
current and future strategies for lithium-ion battery thermal management, with a dedicated focus on
improving the safety, performance, and durability of these vital energy sources.

Keywords: thermal management strategies; lithium-ion batteries; extreme conditions thermal man-
agement; advanced sensors; machine learning algorithms

1. Introduction

In the current landscape of sustainable mobility, the thermal management of lithium-
ion batteries (LIBs) in electric vehicles (EVs) has established itself as an essential field
of research, crucial to improving the efficiency and ensuring the safety of these energy
systems. Battery thermal management systems (BTMSs) play a key role in this context, as
they are decisive in keeping LIBs within an optimal temperature range, thus contributing to
optimizing their performance and prolonging their lifetime. Recent research [1] highlights
that advances in innovative materials and advanced designs in BTMSs are key for the
effective management of the heat generated in the charging and discharging processes,
which is especially relevant in high-demand applications such as EVs. However, the field
faces significant challenges, mainly related to overheating and temperature variations
in LIBs. These problems can compromise both the safety and performance of batteries,
accelerating their aging and reducing their energy storage capacity. In extreme cases, these
problems can even trigger fire or explosion risks due to thermal runaway (TR) [2]. This
situation underlines the imperative need for efficient BTMSs that mitigate these risks,
maintaining uniformity in battery temperature and avoiding extreme conditions [3,4].
Studies such as those presented in [5] emphasize the critical importance of integrity in
BTMS studies, focusing on battery thermal safety as a key element to prevent overheating-
related incidents in advanced battery technologies.
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Advances in BTMSs have shown significant benefits in EVs, providing more accu-
rate and uniform temperature regulation, and resulting in improved battery efficiency
and reliability. Innovations in phase change materials (PCMs) and other BTMS tech-
nologies have improved heat dissipation and TR prevention, increasing the safety and
energy density of batteries [1]. The study of heat generation in LIBs has gained im-
portance, particularly in its impact on battery performance and safety. Scholars [6,7]
have focused on understanding the interplay between thermo-electrochemical processes
within batteries and how variable battery properties affect heat generation internally.
Additionally, there has been a notable focus on developing effective thermal manage-
ment strategies for use in EVs, with innovative methods combining pulsed operations
with external liquid circulation, air and liquid cooling, PCMs, and heat pipes, each
with its advantages and disadvantages [8–10]. Recently, a hybrid system has been high-
lighted that combines liquid cooling channels with PCMs, optimizing thermal efficiency
and minimizing pressure loss [11]. Despite significant progress in the literature on the
thermal management of lithium-ion batteries, critical challenges persist, warranting
further in-depth investigation. The optimization of battery efficiency and safety remains
a dynamically evolving area of study, given the rapid growth of technologies such as
EVs and escalating demands for battery performance and durability. Identifying gaps in
the literature underscores the necessity to address specific issues, including managing
internal heat generation and implementing practical thermal management strategies in
real-world scenarios. Despite advancements, there are still limitations in understanding
how the variable properties of batteries impact heat generation and how these issues
influence the long-term integrity and safety of batteries in high-demand applications.
In this context, this work focuses on filling these gaps in the literature, presenting not
only a comprehensive review of current advancements but also proposing innovative
contributions that address these specific challenges. The key contributions of this study
are summarized as follows:

• The primary contribution of this work lies in its comprehensive approach, addressing
not only thermal efficiency to enhance battery performance but also placing significant
emphasis on safety. This is achieved through innovative strategies in the design of
BTMSs that tackle both overheating and temperature variations, thereby mitigating
risks of accelerated aging and potential fire hazards.

• We contribute to the scientific literature by highlighting the essential role of advanced
materials and innovative designs in BTMSs. This work provides a thorough review
of recent advancements in this regard, emphasizing how these innovations can be
crucial for effective thermal management during charging and discharging processes,
especially in high-demand applications such as electric vehicles.

• A significant novelty of this review is the emphasis on researching internal heat gener-
ation in lithium-ion batteries. Through a detailed analysis of thermo-electrochemical
processes and the impact of variable battery properties on heat generation, this work
contributes to a better understanding of the fundamentals underlying battery efficiency
and safety.

• This paper highlights a comprehensive evaluation of various thermal management
strategies used in EVs. From pulsed operations to hybrid systems combining liquid
cooling with PCMs, we provide a complete overview of the advantages and disadvan-
tages of each approach, identifying best practices to optimize thermal efficiency and
minimize pressure loss.

• We present specific results from a recent hybrid system that combines liquid cooling
channels with PCMs. This work not only highlights the theory behind this innovation
but also demonstrates its practical application, optimizing thermal efficiency and
addressing pressure loss, which is crucial for successful implementation in EVs.

The rest of this study is structured as follows: Section 2 delves into the fundamentals of
thermal management of LIBs and the shortcomings of existing systems. Section 3 focuses on
advances in cooling methods, while Section 4 discusses sophisticated thermal management
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models. Section 5, meanwhile, investigates novel technologies in thermal monitoring and
regulation. The aim is to highlight the critical role of BTMSs in the sustainable development
of EVs and to make valuable contributions to the field of thermal management research,
presenting findings relevant to both specialists and researchers in related fields. Finally,
Section 6 concludes the paper.

2. Thermal Management in Lithium-Ion Batteries

Thermal management in LIBs is critical to their efficient and safe operation, especially
in applications such as EVs and energy storage systems. Maintaining these batteries within
an optimal temperature range, typically between 20 ◦C and 40 ◦C, is essential to prevent
reliability problems [12,13]. There are three types of approaches to thermal management,
active, passive, and hybrid systems, each with distinctive characteristics and suitable
for different applications and requirements [14]. Active systems employ mechanical or
electrical means, such as pumps and fans, to regulate the temperature of the batteries [15,16].
These methods, which include air and liquid cooling, are highly effective in dissipating heat
but have the disadvantage of increasing system power consumption and thus reducing the
overall efficiency of the battery [17]. Despite their effectiveness, these systems require a
more complex design and are usually more expensive [18].

