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Abstract: The effects of Fe partially replacing Ni in a misch metal-based superlattice hydrogen
absorbing alloy (HAA) were studied. Addition of Fe increases the lattice constants and abundance of
the main Ce2Ni7 phase, decreases the NdNi3 phase abundance, and increases the CaCu5 phase when
the Fe content is above 2.3 at%. For the gaseous phase hydrogen storage (H-storage), Fe incorporation
does not change the storage capacity or equilibrium pressure, but it does decrease the change in
both entropy and enthalpy. With regard to electrochemistry, >2.3 at% Fe decreases both the full and
high-rate discharge capacities due to the deterioration in both bulk transport (caused by decreased
secondary phase abundance and consequent lower synergetic effect) and surface electrochemical
reaction (caused by the lower volume of the surface metallic Ni inclusions). In a low-temperature
environment (−40 ◦C), although Fe increases the reactive surface area, it also severely hinders
the ability of the surface catalytic, leading to a net increase in surface charge-transfer resistance.
Even though Fe increases the abundance of the beneficial Ce2Ni7 phase with a trade-off for the
relatively unfavorable NdNi3 phase, it also deteriorates the electrochemical performance due to a
less active surface. Therefore, further surface treatment methods that are able to increase the surface
catalytic ability in Fe-containing superlattice alloys and potentially reveal the positive contributions
that Fe provides structurally are worth investigating in the future.

Keywords: metal hydride (MH); nickel/metal hydride (Ni/MH) battery; hydrogen absorbing alloy
(HAA); electrochemistry; superlattice alloy

1. Introduction

Misch metal-based superlattice hydrogen absorbing alloy (HAA) has become the mainstream
negative electrode active material for commercial nickel/metal hydride (Ni/MH) batteries due to
its higher capacity, improved high-rate capability, wider operating temperature range, and lower
self-discharge compared to the conventional AB5 HAA [1–4]. Superlattice HAAs belong to a family of
alloys mainly composed of AB3, A2B7, and A5B19 structures, which are constructed with various
numbers of AB5 building slabs (one, two, and three, respectively) between the A2B4 building
slabs [5–7]. Other non-superlattice phases, such as AB2, MgLaNi4, and AB5, may also be present
in these multi-phase superlattice alloys [8–11]. While the basic formula of the commercial superlattice
HAAs contains only rare earth metals (La, Pr, Nd, and/or Sm), Ni, or Al, we have previously reported
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the effects of adding Ce [12], Mn [8,13], and Co [9,14]. In general, Ce promotes AB2 phase formation
and deteriorates battery performance, Mn improves the high-rate performance but creates micro-shorts
in the separator and consequently causes severe self-discharge, and Co improves the low-temperature
performance with the sacrifices in self-discharge and high-temperature performance. In this paper,
we investigate the effects of Fe, another transition metal with an atomic number between Mn and Co,
partially replacing Ni on the structural, gaseous phase storage, and electrochemical properties of HAA.

