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Abstract: C14 Laves phase alloys play a significant role in improving the performance of nickel/metal
hydride batteries, which currently dominate the 1.2 V consumer-type rechargeable battery market and
those for hybrid electric vehicles. In the current study, the properties of C14 Laves phase based metal
hydride alloys are reviewed in relation to their electrochemical applications. Various preparation
methods and failure mechanisms of the C14 Laves phase based metal hydride alloys, and the
influence of all elements on the electrochemical performance, are discussed. The contributions of some
commonly used constituting elements are compared to performance requirements. The importance of
stoichiometry and its impact on electrochemical properties is also included. At the end, a discussion
section addresses historical hurdles, previous trials, and future directions for implementing C14
Laves phase based metal hydride alloys in commercial nickel/metal hydride batteries.

Keywords: metal hydride; nickel metal hydride battery; Laves phase alloy; rare earth element;
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1. Introduction

Nickel/metal hydride (Ni/MH) batteries have a wide range of applications including portable
consumer electronics [1], transportation [2], and stationary power sources [3,4] as it features benefits
such as safe chemistry, sustainable life, a stable raw material supply, high performance, and reasonable
cost [5]. The most common metal hydride (MH) alloy used as the active material in negative electrode
of Ni/MH batteries is a misch-metal (combination of La, Ce, Pr, and Nd) based AB5 alloy with a
CaCu5 crystal structure. Recently, a misch-metal and Mg in the superlattice alloy (A2B7 type) with its
corresponding improvement in the gravimetric energy density has become more popular in consumer
and stationary applications [5–9]. Meanwhile, the Laves phase AB2 MH alloy has also been proposed
to improve the energy density of Ni/MH batteries. Although the AB2 MH alloy has the potential for
relatively high capacity potential (440 mAh·g−1 [10,11] when compared to 330 mAh·g−1 from the AB5

alloy), it suffers from a relatively slow electrochemical reaction rate and a less-desirable cycle life (see
comparison in Table 1) [12]. A further comparison of the main battery performances between AB2 and
AB5 MH alloys can be found in previous research (Table 1 in [13]). Numerous papers, including a few
reviews [14–20], have been have examined how to improve the electrochemical properties of AB2 MH
alloys, however, an updated comprehensive review of this subject would be of use. The current work
details the alloy preparation methods, performance requirements, failure mechanisms, constituent
phases, selection of elements and stoichiometry, as well as the historical challenges and directions for
future research.
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Table 1. The performance comparison of hydrogen-absorbing alloys with different chemistries [12].
The numbers in parentheses are the nominal B/A ratios. The symbols are ++ (superb), + (good),
0 (acceptable), and − (poor).

Properties AB2 (2) AB3 (3) A2B7 (3.5) A5B19 (3.8) AB5 (5)

AB2 number of units 1 1 1 1 0
AB5 number of units 0 1 2 3 1

Electrochemical capacity/weight ++ 0 + 0 −
Electrochemical capacity/volume 0 0 + 0 −

Pulverization of alloy, oxidation (corrosion) + + + − −
Reversibility of hydrogen absorption/release − 0 + 0~+ ++

Battery Life − 0 ++ 0 +

C14, C15, and C36 Laves phases are composed of the same A2B4 unit-block, but with different
stacking sequences; C14 has an a-b-a-b stacking sequence, which leads to a hexagonal structure
(Figure 1a); C15 has an a-b-c-a-b-c stacking and a cubic structure (Figure 1b); and C36 exhibits a-b-a-c
stacking and a rhombohedral (dihexagonal) structure (Figure 1c) [21–23]. The C14 and C15 phases
are more commonly observed in MH alloys, whereas the C36 phase may exist between the C14 and
C15 phases [24] but is difficult to identify using X-ray diffraction (XRD) [25,26]. Alloys with both
C14 and C15 crystal structures serve as hydrogen-storage (H-storage) alloys and electrode materials.
C15 alloys have better high-rate and low-temperature performance, however the C14 alloys were
more widely used earlier when alloy composition design was driven by capacity and cycle stability.
An AB2 MH alloy with a C14-predominated structure was used in the first commercialized electric
vehicle, EV1 by General Motor (Detroit, MI, USA). Similar alloys with the same structure were also
used in the first-generation Ni/MH batteries made by Gold Peak Industries (Hong Kong, China)
and Hitachi-Maxwell (Osaka, Japan). Recently, the electrochemical performances of a state-of-art
C14-predominate MH alloy were compared to those from a recently proposed C15-based MH alloy
together with a review of the development works done on the C15-based MH alloys [27]. In this paper,
we will review only research focused on the C14-predominated MH alloys.
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2. Alloys Preparation

Conventionally, when used as the active material in negative electrodes of Ni/MH batteries,
the MH alloys are initially prepared by melting and casting. Then, an annealing process is applied
to the ingot to improve compositional uniformity and to reduce internal stress. To reach a final
particle size of less than 200 mesh (75 µm), most ingots need to be crushed into powder through
mechanical grinding or hydrogenation. The powder may require additional surface treatments to
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enhance its electrochemical properties. Negative electrode fabrication methods have been previously
reviewed [13].