Passive systems, which use technologies such as PCMs and heat pipes, rely on natural
processes such as conduction and convection for heat transfer [19]. These methods do not
require additional energy, which makes them more efficient in terms of energy consumption
and simpler in design. However, they may face challenges in their ability to handle high
thermal loads or in situations of extreme temperatures [20]. In addition, certain materials
such as PCMs may have issues with low thermal conductivity and risk of leakage after
melting [21]. Hybrid systems, which combine aspects of active and passive approaches,
seek to balance the advantages of both. For example, the integration of PCMs with air
or liquid cooling systems can improve temperature control compared to purely passive
methods, without reaching the high energy consumption of fully active systems [22]. These
hybrid systems offer a promising solution but require careful design and advanced engi-
neering to achieve an optimal balance between energy efficiency and thermal management
effectiveness [23]. The proper choice of thermal management system is essential for LIBs,
considering factors such as battery size, lifespan, and charge and discharge rates. Ad-
vances in new materials, such as nanometer PCMs, and advanced cooling and heating
techniques are improving the efficiency and safety of these systems. These innovations are
contributing to the increased adoption of batteries in a variety of applications, reducing
costs and encouraging the use of cleaner, more sustainable energies [12]. In addition, the
integration and compatibility of these systems with the overall EV or storage system design
is a challenge [24]. Numerous research studies have been conducted that have proposed
various design improvements to increase the efficiency of BTMSs, as detailed in Table 1.

Table 1. Thermal management systems in batteries: comparative analysis.

Ref. BTMS Method Operating Principle Key Findings Advantages Disadvantages

[24] Active
Uses forced air flow to
cool the batteries in a
rectangular container.

Modifications to outlet
size and shape

significantly decrease
system temperature,

improves cooling
uniformity.

Requires no moving
parts, improves

temperature
uniformity.

Limited heat transfer
capacity, less effective
for high thermal loads.

[25] Active
Circulates water

around the battery
pack to dissipate heat.

More effective for thermal
management at low

cycling rates.

Effective for thermal
management at low

cycling rates, improves
thermal performance.

Not as effective at high
cycling rates, may

require combination
with other systems.
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Table 1. Cont.

Ref. BTMS Method Operating Principle Key Findings Advantages Disadvantages

[26] Passive

Uses PCMs with
applied pressure to

enhance heat
dissipation.

PCMs show the most
promising performance
compared to traditional

active air/liquid
cooling methods.

Maintains stable
temperatures without
energy consumption,

improved performance
with pressure.

Increased mechanical
complexity and costs

due to pressure
application.

[27] Passive

Uses PCMs, such as
paraffin, to absorb and

release heat during
phase change.

Provides more uniform
temperature distribution
compared to air-cooling

and liquid cooling.

Effective thermal
management, uniform

temperature
distribution, paraffin is

resistant and safe.

Low thermal
conductivity of

paraffin, slow thermal
response.

[28] Passive

Proposes a passive
BTMS using a

tetrahedral lattice
porous plate for
drone batteries.

Significant reduction in
maximum temperature

and thermal deviation on
the battery surface.

Lightweight, requires
no additional
equipment,

mechanically protects
the battery.

Minimal weight
increase, challenges in

heat management
across different

operation modes.

[29] Passive

Based on using PCMs
to control temperature

through heat
absorption and release.

PCM-based BTMSs stand
out for their

cost-effectiveness and
ability to maintain

temperature uniformity.

Cost-effective, simple
installation, minimal

space required,
excellent temperature

uniformity.

Challenges in PCM
application, such as

low thermal
conductivity and

rigidity.

[30] Hybrid

It combines the high
heat absorption of

PCMs with the active
and localized cooling

of thermoelectric
coolers (TECs).

Delayed TEC current after
PCM reaches 80% melting

improves temperature
uniformity and

energy efficiency.

Improved temperature
control, utilizes latent
heat of PCMs, active

cooling of TEC.

More complex than
passive systems,
higher cost, TEC
requires energy,

potential temperature
variation.

[31] Hybrid

Uses active liquid
cooling combined with

passive cooling
materials like PCMs.

Effectively prevents TR
propagation; maintains

uniform temperature
during normal operation.

Effective against TR
propagation, maintains

thermal uniformity,
combines active and

passive.

Increased complexity
and potential

additional costs
compared to single

systems.

[32] Hybrid

Integrates liquid
cooling systems with
passive systems for

optimal thermal
management.

Considered more viable
for future thermal

management; effectively
cools high-energy/power

battery packs.

Combines the
advantages of active
and passive systems,

enhancing overall
thermal management.

More complex and
expensive than single

cooling systems.

[33] Hybrid

Combination of PCMs
with active cooling

methods for effective
thermal management.

Highlights benefits of
integrated solutions,

needs further research for
higher conductivity

PCMs.

Improves thermal
uniformity and

performance, optimizes
temperature.

Challenges in
integration, need for

high conductivity
PCMs, environmental

impact of larger
PCM volume.

[34] Hybrid

Uses different
techniques like air,

liquid, and PCMs to
cool batteries.

PCM-RT35 showed the
best temperature control

ability at ambient
temperatures of 20 ◦C or

30 ◦C.

PCMs offer a passive
approach with high

efficiency, good
temperature

management.

PCMs have limited
heat absorption

capacity, complexity in
managing multiple

systems.