Fe has been used as a low-cost supplement in AB2 [15–22], AB5 [23–34], and body-centered-cubic
(bcc) [35–40] HAAs. However, the results of Fe incorporation in these HAAs have so far been inconsistent.
For example, the addition of Fe to V-containing AB2 HAA deteriorated the low-temperature
performance but increased the discharge capacity [21] and cycle stability [18]. Contradictory results
from adding Fe to V-free AB2 HAA were also reported (improved low-temperature performance but
degraded capacity and cycle performance) [22]. Moreover, Fe incorporation in AB5 HAA enhanced the
low-temperature performance due to increases in surface area [23,28] and surface catalytic ability [34],
but lowered the capacity [23,27,28,34] and cycle stability [29,34]. However, negative impact on
low-temperature performance [30] and positive contribution to cycle stability [32] from Fe addition in
AB5 HAA have also been previously reported. In the Laves phase-related bcc solid solution HAA, Fe
impeded high-rate dischargeability (HRD) [40] and decreased the bcc phase abundance [35,36], but
the opposite results have also been reported (improved HRD and increased bcc phase abundance) [37].
In addition, ferrovanadium was used as an alternative and inexpensive source of vanadium in the bcc
HAA [38,39]. Very few results regarding Fe addition in the superlattice HAA have been published,
and all published articles concerned the La-only alloy, which has very limited use in practical Ni/MH
battery applications due to its easily oxidized nature and thus short life cycle [41]. Wang et al. [42]
reported that Fe addition in the (La,Mg)Co0.45Ni2.55 HAA decreased the discharge capacity and HRD,
but improved the charge stability. Wu et al. [43] reported that Fe substitution in the La0.7Ng0.3Ni3
superlattice HAA resulted in a lower capacity and HRD. Since any investigation on the effects of Fe
incorporation in the misch metal-based superlattice HAA was absent, such results are very desirable
in order to further improve the electrochemical properties of the superlattice HAA. While this
paper (Part 1) summarizes the results of structural, gaseous phase, and electrochemical (in half-cell
configuration) studies on the Fe-substituted misch metal-based superlattice alloys, the performance
and failure analysis of the Ni/MH batteries made using these alloys will be discussed in another
publication (Part 2, [44]).

2. Experimental Setup

First, −200 mesh HAA powder (2 kg per composition) was prepared by Japan Metals & Chemicals
Company (Tokyo, Japan) using the induction melting method. The chemical composition of the
HAA powder was verified with a Varian Liberty 100 inductively coupled plasma-optical emission
spectrometer (ICP-OES, Agilent Technologies, Santa Clara, CA, USA). Microstructure analysis was
performed with a Philips X’Pert Pro X-ray diffractometer (XRD, Amsterdam, The Netherlands)
and a JEOL-JSM6320F scanning electron microscope (SEM, Tokyo, Japan) with energy dispersive
spectroscopy (EDS). A Suzuki-Shokan multi-channel pressure-concentration-temperature system (PCT,
Tokyo, Japan) was used to measure the gaseous phase hydrogen storage (H-storage) characteristics.
PCT measurements at 30 and 45 ◦C were performed after activation. A negative electrode sample was
made by compacting the HAA powder onto an expanded nickel substrate through a roll mill without
the use of a binder. The half-cell experiment, which employed a pre-activated sintered Ni(OH)2

counter electrode and 30% KOH as the electrolyte, was performed using a CTE MCL2 Mini cell testing
system (Chen Tech Electric Mfg. Co., Ltd., New Taipei, Taiwan). A Solartron 1250 Frequency Response
Analyzer (Solartron Analytical, Leicester, UK) with a sine wave amplitude of 10 mV and a frequency
range of 0.5 mHz–10 kHz was used for the alternative current (AC) impedance measurements. A Digital
Measurement Systems Model 880 vibrating sample magnetometer (MicroSense, Lowell, MA, USA) was
used to measure the magnetic susceptibility of the surfaces of the activated alloy powder (activation
was performed by immersing the powder in 30 wt % KOH solution at 100 ◦C for 4 h).
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3. Results and Discussion

Five superlattice HAAs (Fe1–Fe5) with a general composition of Mm0.83Mg0.17Ni2.94−xAl0.17Co0.2Fex

(x = 0, 0.05, 0.1, 0.15, 0.2) were prepared for this study. Design compositions and ICP results in at% are
listed in Table 1. The B/A ratio was set to 3.31, which is the same as in previous matrices for Mn [8]
and Co substitutions [9], and the stoichiometry for the main Ce2Ni7 phase was independent of the
overall composition [10]. The base alloy (Fe1) was chosen from a previous matrix of Co-substituted
superlattice HAAs (C3) due to its superior low-temperature performance [9]. ICP results show that the
composition of each alloy is very close to its designed value (Table 1).

Table 1. Designed compositions (in bold) and inductively coupled plasma (ICP) results in at%.
Mm stands for misch metal (mixture of rare earth elements).