Notable challenges are identified in BTMSs, especially under harsh operating condi-
tions. A key limitation lies in the low thermal conductivity of PCMs, which leads to uneven
temperature distribution within the battery cells, adversely affecting the performance and
efficiency of LIBs [33]. This problem is intensified in extreme situations, such as discharge
rates higher than 1 ◦C or in environments with ambient temperatures higher than 35 ◦C,
where temperature differences of less than 3 ◦C can be observed between individual cells,
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significantly impacting the performance and durability of LIBs [35]. Also, substantial
limitations are observed in current BTMSs, particularly in fast-loading scenarios and high
ambient temperatures, which can result in inefficient thermal management and increase the
risk of TR [36]. In addition, air-cooled and passive cooling systems show a limited ability
to adapt quickly to variations in thermal load, highlighting the importance of developing
more dynamic and adaptive BTMSs to improve battery thermal stability over a wider
range of operating conditions [37]. This situation is further complicated by the inadequacy
of air-cooled and PCM-based systems in contexts of high ambient temperatures or high
charge/discharge rates, where the poor thermal conductivity of these systems compromises
the long-term performance of the batteries [38].

3. Innovations in Cooling Approaches for Battery Management Systems

Advances in refrigeration techniques, both single-phase and multiphase, have been
significant. Single-phase refrigeration, although simpler in design, faces limitations in
its heat transfer capacity compared to multiphase techniques [39,40]. Furthermore, one
must not only understand the differences in their effectiveness and where they can be best
applied, but also consider how improvements in materials, system design, and implemen-
tation strategies can help overcome current obstacles. For example, in single-phase cooling,
new nanofluids are being explored as a possible solution to improve thermal conductivity
and make heat transfer more efficient. Several studies have examined nanofluids with
different combinations of base fluids (such as water, ethylene glycol, and engine oil) and
nanoparticles (such as alumina (Al2O3), iron oxide (Fe2O3), copper oxide (CuO), and tita-
nium dioxide (TiO2)). Although the potential of engine oil nanofluids with Fe2O3 has not
yet been fully investigated, a significant improvement in the cooling of the battery model
has been observed by increasing the Fe2O3 concentration from 2% to 5%, which resulted in
a decrease in its temperature. The inclusion of Fe2O3 as a nanoparticle not only increased
the thermal capacity and heat transfer efficiency but also improved the overall thermal
performance of the system compared to using engine oil alone [38].

Another nanofluid containing multi-walled carbon nanotubes (MWCNTs) has also
shown promise due to its high thermal conductivity and low density. The thermal uni-
formity of the battery improves with the use of nanofluids, especially at higher MWCNT
concentrations. The maximum thermal deviation drops significantly using the 0.45–0.5%
MWCNT nanofluid. Another innovative design is the immersion cooling system, which
uses a singular fluid in a static state (Novec-7200) and indicates remarkable efficiency in
thermal regulation. This system keeps the maximum cell temperature below 40 ◦C and
ensures that the temperature gradient is maintained within a range of 3 ◦C [39]. Within
the field of multiphase refrigeration, traditional refrigerants such as HFCs (hydrofluorocar-
bons) and HCFCs (hydrochlorofluorocarbons) are two groups of widely used gases that
play a crucial role in refrigeration, proving to be vital for efficient performance in environ-
ments with extreme temperatures. However, despite being fundamental components in
air-conditioning systems, their effect on the environment has prompted the search for more
sustainable options [40].

Therefore, new dielectric fluids with lower boiling points are being explored that
promise significant improvements in thermal management under various operating
conditions. Among these innovative solutions, the use of fluids such as SF33 stands out
for their ability to maintain battery temperatures below 34 ◦C, representing a notable
advance toward more sustainable and efficient cooling practices [41]. In addition, mini-
channel cold plate cooling systems containing a two-phase fluid are effective in extracting
heat through boiling [42]. The use of specific refrigerants, such as R410a, R134a, and
R600a, in direct contact with the battery cells allows a significant improvement in
temperature distribution. For example, the use of R600a has achieved impressive heat
transfer coefficients, keeping module temperatures within safe and much lower ranges
compared to systems without refrigeration [43]. To extend battery lifespan and improve
battery safety by effectively optimizing the cooling design, the incorporation of thermal
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management models becomes indispensable. Further research highlights that choosing
the right cooling fluids can markedly increase thermal efficiency, underscoring the vital
importance of these models in improving cooling systems [44]. For example, in [45], the
authors propose a multi-scale and multiphase model, pioneering in comprehensively
simulating the venting process in LIBs during a TR event, from heat and gas generation to
particle accumulation. In [46], the authors comment on the NTGK (extreme temperature
condition, Tiedemann-Gu-Kim) model, which stands out for its accuracy in simulating
the internal electrochemical processes of the batteries, offering realistic results that have
been confirmed experimentally, differentiating it from more basic models. Two-phase
immersion cooling is the model studied in [47]. This model uses the phase change of
the coolant to achieve efficient heat transfer, offering rapid cooling, thermal stability,
and energy efficiency, ideal for critical systems such as EV batteries, and maintains the
battery temperature below 34 ◦C.

Another approach analyzed is the pseudo-two-dimensional (P2D) model, which re-
duces the complexity of the lateral structure in LIBs by focusing on electrode thickness
to study ion diffusion and electrochemical dynamics. This method allows an accurate
representation of variations in concentrations and electric potentials. Although it is funda-
mental to understand in detail the behavior of batteries, the intensity of the computational
calculations required limits its implementation in instantaneous simulations required by
battery management systems [48]. According to other research [39], the electrochemical-
thermal model (ECT) is the most complete model for simulating batteries, but its high
computational demand limits its practical use. The electrical–thermal (ET) model is pre-
ferred in thermal management because of its cost efficiency and accuracy. For thermal
degradation studies, the Arrhenius method is used. Equivalent circuit models are valued
for their effective approximation of electrochemical behavior with low computational cost.
However, thermal management focuses on two strategies for temperature estimation: the
first involves the use of artificial intelligence (AI), especially neural networks, and the
second relies on models describing the internal electrochemical dynamics. These strategies
allow the temperature of batteries to be predicted with high accuracy using power control
modules. Artificial neural networks (ANNs), trained with real or simulated data, offer
estimates with a minimum error of 1.38% compared to conventional methods, eliminating
the need for complex simulations, and positioning itself as an effective tool in thermal
optimization [39,40]. Figure 1 shows several types of ANN that can be used to predict
battery temperature.

Within these types, Elman-NN networks are suitable to simulate the dynamic thermal
behavior of the battery, where the temperature at each instant depends on the previous
values. Elman-NNs analyze the variables of mathematical models using hidden layers
and a contextual layer, learning the relationship between inputs and outputs with training
data [40]. In contrast, LSTMs are key to predicting battery temperature by processing data
sequences and addressing thermal complexities. Deep neural networks (DNNs) analyze
complex data to predict thermal changes, while convolutional neural networks (CNNs)
specialize in detecting and predicting areas of heat from visual data. This set of technologies
offers an accurate and advanced solution for efficient thermal management of batteries [41].
The multilayer perceptron (MLP) network is effective in modeling nonlinear interactions,
making it ideally suited to address challenges in thermal problems that feature nonlinear
physical complexities. It uses meaningful inputs such as heat generation and temperature
measurements, providing a rich contextual basis for analysis. MLP excels at predicting
temperatures with a margin of error of only 0.8 ◦C using a single sensor, demonstrating its
high efficiency in data-constrained contexts [42].
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On the other hand, model-based approaches delve into the internal reactions and
properties to simulate their behavior and battery wear using tools such as the Kalman filter
(KF), extended Kalman filter (EKF), unscented Kalman filter (UKF), and particle filtering
(PF), among others. These methods seek to pinpoint internal conditions, e.g., load level.
Hybrid models, which combine several techniques, are particularly effective. However,
challenges, such as accuracy in the representation of deterioration and parameter calibra-
tion with limited data, remain complex areas [43]. The KF optimizes estimates of noisy
dynamical systems by a recursive process that minimizes the prediction error. It is versatile
for linear and nonlinear systems, with its effectiveness depending on the accuracy of the
model and noise analysis [44]. There are studies in the literature that address this issue.
In [45], the authors perform a comparison between the KF, EKF, and UKF for estimating
the battery state of charge. They demonstrated that the UKF was the most accurate with an
error of less than 0.3%, outperforming the EKF, which reduced the error to less than 0.5% by
accounting for nonlinearities, and the KF, which had an error reduced from 2% to 1.5%. The
success of the UKF is due to its effective handling of nonlinearities across sampling points,
highlighting its superiority in the accuracy of SOC estimation in lithium-ion batteries. The
authors of [46] employed the EKF together with a simple resistance–capacitance (1-RC)
model that facilitated the determination of the state of charge (SOC) in batteries. This
technique proved to be effective in estimating the overall SOC with an error margin of less
than 2%. However, it failed to identify specific variations between individual cells, resulting



Batteries 2024, 10, 83 8 of 20

in notable discrepancies between them. This situation points to the need to dynamically
adapt and optimize the model for each cell to obtain an individualized and accurate SOC
estimation. The authors of [47] use PF for SOC estimation in batteries by an innovative
approach using weighted particles to represent possible states. This method simplifies
nonlinear calculations, optimizes performance, and employs the radial simplex sphere
principle for efficient sampling, achieving more accurate SOC predictions and corrections.

Therefore, the application of the EKF as an essential component of the algorithm
designed for real-time estimation of SOC in LIBs of EVs is validated. Therefore, the
prediction and measurement functions for applying the battery model within the EKF are
described. The estimation process involves estimating the SOC and battery bias voltage in
advance, applying a discrete model that incorporates both prior state and recent inputs, and
adding a random error component to reflect uncertainty. Parallel to this, the measurement
function bridges the current voltage and current observations to the theoretical battery state,
adapting to the nonlinear complexity of the battery model and introducing a random error
into the measurements. The KF comes into play by continuously adjusting these initial
estimates based on the observed differences between predictions and actual measurements,
which effectively refines the accuracy of the battery state estimation [48]. Recent innovations
in materials and structures are revolutionizing thermal efficiency, especially in the field
of LIBs, a key technology in sectors such as EVs. One of the main innovations is the
use of PCMs, which keep the temperature of batteries within a safe and constant range
by harnessing the latent heat during their phase transitions [35,49,50]. However, these
materials often present the challenge of low thermal conductivity, which is being addressed
by incorporating high-conductivity metal matrices and adding metal nanoparticles or
porous materials [48,49].

Another area of significant advancement is the development of miniature channel
cooling plates, which have been shown to be effective in managing battery pack tempera-
ture [51,52]. These plates, often made of aluminum, allow for better heat distribution and
more effective temperature control. However, they face challenges related to the complexity
and cost of production [51]. Hybrid structures combining passive thermal management and
active cooling systems have also emerged as promising solutions, offering greater efficiency,
but at the cost of increased weight and complexity. In addition, the use of innovative
materials such as graphene has been explored to improve heat dissipation due to their
high thermal conductivity [49,53]. Advances in the design of airflow structures and the
use of fins on cooling plates have also shown improvements in thermal efficiency [52,54].
However, these solutions may increase airflow resistance and require higher energy con-
sumption. One of the most significant advantages of these innovations is their ability to
improve the safety and efficiency of batteries, which is critical in high-demand applications
such as EVs [55,56]. However, these technologies still face significant challenges, including
the trade-off between improvements in thermal conductivity and production cost, as well
as the need to effectively integrate these solutions into large-scale battery designs [50,57].
Although significant progress has been made in improving thermal efficiency through
various innovations in materials and structures, challenges remain. These include cost
optimization, simplification of manufacturing processes, and effective integration of these
solutions into large-scale battery systems. Continued research and development are key to
addressing these challenges and taking full advantage of the benefits of these advanced
technologies. A summary of innovations in battery thermal management is presented in
Table 2.
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Table 2. Innovations in Thermal Efficiency.

Ref. Innovations in
Thermal Efficiency Advantages Disadvantages Challenges

[35] Use of PCMs

They absorb latent heat during
phase transition, keeping the
battery temperature within a

safe range.