Alloy Source Mm Mg Ni Al Co Fe B/A

Fe1
Design 19.3 3.9 68.2 3.9 4.6 0.0 3.31

ICP 19.2 4.0 68.0 4.0 4.7 0.1 3.32

Fe2
Design 19.3 3.9 67.1 3.9 4.6 1.2 3.31

ICP 19.1 3.9 67.0 4.0 4.8 1.2 3.35

Fe3
Design 19.3 3.9 65.9 3.9 4.6 2.3 3.31

ICP 19.1 4.0 65.8 4.0 4.7 2.4 3.33

Fe4
Design 19.3 3.9 64.7 3.9 4.6 3.5 3.31

ICP 19.2 4.0 64.6 4.0 4.7 3.6 3.32

Fe5
Design 19.3 3.9 63.6 3.9 4.6 4.6 3.31

ICP 19.1 4.0 63.4 4.0 4.7 4.7 3.31

3.1. X-Ray Diffraction Analysis

The powder XRD patterns of the five alloys in this study are shown in Figure 1. Peaks from the
Ce2Ni7, NdNi3, and CaCu5 phases can easily be identified. The lattice parameters of the main phase
(Ce2Ni7) and phase abundances of all three phases were calculated using the Rietveld refinement
method with the Jade 9 software (Materials Data Inc. (MDI), Livermore, CA, USA), and the results are
summarized in Table 2.
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Table 2. Lattice constants a and c, c/a ratio, unit cell volume, and crystallite size of the main Ce2Ni7
phase from a full-pattern fitting, and phase abundances calculated from XRD analysis of alloys
Fe1–Fe5. Error ranges are indicated in parentheses after the lattice parameters. R: rhombohedral;
and H: hexagonal.

Alloy Fe1 Fe2 Fe3 Fe4 Fe5

Ce2Ni7 a (Å) 5.0198(3) 5.0228(4) 5.0282(5) 5.0306(4) 5.0321(3)
Ce2Ni7 c (Å) 24.3951(8) 24.4085(9) 24.4166(7) 24.4310(8) 24.4340(12)

Ce2Ni7 c/a ratio 4.860 4.860 4.856 4.856 4.856
Ce2Ni7 unit cell volume (Å3) 532.36 533.29 534.61 535.44 535.83

Ce2Ni7 crystallite size (Å) >1000 >1000 880 >1000 844
Ce2Ni7 (H) abundance (wt %) 58.0 62.3 66.4 66.6 68.0

NdNi3 a (Å) 5.0265(3) 5.0363(4) 4.9782(5) 5.0399(5) 4.9539(3)
NdNi3 c (Å) 24.4471(11) 24.4575(9) 24.7684(7) 24.7587(8) 23.9907(10)

NdNi3 (R) abundance (wt %) 20.1 17.5 13.7 10.2 1.5
CaCu5 a (Å) 5.0203(4) 5.0263(5) 5.0293(4) 5.0209(3) 5.0322(6)
CaCu5 c (Å) 4.0693(3) 4.0692(4) 4.0706(6) 4.0729(5) 4.0716(6)

CaCu5 (H) abundance (wt %) 21.9 20.2 19.8 23.2 30.4

As seen in Figure 2, both lattice parameters a and c of the main Ce2Ni7 phase increase with
increasing Fe content (larger size compared to that of Ni), resulting in the unit cell expansions and,
consequently, a shift in the main XRD peak (around 42.2◦) to lower angles (larger interplanar distance),
as indicated by the vertical line in Figure 1. Moreover, the roughly unchanged c/a ratios shown in
Table 2 suggest that the Ce2Ni7 unit cell expansion is isotropic, which differs from the faster growth in
the a-direction reported in the Mn-substitution study [8]. Changes in the Ce2Ni7 unit cell volume with
Mn, Fe, and Co substitutions are compared in Figure 3. While the slopes of graphs representing increase
versus substitution amount for the Mn and Fe substitutions are similar, no change is observed for the
Co substitution due to the similarity in atomic radii between Co and the replaced Ni. Additionally,
no particular trend in Ce2Ni7 crystallite size (determined by the full width at half-maximum of the
(109) peak) with increasing Fe content can be established, which differs from the Mn (decreasing) [8]
and Co substitutions (increasing) [9].
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Phase abundances of the three constituent phases from the Mn, Fe, and Co substitution studies
are plotted in Figure 4. It should be noted that phases with the same composition are merged into
one category. For example, calculations for the A2B7 phase abundance include both the hexagonal
(Ce2Ni7) and rhombohedral (Pr2Ni7) phase structures. Compared to the large fluctuations in A2B7