Low thermal conductivity,
which limits the ability to

dissipate heat evenly.

Development of
materials with higher
thermal conductivity

and life cycle.

[51] Use of miniature channel
cooling plates

Increased contact area between
the coolant and the cells, which

improves heat transfer.

Higher complexity and
manufacturing cost.

Optimize channel
distribution to reduce

pressure loss.

[49] Phase change
composite materials

They combine the advantages of
PCMs with those of conductive

materials, improving
thermal conductivity.

Higher production cost.
Develop composite

materials with higher
energy density.

[55]
Hybrid system combining

heat pipes with
evaporative cooling

Improves thermal efficiency in
high-current applications.

Increased complexity and
manufacturing cost.

Optimize system
design to reduce
pressure losses.

[58] Graphene composite
structures

Excellent thermal conductivity,
which improves heat

distribution within the battery.
High production cost. Develop more efficient

production methods.

[56] Miniature channel design
with tilt angles

Reduces pressure losses,
improving heat transfer.

Excessively high tilt angles
can cause

leakage problems.

Optimize the tilt angle
for maximum thermal

efficiency.

[50]
Passive interfacial thermal
regulator based on shape

memory alloy

It changes its thermal
conductance reversibly,

improving battery performance
in hot and cold climates.

Challenges related to the
development of shape
memory alloys with

increased thermal cycling
and long-term stability.

Optimize device design
to facilitate integration

into modules and
battery packs.

[59]
Hybrid system combining

heat pipes with
evaporative cooling

Improves thermal efficiency in
high-current applications.

Increased complexity and
manufacturing cost.

Optimize system
design to reduce
pressure losses.

[53] Modular cooling
plate design

Greater versatility and
adaptability to

variable configurations.

Modular designs require
joints and connections that

can increase the overall
thermal resistance.

Achieve large-scale
manufacturing of these
modular systems in a
cost-effective manner.

[57]

System based on liquid
cooling of honeycomb

structure and
phase-change materials

Significantly reduces the
maximum temperature and

temperature difference
in the batteries.

Structural and cooling
complexity leads to higher

manufacturing costs.

Evaluation under
extreme conditions

such as actual loading
and unloading cycles or

thermal packaging
situations.

[60] Modular liquid
cooling system

Greater versatility and
adaptability to

variable configurations.

Modular designs require
joints and connections that

can increase the overall
thermal resistance.

Achieve large-scale
manufacturing of these
modular systems in a
cost-effective manner.

[61]

System based on liquid
cooling of honeycomb

structure and
phase-change materials

Significantly reduces the
maximum temperature and

temperature difference
in the batteries.

Compact structure and
uniform heat dissipation.

Evaluate its
performance under
extreme conditions
such as real loading

and unloading cycles or
thermal packaging

situations.
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Table 2. Cont.

Ref. Innovations in
Thermal Efficiency Advantages Disadvantages Challenges

[54] Phase change
composite materials

Improve thermal uniformity
within the battery modules.

Composite materials tend
to be more expensive to

produce.

Develop composite
materials with higher

effective thermal
conductivity.

[52]
Mini-channel cooling

plates with
spine-shaped fins

They improve heat transfer
performance and reduce

thermal gradients.

Horizontal fins cause a
significantly higher

pressure loss.

Optimize the geometry
and arrangement of the

fins to achieve the
optimum balance

between heat transfer
and pressure loss.

4. Emerging Technologies in Thermal Monitoring and Control

In recent years, the growing demand for EVs and energy storage systems has driven
intense research and development in the field of lithium-ion batteries. A key aspect of
this technological evolution is the efficient and safe management of battery temperature, a
complex challenge that involves the fusion of advanced sensors, control systems, and risk
mitigation, as well as the application of smart technologies and machine learning. The im-
portance of advanced sensors in this area cannot be underestimated. With the incorporation
of distributed optical fibers and nanosensors in battery cells, thermal monitoring with high
spatial and temporal resolution has been achieved. These sensors provide critical data that
are essential to understanding and managing the internal conditions of batteries, enabling
the detection of significant temperature variations that could lead to failures [50,62]. In
parallel, control systems have significantly evolved thanks to the integration of AI and ML
algorithms. These systems not only process the data collected by advanced sensors but
also learn from them, continuously improving their ability to predict and mitigate risks.
For example, by analyzing thermal behavior patterns, these systems can anticipate and
prevent TR incidents, one of the main risks in LIBs [63]. Risk mitigation is enhanced by
the development of intelligent technologies and ML. These tools offer an unprecedented
ability to analyze and predict battery behavior, enabling more efficient and safer thermal
management. The integration of predictive models based on historical data and techniques
such as ANNs and reinforcement learning have resulted in more advanced and reliable
battery management systems [64,65]. In short, the convergence of these innovative tech-
nologies is transforming the way LIBs are monitored, controlled, and safely maintained.
This advancement is not only crucial to improve the efficiency and lifetime of these batteries,
but also to ensure their safe use in critical applications such as EVs and large-scale energy
storage systems [66,67].

4.1. Advanced Sensors

In the field of LIBs, the incorporation of advanced sensors is revolutionizing the
way safety and efficiency are monitored and improved. Thin-film RTD (TFRTD) sensors,
specifically copper–nickel alloy sensors, have been noted for their ability to be integrated
into current collectors, providing fast and accurate internal temperature measurement.
These sensors exhibit 82% faster response speeds and 33% higher accuracy compared to
external RTDs, which is crucial to avoid overheating and TR [68]. In external short-circuit
detection, non-contact magnetoelectric composite sensors, which combine piezoelectric
elastomers and magnetostrictive ferrite, have shown high current sensitivity, with an
accuracy greater than 99% and a current sensitivity of 0.346–5.975 mV/A. These sensors can
distinguish between short circuits and mechanical vibrations, which makes them suitable
for applications in EVs [69]. On the other hand, OFDR-based fiber optic sensors offer
distributed temperature measurements with a spatial resolution of up to 3 mm. These
sensors can identify heat accumulations around positive current tabs during high-rate
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discharges, revealing non-uniform heat generations even in small cylindrical cells [70]. In
smart batteries, the fusion of multiple internal sensors provides a more accurate way to
estimate the SOC. For example, expansion force (EF) sensors have been shown to have a
more sensitive relationship with SOC compared to voltage and are independent of dynamic
current. These sensors can also provide information on battery health status [71].