phase abundance for the Mn and Co substitutions, the Fe substitution increases the amount of the
main A2B7 phase (Figure 4a). The electrochemical performance of the A2B7 phase was believed to be
superior to that of the AB3 phase [45]. However, while additives, including Ce, Nd, Pr, Sm, Zr, Ti, Si,



Batteries 2016, 2, 34 5 of 17

and Cr, decreased the A2B7 phase abundance, only Fe and Cu were found to increase the abundance of
this phase [46]. It is clear from the comparison shown in Figure 4b that Mn promotes and Fe decreases
the AB3 phase formation. Meanwhile, the effect of Co in this case is not obvious. Trends in AB5

phase abundance are similar for the increases in all three substitutions, except for the alloy with the
least amount of Mn in the Mn-series, and exhibit the behavior of first decreasing and then increasing.
Among the three substitutions, the average amount of the AB5 phase abundance increases in the
following trend: Mn < Co < Fe.
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3.2. Scanning Electron Microscope/Energy Dispersive Spectroscopy Analysis

SEM analysis was performed on the polished powder sample surface, and the backscattered
electron (BSE) micrographs of the five alloys are shown in Figure 5. In general, the color intensity of
each image is very uniform, with some occasional brighter spots and/or areas with slightly darker
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contrasts. The chemical composition of the numbered areas in each BSE micrograph were studied by
EDS, and the results are summarized in Table 3. Brighter spots (Figure 5a-2,b-2) are an excess of rare
earth metals, and the darker areas are either the AB5 (Figure 5b-3,d-2) or LaMgNi4 (Figure 5c-2,e-2)
phase. The AB3 and A2B7 phases cannot be separated due to their similarity in composition. The B/A
ratios in the main AB3/A2B7 phase of alloys Fe1–Fe5 are in the range of 3.31–3.41, which is between
the B/A ratios of AB3 (3.0) and A2B7 (3.5) and closer to the B/A ratio of A2B7 (3.5). This finding
is in agreement of the XRD results, where the A2B7 phase abundance was found to be higher than
the AB3 phase abundance. Similar to the cases of Mn and Co substitutions, Fe does not form any
separated secondary phase and dissolves completely in the main AB3/A2B7 phase. Therefore, changes
in the lattice constant of the main phase, as revealed by XRD, were the result of Fe incorporation. EDS
analysis also shows that the LaMgNi4 phase is deficient in Al, Co, and Fe, while the AB5 phase is rich
in Al, Co, and Fe.
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(a) Fe1; (b) Fe2; (c) Fe3; (d) Fe4; and (e) Fe5. The bar on the lower right corner represents 25 microns.
The composition of the numbered areas was analyzed by energy dispersive spectroscopy (EDS), and
results are available in Table 3.
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Table 3. Summary of EDS results. All compositions are in at%. The composition of the main phase is
in bold.

Sample Location La Pr Nd Mg Ni Al Co Fe Mg/A B/A Phase

Fe1
Figure 5a-1 3.9 8.0 8.0 3.0 68.6 3.8 4.7 0.0 0.13 3.37 AB3/A2B7
Figure 5a-2 41.6 27.3 26.7 0.0 3.9 0.5 0.0 0.0 0.00 0.05 Rare Earth

Fe2
Figure 5b-1 4.0 7.9 7.9 3.0 66.2 4.7 5.2 1.1 0.13 3.39 AB3/A2B7
Figure 5b-2 43.4 22.7 21.1 0.0 11.6 0.8 0.4 0.0 0.00 0.15 Rare Earth
Figure 5b-3 2.8 7.2 7.8 0.6 69.0 5.2 6.0 1.4 0.03 4.43 AB5