FBG sensors are noted for their low invasiveness and resistance to electromagnetic
interference, with a temperature sensitivity of approximately 10 pm/◦C and strain sensi-
tivity of 1–2 pm/µε. They are capable of quasi-distributed sensing and thermal mapping
within battery packs, making them suitable for estimating the state of charge and state of
health, and predicting battery capacity [72]. Finally, fiber optic sensors have been used to
monitor strain and temperature variations in individual cells, employing algorithms such
as the fast-recursive algorithm to establish nonlinear correlation models between strain
signals and key electrical parameters, allowing accurate estimation of the SOC in battery
packs [73]. These advances represent major progress in the monitoring and management of
lithium-ion batteries, paving the way for safer and more efficient applications, especially in
EVs and large-scale energy storage systems. Figure 2 shows the classification of advanced
sensors in BTMSs.
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At the heart of this evolution are advanced sensors, whose development continues
apace. Emerging technologies such as distributed optical fiber sensors, electric field sensors,
and nanosensors offer high spatial and temporal resolution, facilitating detailed thermal
mapping of batteries. Particularly, nanosensor-based sensors, composed of materials such
as metal oxides and carbon, are capable of measuring temperature in a distributed manner
throughout the battery module. Their small size does not affect battery performance and
they provide real-time thermal data with high spatial resolution, which is key in smart
thermal management [50]. In addition, the use of optical fibers distributed internally in the
battery cells allows real-time monitoring of thermal distribution, a significant improvement
over conventional sensors. This is vital for detecting temperature variations within the
battery and along its length, preventing failures due to temperature differences [62]. The
integration of these optical sensors with electric/magnetic field sensors facilitates detailed
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thermal mapping and allows the detection of variations associated with thermal changes.
These dense arrays of sensors collect large volumes of data, essential for accurate and
efficient monitoring. Finally, battery monitoring systems include distributed networks of
multiple sensors that evaluate thermal and electrical parameters at the cell, module, and
pack level, providing a complete picture of the battery status and enhancing the safety and
efficiency of battery use [66].

4.2. Application of Intelligent Technologies and Machine Learning

The application of intelligent technologies and ML in battery and power distribution
systems has emerged as a critical field in the evolution toward more efficient and safer en-
ergy management. In the context of fast charging of lithium-ion batteries, the development
of the MSCC-DRL (multi-stage constant current based on deep reinforcement learning)
model, which uses deep reinforcement learning, demonstrates a significant advance in
reducing charging times while maintaining safety and minimizing battery degradation. In
parallel, a systematic review of ML applications in smart distribution systems highlights
how these technologies are revolutionizing the planning and operation of power grids,
improving the efficiency and effectiveness of these systems [74,75]. In the EV arena, battery
technologies and battery management systems have seen remarkable advances. Develop-
ments in ANNs for the health management of lithium-ion energy storage batteries, as well
as hybrid ML models for thermal modeling and battery diagnostics, are clear examples
of how ML is improving the safety, efficiency, and durability of these batteries [76–79]. In
addition, the use of deep learning to estimate the state of charge, health, and remaining life
of batteries indicates significant progress in intelligent battery management, enabling more
accurate and safer operation of battery systems in EVs [79]. The integration of ML models
into BMSs has significantly transformed lithium-ion battery management, especially in the
context of EVs. The innovative approach presented in [74] illustrates the application of
deep reinforcement learning to optimize charging efficiency. This model interacts with the
battery environment, allowing the trained agent to autonomously determine the optimal
charging profile, thus maximizing battery lifetime. The results show that this approach
allows charging batteries in as little as 6–14 minutes, obtaining charging times up to four
times shorter than traditional methods. In addition, the agent demonstrates the ability
to adapt to variations in parameters such as electrode thickness, optimizing charging
autonomously in different conditions.

Study [76] emphasizes how advanced battery and BMS technologies, enriched with
ML, have improved safety and efficiency in EVs. Intelligent BMSs, which use ML models,
are critical for vital functions such as SOC and cell balancing, thus improving the actual
autonomy and safety of EVs. State-of-health (SOH) management of LIBs is another area
where ML has had a significant impact. According to [77], ANNs have been successfully
applied to predict and monitor SOH, a crucial factor for the safe and efficient operation
of energy storage systems. These models can capture complex nonlinear relationships
between multiple factors, such as voltage, current, and temperature, and the battery
health state. Furthermore, [78] introduces a hybrid ML model for thermal modeling and
battery diagnostics. This approach combines mechanistic models with data-driven trade-
offs, providing a powerful tool to prevent overheating and ensure safety during battery
operation. Deep learning has proven to be a powerful tool for health status estimation
thanks to its ability to learn complex relationships between input data and health indicators.
Architectures such as feedforward, convolutional, recurrent neural networks (LSTMs
and GRUs), and Transformers have been applied with promising results on data-driven
models [80–82]. The authors of [79] demonstrate how deep learning is used to accurately
estimate the SOC, SOH, and remaining useful life (RUL) of batteries. This approach enables
more accurate and effective battery management, which is crucial for the safe and efficient
operation of EVs [76,82].

Deep learning (DL) allows these states to be estimated from large sets of historical
battery operation data, without the need for complex electrochemical models. Different ar-
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chitectures such as DNNs, recurrent networks (RNNs), LSTMs, and convolutional networks
(CNNs) have been successfully applied [78,79]. Other works have applied LSTM networks,
GRUs, and autoencoders to estimate the SOH and predict the RUL. For example, the model
proposed by [83] based on an autoencoder with a particle filter achieved a mean square
error of 12.1457 for the CALCE database, better than the particle filter and Kalman models.
Finally, [84] analyzes different AI strategies, including SOH and SOC estimation. These
strategies highlight the versatility and effectiveness of ML in various applications within
BMSs, thus improving the performance and safety of EVs. Six ML algorithms are analyzed
in this study: linear regression, random forest, gradient boosting, light gradient boosting
machine, extreme gradient boosting, and support vector machines. The input data include
current, temperature, and SOC, while voltage is used as the output [83,85]. The results show
that the random forest provides superior performance with an R2 of 0.999 and minimal
errors. This shows that ML can accurately estimate the state of lithium-ion batteries.

Therefore, the adoption of ML models in BMSs has opened a path towards more
advanced and sustainable energy storage and EV systems. These advances are critical to
improving the efficiency, safety, and lifespan of LIBs, marking a milestone in the transition
to more efficient and environmentally friendly mobility. Studies [86,87] highlight the
importance of these technologies in the future of battery management and electric mobility.
Moreover, the integration of AI in LIB management is a growing area of research, with
significant applications in EV and energy storage systems. Lithium-ion battery health
management, especially in energy storage systems, has gained importance due to the need
to manage SOH, SOC, and RUL accurately. ANN models are emerging as effective tools
to address these challenges, leveraging their ability to decipher complex and nonlinear
relationships between input data and battery health indicators [76,88,89]. On the other
hand, accurate monitoring of the internal temperature distribution is crucial for the safety
of LIBs. A novel approach to this is a hybrid thermal-neural network (LTNN) model that
combines a mechanism-based distributed thermal model with machine learning-based axial
thermal gradient compensation. This hybrid LTNN model has been shown to be highly
compatible with common state observation methods, providing accurate and spatially
resolved internal thermal monitoring and diagnostics for LIBs [78].

In the context of battery management systems (BMSs) in EVs, DL has emerged as a key
technique to address battery-related algorithms and operational issues. The use of DL in
BMS enables accurate estimation of SOC, SOH, and RUL, which is critical for EV reliability,
safety, and performance [82,90]. The role of AI in solving battery management problems also
extends to estimating the state of Li-ion batteries. Methods such as random forests, support
vector machines (SVMs), and gradient momentum algorithms have demonstrated superior
performance in discharge prediction, suggesting that integrating these methods with BMS
can significantly improve the performance of EVs [84,91]. In addition, battery safety is
a critical issue, especially in EVs and grid-scale storage. Fire incidents have highlighted
the importance of battery safety, particularly regarding unpredictable thermal runaway.
Machine learning approaches offer new opportunities to predict and prevent battery failures
in practical applications, addressing multi-sector and multi-scale challenges [84,90]. AI and
ML are playing a crucial role in improving the health and safety management of Li-ion
batteries. These technologies offer promising solutions for accurate SOH, SOC, and RUL
estimation, advanced thermal management, and failure and safety risk prevention in a
variety of applications, including EVs and energy storage systems.

5. Challenges and Solutions in Extreme Conditions

Lithium-ion batteries, crucial in the era of electric mobility, face notable challenges
in extreme temperature conditions. These conditions, defined outside the optimal op-
erating range (298.15 K to 323.15 K), significantly impact battery efficiency and safety.
At elevated temperatures, the acceleration of electrochemical degradation and the risk
of thermal decomposition are primary concerns, while temperatures below the optimal
range compromise battery capacity and power [92,93]. The challenge is intensified when
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considering that heat flow directly affects ionic and electronic conductivity, altering the
redox processes at the electrodes and shortening the battery lifetime [94]. To address these
difficulties, hybrid thermal management systems have been developed, combining liquid
cooling with PCMs. These systems act as thermal buffers, passively absorbing and releasing
heat during exothermic and endothermic reactions, thus keeping the temperature within
a safe range and extending the battery lifetime [95]. Regulations such as ISO 12405-4 [96]
and UN38.3 [97] play a crucial role, establishing maximum temperature limits of 55 ◦C and
60 ◦C. In addition, temperatures below 0 ◦C are considered extreme, although manufactur-
ers often specify stricter ranges to optimize performance and durability. The importance
of effective thermal management cannot be underestimated, especially when considering
the wide variety of applications for these batteries, from EVs to energy storage in harsh
environments [98,99].

In the future, thermal management systems will need to balance high capacity and
fast charging with thermal efficiency, especially challenging over a wide temperature
range. In addition, fast charging presents additional challenges, where optimization
is key to controlling heat and temperature gradients while maintaining safety and per-
formance [100,101]. Energy storage systems in harsh environments require advanced
thermal management approaches, such as phase change cooling, to maintain stable
performance under extreme conditions [102]. In addition, AI-based controllers, such as
ANNs and fuzzy logic, are emerging as solutions to optimize battery safety and lifetime
in EVs by dynamically adapting to temperature variations [103]. In conclusion, the
effectiveness of thermal management in LIB is vital to overcome the challenges posed
by extreme conditions. Continued development of advanced materials, techniques,
and regulations is critical to ensure the performance, safety, and long-term viability of
these essential technologies [94,98]. Table 3 provides a comprehensive examination of
various thermal management technologies employed in BTMSs. The detailed analy-
sis encompasses the technology’s description, its relation to thermal leakage, specific
benefits, and associated limitations and challenges. The technologies covered include
hybrid systems, liquid cooling, PCM active heating systems, phase shift cooling, thermal
management with AI, and thermotolerant separators. Each entry sheds light on the
unique features, advantages, and considerations of the respective thermal management
technology within the realm of BTMSs.

Table 3. Challenges and solutions in BTMSs.