Fe3
Figure 5c-1 4.2 8.0 8.0 3.0 65.5 4.3 4.8 2.2 0.13 3.31 AB3/A2B7
Figure 5c-2 3.1 8.1 8.3 14.3 61.7 0.8 2.7 1.0 0.42 1.96 LaMgNi4

Fe4
Figure 5d-1 3.8 7.8 7.9 3.3 64.7 4.8 4.4 3.3 0.14 3.39 AB3/A2B7
Figure 5d-2 3.2 6.8 6.9 0.4 64.3 8.3 5.3 4.8 0.02 4.78 AB5

Fe5
Figure 5e-1 4.4 8.0 7.9 2.4 62.8 4.4 5.1 5.0 0.11 3.41 AB3/A2B7
Figure 5e-2 3.0 8.0 7.9 15.0 60.7 0.8 2.8 1.8 0.44 1.95 LaMgNi4

3.3. Gaseous Phase Hydrogen Storage

The gaseous phase H-storage characteristics of the alloys were studied using PCT measurements
performed at 30 and 45 ◦C. The PCT isotherms are plotted in Figure 6. In general, the changes in shape
and position of the isotherms from the Fe-incorporated alloys are small. The isotherms are similar to
those from the Co-incorporated alloys [9], but different from the Mn-incorporated alloys [8].
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Several gaseous phase parameters obtained from the PCT measurements are listed in Table 4.
Maximum H-storage at 30 ◦C decreases marginally and then increases slightly with increasing Fe
content. Furthermore, changes in maximum and reversible H-storage with the Fe substitution are
small, which again reflects similar results to Co substitution, but is unlike the results obtained with
Mn substitution (Figure 7a,b). Unexpectedly, increases in unit cell volume (Figure 3) and abundance
(Figure 4a) of the main Ce2Ni7 phase with increasing Fe content do not increase the gaseous phase
H-storage, suggesting that a synergetic effect between the main and secondary phases may dominate
the H-storage performance in the Fe-substituted alloys. However, the exact mechanism is not clear at
the present time.

Table 4. Summary of gaseous phase hydrogen storage (H-storage) properties. Error ranges are indicated
in parentheses after the quantity. PCT: pressure-concentration-temperature; and SF: slope factor.

H-storage Properties Alloy

Fe1 Fe2 Fe3 Fe4 Fe5

Maximum Capacity @ 30 ◦C (wt %) 1.43 1.39 0.37 0.39 1.41
Reversible Capacity @ 30 ◦C (wt %) 1.28 1.23 0.27 1.25 1.25

Desorption Pressure@ 0.75%, 30 ◦C (MPa) 0.0138 0.0116 0.0130 0.0123 0.0128
Desorption Pressure @ 0.75%, 45 ◦C (MPa) 0.0254 0.0222 0.266 0.261 0.0273

PCT Hysteresis @ 0.75%, 30 ◦C 0.14 0.23 0.21 0.21 0.14
PCT Hysteresis @ 0.75%, 45 ◦C 0.24 0.35 0.19 0.22 0.12

PCT SF @ 30 ◦C 0.83 0.81 0.83 0.79 0.77
PCT SF @ 45 ◦C 0.84 0.82 0.85 0.82 0.82
−∆H (kJ·mol−1) 33 (2) 35 (2) 38 (2) 40 (2) 41 (2)

−∆S (J·mol−1·K−1) 91 (3) 97 (3) 109 (3) 115 (3) 116 (4)
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Due to the multi-phase nature of the superlattice HAA, the plateau region of the PCT isotherm
is not well defined. Therefore, the desorption pressure at 0.75 wt % H-storage is used instead of
the plateau pressure in this study. Changes in desorption pressure at 0.75 wt % H-storage for the
Fe-substituted alloys were very small, which is similar to what occurs with Co and Mn substitutions
(Figure 7c). Composition modifications with Al [11] and La [12] are more effective in changing the
equilibrium pressure.

PCT hysteresis is defined as ln(absorption pressure at 0.75 wt % H-storage/desorption pressure at
0.75 wt %). PCT hysteresis is an indication of the elastic deformation energy needed to overcome the
lattice expansion at the metal (α)-hydride (β) interface and has been used to predict the pulverization
rate during hydride/dehydride cycling [47]. Both PCT hystereses measured at 30 and 45 ◦C increase
and then decrease with increasing Fe content. In addition, Fe-substituted alloys show smaller PCT
hysteresis compared to the Mn- and Co-substituted alloys.

Slope factor (SF), defined as the ratio of the H-storage capacity between 0.005 and 0.2 MPa and
the reversible H-storage, is related to the degree of homogeneity in the alloy. More specifically, a
higher SF value corresponds to a higher uniformity and lesser degree of disorder in the alloy. For the
Fe-substituted alloys, SF is independent of Fe content, and the SFs measured at 30 ◦C are lower than
those at 45 ◦C. Addition of Fe does not alter the alloy homogeneity, which is similar to the case of
Co incorporation [9], but different from Mn incorporation, where a reduction in homogeneity was
observed [8].

Two thermodynamic parameters, the changes in enthalpy (∆H) and entropy (∆S), were estimated
using the Van’t Hoff equation and the results are listed in Table 4. With increasing Fe content, both
∆H and ∆S become more negative, indicating the formation of a more stable (involving stronger
metal–hydrogen (M–H) bonding) and ordered hydride. Compared to the results obtained previously [8,9],
the influences on both ∆H and ∆S from Fe are stronger than those from Co and Mn. If we only
focus on the Fe-substituted alloys, we may reach the conclusion that with increasing Fe content, the
unit cell volume of the main Ce2Ni7 phase increases, resulting in a more stable hydride. However,
compared to the Fe-substituted alloys, the Mn-substituted alloys have larger Ce2Ni7 unit cells, but
higher ∆Hs. Therefore, the correlation between the structural properties and gaseous phase H-storage
characteristics may be too convoluted to establish due to the complex and multi-phase nature of the
superlattice alloys.

3.4. Electrochemical Analysis

The open-to-atmosphere half-cell configuration was used to measure the discharge capacities
of the five alloys in this study. The dry-compacted electrode was charged with a current density of
100 mA·g–1 for 5 h, and it was then discharged initially with the same current density and followed by
two pulls at 24 and 8 mA·g–1. These three discharge capacities were added, and the sum considered
as the full discharge capacity measured at 8 mA·g–1. In order to examine the activation behaviors,
full discharge capacities and HRDs (the ratio of the high-rate discharge capacity to the full discharge
capacity) from the first 13 cycles for the five alloys in this study are plotted in Figure 8. Compared
to the capacity and HRD curves from the Mn- and Co-substituted alloys, Fe does not facilitate the
formation process in the same manner as Mn and Co, which is possibly due to the relatively low
solubility of Fe in alkaline solutions, as shown by the following comparison [48]:

MnO + H2O = HMnO3
– + H+, log(HMnO3

–) = −16.57 + pH (1)

FeO + H2O = HFeO3
– + H+, log(HFeO3

–) = −18.30 + pH (2)

CoO + H2O = HCoO3
– + H+, log(HCoO3

–) = −16.67 + pH (3)

Achievable concentrations of soluble Mn and Co ions are higher than for soluble Fe ion, indicating
that Mn and Co are more soluble compared to Fe and therefore contribute positively to the activation
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performance. Both the full and high-rate discharge capacities, together with HRD, are listed in Table 5.
A lower amount of Fe (≤2.3 at%) does not affect the capacity or HRD significantly, but a larger amount
of Fe deteriorates both the capacities and HRD. Moreover, the reduction in discharge capacity does not
correlate well with the relatively unchanged gaseous phase H-storage values (Figure 7a,b).
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Table 5. Summary of electrochemical properties: capacity, rate, bulk diffusion coefficient (D), and
surface exchange current (Io). RT stands for room temperature.