Thermal
Management
Technology

Detailed Description Relation to Thermal
Leakage Specific Benefits Limitations and

Challenges

Hybrid Systems Refs.
[95,99]

The authors combine the
efficiency of liquid cooling

with the heat storage capacity
of PCMs. They offer a
dynamic and adaptive

response to
temperature variations.

They provide balanced
thermal management,

absorbing excess heat and
releasing it when needed,

which is crucial in
fast-load or

high-demand situations.

They significantly
improve battery life and

safety by adapting to
different operating

conditions.

They require a complex
design and may have a

higher cost.

Liquid Cooling Refs.
[94,98,100,101]

It uses a fluid, usually water or
a mixture of water and glycol,
to efficiently transfer heat from

the batteries to a heat
exchanger. This technique is

especially effective in fast
charging or high-power

density situations.

Essential to prevent
overheating at high
temperatures and

maintain a stable thermal
environment, reducing the

risk of TR and
battery degradation.

It provides fast and
uniform heat dissipation,

is scalable, and can be
adjusted to different

battery sizes and designs.

It can be susceptible to
leaks and requires regular
maintenance, in addition

to an efficient
pumping system.
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Table 3. Cont.

Thermal
Management
Technology

Detailed Description Relation to Thermal
Leakage Specific Benefits Limitations and

Challenges

PCM Refs.
[49,102–104]

PCMs absorb and release heat
during their phase transitions
(solid to liquid and vice versa),

allowing them to maintain a
constant temperature in the

battery. They are particularly
useful in variable charge and

discharge conditions.

They offer passive thermal
response, stabilizing the
internal temperature of

the battery and reducing
TR in extreme climates.

They provide high
thermal storage capacity
with minimal change in
temperature, which is

ideal for
space-constrained

applications.

They may have limitations
in thermal conductivity
and cycle life, as well as
challenges in integration

with other
battery components.

Active Heating
Systems

Refs. [1,98,105]

These systems use heating
elements or strategies such as
battery preheating to maintain
the optimum temperature in

cold environments, thus
improving battery response

and efficiency.

They are essential to
mitigate TR at low

temperatures, ensuring
that the battery operates
efficiently and avoiding

problems such as
electrolyte crystallization.

Improve performance and
safety in cold climates,

extending battery life and
preventing damage to
internal components.

They increase energy
consumption and may
require additional time

before use to reach
optimum temperature.

Phase Shift Cooling
Ref. [106]

It uses the evaporation and
condensation of a refrigerant
fluid to effectively absorb and
dissipate heat. This method is

based on the latent heat of
phase change of the

refrigerant, offering high heat
dissipation capacity.

Efficiently controls
temperature under peak

load and unload,
preventing overheating

and excessive
thermal runaway.

It offers precise thermal
control and is capable of
handling high thermal

loads, making it suitable
for energy-intensive

applications.

It requires careful design
to ensure the efficiency of
the phase change system

and can present challenges
in refrigerant

replenishment.

Thermal
Management with AI

Refs. [95,105]

It implements AI algorithms to
monitor and adjust thermal

management in real time,
based on usage patterns and
environmental conditions.

It enables fast and
accurate response to

temperature variations,
optimizing thermal

management to reduce TR
and improve efficiency.

Maximizes battery life and
performance by

continuously adapting to
changing conditions,

improving safety
and efficiency.

It depends on the accuracy
of algorithms and data

collection and may require
constant updates
and maintenance.

Thermotolerant
Separators Ref. [107]

Advanced separators designed
to withstand high

temperatures without losing
functionality, improving

battery stability and safety in
extreme heat conditions.

They prevent overheating
and reduce TR by

maintaining structural and
functional integrity at high

temperatures, avoiding
internal short circuits.

They significantly increase
safety in extreme

conditions, resisting high
temperatures

without degrading.

They can increase the cost
of battery manufacturing
and present challenges in

integration with
other components.

6. Conclusions

This study on the thermal management of LIBs focuses on fundamental aspects of
their sustainable and safe development, particularly in critical applications such as EVs
and energy storage systems. This work highlights the cruciality of BTMSs in keeping LIBs
within an optimal temperature range, optimizing their performance, and prolonging their
lifetime. Current challenges include overheating and temperature variations, which can
compromise the safety and performance of batteries, accelerating their aging and reducing
their energy storage capacity. Significant innovations in materials and structures have been
made that are revolutionizing thermal efficiency in LIBs. The use of PCMs is one such
innovation, which helps to maintain battery temperature within a safe and constant range.
However, these materials present the challenge of low thermal conductivity, which is being
addressed by incorporating high-conductivity metal matrices and the addition of metal
nanoparticles or porous materials.

The Integration of smart technologies and ML into battery and power distribution
systems has emerged as a critical field. Models such as MSCC-DRL, which uses deep rein-
forcement learning, are making progress in optimizing charging efficiency and estimating
the state of charge, health, and remaining life of batteries, indicating significant progress in
intelligent battery management. Looking ahead, thermal management systems will need
to balance high capacity and fast charging with thermal efficiency over a wide temperature
range. Energy storage systems in harsh environments will require advanced thermal man-
agement approaches, and AI-based controllers are emerging as key solutions to optimize
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EV battery safety and lifetime by dynamically adapting to temperature variations. Despite
significant advances, challenges remain, including cost optimization, simplification of man-
ufacturing processes, and effective integration of these solutions into large-scale battery
systems. Continued research and development are critical to address these challenges and
maximize the benefits of these advanced technologies.

The significant contribution of this research lies in its innovative approach to the
thermal management of LIBs, especially highlighting the adoption of ML models in BMSs.
This has paved the way towards more advanced and sustainable energy storage and EV
systems, marking a milestone in the transition towards more efficient and environmentally
friendly mobility. In summary, this study represents a crucial breakthrough in improving
the efficiency, safety, and longevity of lithium-ion batteries, contributing significantly to the
future of battery management and electric mobility.
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