Alloy 2nd Cycle High-Rate Capacity 2nd Cycle Full Capacity HRD D @ RT Io @ RT
(mAh·g−1) (mAh·g−1) (%) (10−10 cm2·s−1) (mA·g−1)

Fe1 327 351 0.93 5.2 37.5
Fe2 322 347 0.93 4.7 37.2
Fe3 326 346 0.94 3.5 25.7
Fe4 308 335 0.92 3.4 23.6
Fe5 299 345 0.87 2.7 20.5

Changes in full capacity, high-rate capacity, and HRD with different substitution elements are
compared in Figure 9a–c, respectively. While Co substitution slightly improves both the full and
high-rate capacities, Mn and Fe substitutions (>2.3 at%) decrease the capacities and HRD.

In order to trace the source of the degradations in electrochemical capacities and HRD,
both the bulk hydrogen diffusion constant (D) and surface exchange current (Io) were measured
electrochemically (a detailed methodology were reported in our earlier publications [9,49]), and the
results are summarized in Table 5. Since D decreases monotonically from the initial measurements,
while Io decreases when the Fe content is greater than 1.2 at%, both bulk hydrogen diffusion and
surface catalytic ability deteriorate with Fe incorporation. The decrease in D may be due to a decrease in
abundance of the AB3 secondary phase, which decreases the synergetic effects and is an indispensable
element in electrochemical H-storage in a multi-phase HAA system [50,51]. Similar to the case in
the Laves phase-related bcc solid solution HAA system, where C14 (with stronger M–H bonding)
serves as the catalytic phase for the bcc storage phase (with weaker M–H bonding) [51], the AB3 phase
can also serve as the catalytic phase that contributes to the synergetic effects despite the fact that it
has stronger M–H bonding (judging from its lower B/A ratio compared to the main A2B7 phase).
By reducing the AB3 phase abundance through Fe incorporation, the synergetic effects are lowered
and, consequently, the hydrogen diffusion in the alloy bulk is impeded. Furthermore, the observed
decrease in Io may be caused by the differences in alloy surface created by addition of Fe, which will
be further investigated in the next section. From the observations of D and Io, it can be concluded
that both poor bulk diffusion and surface reaction properties are responsible for the decrease in HRD
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seen with Fe incorporation. Changes in D and Io with different substitution elements are compared in
Figure 10, and both Mn and Fe result in deterioration, but Co improves the bulk hydrogen diffusion
and surface electrochemical reaction.Batteries 2016, 2, 34 11 of 17 
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Overcoming low-temperature performance (especially at −40 ◦C) in Ni/MH batteries has always
been a very challenging task [52]. We have consistently chosen the AC impedance measurement as
the main tool for investigating the −40 ◦C electrochemical reaction [53,54]. Details regarding the
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experimental setup can be found in our earlier publications [55,56]. Surface charge-transfer resistances
(R) and surface double-layer capacitances (C) obtained from the Cole–Cole plots measured at both
room temperature and −40 ◦C are summarized in Table 6. In general, Rs and Cs measured at room
temperature and −40 ◦C increase with increasing Fe content. An increase in the reactive surface area
(proportional to C) with Fe incorporation was also reported for the AB2 [21] and AB5 HAAs [29].
However, the contributions of Fe to R vary for the AB2 [21] and AB5 HAAs; R decreases in AB2 [21],
but increases in AB5 [34]. The RC product has been previously used to characterize the surface catalytic
ability [29,34]. With increasing Fe content, the RC product increases in the current study and for the
AB5 HAA [34], but it decreases with the AB2 HAA [29], which suggests that Fe incorporation impedes
the surface electrochemical reaction of A2B7 and AB5, but facilitates that of AB2. R, C, and RC measured
at −40 ◦C for the Fe- and Mn-substituted superlattice alloys are compared in Figure 11. Although Fe
promotes an increase in the surface area more effectively than Mn, the resistances of Fe-containing
alloys are much higher than those of the Mn-containing alloys, due to the loss of surface catalytic
ability with Fe incorporation, as indicated by the RC plot in Figure 11c.

Table 6. Summary of alternative current (AC) impedance and magnetic susceptibility measurement
results. R, C, MS, and H1/2 represent the charge transfer resistance, double-layer capacitance, saturated
magnetic susceptibility, and magnetic field at half of MS, respectively.

Alloy R @ RT C @ RT RC @ RT R @ −40 ◦C C @ −40 ◦C RC @ −40 ◦C MS H1/2
(Ω·g) (Farad·g−1) (s) (Ω·g) (Farad·g−1) (s) (memu·g−1) (kOe)

Fe1 0.11 0.30 0.03 5.1 0.58 2.9 1016 0.128
Fe2 0.10 0.42 0.04 5.8 0.75 4.3 835 0.109
Fe3 0.15 0.37 0.06 7.4 0.81 6.0 718 0.106
Fe4 0.13 0.71 0.09 9.1 0.95 8.7 481 0.091
Fe5 0.13 0.82 0.11 10.4 0.99 10.3 341 0.060
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3.5. Magnetic Properties

The source of degradation in the surface catalytic ability for the Fe-containing superlattice HAAs
was further investigated using magnetic susceptibility measurements. Due to the large difference
(more than seven orders of magnitude) in the saturated magnetic susceptibilities (MS) of elemental Ni
and Ni in HAA, MS has been used to estimate the total volume of the metallic Ni clusters imbedded in
the surface oxide formed during activation [57]. This measurement has been successfully correlated to
HRD of HAA [58]. Moreover, the strength of the applied magnetic field corresponding to half of the MS
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value (H1/2) is inversely proportional to the magnetic domain size and used as an indicator of the size
of metallic clusters in the surface oxide [59]. Both the MS and H1/2 values obtained from the five alloys
in this study are listed in Table 6 and plotted with the data from Mn- and Co-substitution studies [8,9]
in Figure 12. With increasing Fe content, both MS and H1/2 decrease, suggesting that Fe incorporation
decreases the total volume and surface area of catalytic Ni clusters, judging from the increase in cluster
size indicated by the reduction in H1/2. The reduction in the amount of catalytic Ni clusters in the
surface oxide for the Fe-containing alloys explains the observed decreases in surface catalytic ability,
as indicated by the increase in RC in Figure 11c and the surface reaction current (Figure 10b), causing
the deterioration in HRD (Figure 9). In addition, the MSs of the Mn- and Co-containing alloys are
slightly lower than those seen in the base alloy (free of Mn and Co), which suggests that the amount of
Ni in the alloy composition correlates closely to the amount of metallic Ni in the surface oxide after
activation. Partial replacement of Mn, Fe, and Co for Ni may benefit several electrochemical properties,
but certainly deteriorate the high-rate and low-temperature performances due to the reduction in
amount of surface catalytic Ni clusters. Interestingly, it was also observed that both H1/2 and the AB3

phase abundance demonstrate similar trends (Figures 4b and 12), and such correlations will be verified
in the future.
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4. Conclusions

The effects of partial replacement of Ni with Fe in the misch metal-based superlattice HAA
were studied and compared with those Mn and Co substitutions. An increase in abundance of the
favorable Ce2Ni7 phase with Fe incorporation does not significantly affect the H-storage capacity, but
the electrochemical properties degraded. Partial replacement of Ni with Fe results in a reduction in
total volume of surface metallic Ni inclusions and, consequently, lowers the surface electrochemical
reactivity. Even with an increase in the reactive surface area, the Fe-containing alloys exhibit higher
surface resistivity at both room temperature and −40 ◦C, due to severely deteriorated surface catalytic
ability. Among various studied substitutions, Co is a better substituting element with regards to general
electrochemical performance. However, the Fe-substituting-Ni studied in this work exhibits an increase
in the beneficial Ce2Ni7 phase abundance and decreases the relatively unfavorable NdNi3 phase among
all the AB3-type phases. Therefore, although Fe incorporation deteriorates most electrochemical
properties, further surface treatment may be needed to improve the surface catalytic ability and reveal
the positive contribution that Fe structurally provides. Moreover, alternative substitutions targeted to
improve the low-temperature performance in Ni/MH battery, such as Mo and Cu, will also be studied
in the near future.
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BSE Backscattered electron
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β Hydride phase
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