2.1. Melting and Casting

A few preparation methods for MH alloys are described in an introductory article [29] that covers
conventional vacuum induction melting (VIM) [30], arc melting (AM) [31], centrifugal casting (CC),
melt-spinning (MS) [32–34], gas atomization (GA) [35,36], and mechanical alloying (MA) [37–39].
A vacuum plasma spray (PS) has also been employed for research purposes [40]. While AM only
produces small quantity of alloy (5 to 200 g) for laboratory use, VIM can produce ingots ranging from
1 kg to 1 ton (Figure 2). In terms of electrochemical property, no distinct difference is observed between
AB2 MH alloys prepared by VIM and those prepared by AM [41], except for a slightly higher capacity
obtained from VIM due to a larger sample/chamber ratio [42]. Samples from different locations of
a VIM-process ingot may have different microstructures, but the electrochemical capacities are very
similar. For example, the microstructures of different pieces of ingot prepared by a 60-kg VIM furnace
are shown in Figure 3. According to the analytic results from x-ray diffraction (X'Pert Pro, Philips,
Amsterdam, The Netherlands) and scanning electron microscope (SEM) (JEOL-JSM6320F, JEOL, Tokyo,
Japan) with the x-ray energy dispersive spectroscopy capability, this alloy is C14-predominant with
C15, TiNi, and families of (Zr, Ni) secondary phases. We obtained this composition by continuing
optimization and testing more than 400 alloys. The properties of C14-predominated alloys prepared by
VIM and other techniques were also previously compared [43] and are summarized in Table 2. Because
of the small sample size, use of expensive argon gas, and high utility costs from water chiller and arc
power supply, AM is the most expensive method for making MH alloys. Photographs of equipment
and different pouring processes are shown in Figures 4 and 5, respectively. SEM surface morphology
and cross-section micrographs of products are compared in Figures 6 and 7, respectively. A review of
Japanese Patent Applications shows 9 different ingot preparation methods for MH alloys [44]. For MH
alloys that are sensitive to oxygen contamination from the reduction of ceramic refractory used as
furnace crucible, a skull VIM melting can be used (Figure 8). MA in a shaker mill or an attritor is a
popular method for making meta-stable/amorphous alloys not allowed in the phase diagram [45]
(Figure 9).
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Zr7Ni10, and Zr9Ni11), and main C14 phases, respectively.
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Table 2. Comparison between alloy preparation methods. VIM, CC, MS, GA, MA, AM, and PS are short for vacuum induction melting, centrifugal casting,
melt spinning, gas atomization, mechanical alloying, arc melting, and plasma spray, respectively.

Properties VIM CC MS GA MA AM PS

Purpose Production Research/Production Research/Production Research/Production Research Research Research
Batch Size 1–1000 kg 1–1000 kg 1–200 kg 1–1000 kg 1–1000 g 5–200 g 5–100 g

Equipment Cost Medium High High High Low Low High
Production Cost $3 kg−1 $4 kg−1 $4 kg−1 $5 kg−1 $1000 kg−1 $1000–$5000 kg−1 $2000 kg−1

Cooling Rate 100 ◦C s−1 1 × 103 ◦C s−1 1 × 106 ◦C s−1 1 × 104 ◦C s−1 >1 × 106 ◦C s−1 500 ◦C s−1 1 × 104 ◦C s−1

Micro-structure Large crystallites Medium crystallites Nano-crystallites Micro-crystallites Amorphous Large crystallites Micro-crystallites
Alloy Discharge Capacity Normal Normal Low Low High Normal Low

Alloy High-Rate Discharge-ability Normal Normal High Low High Normal High
Alloy Cycle Stability (Anti-pulverization) Normal Better Excellent Excellent Excellent Normal Excellent
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2.2. Particle Size Reduction

Particle size influences capacity and high-rate dischargeability (HRD) behavior, but not activation
properties [46]. As such, a proper particle size is required for battery operation. Unlike the conventional
jar crusher used for AB5 MH alloys, the high hardness of C14 MH alloys requires a hydrogenation
process to create fissures and cracks for further grinding [47]. A stationary hydrogen reactor for
laboratory use (2-kg load), a prototype rotational hydrogen reactor (50 kg), and a mass production
stationary hydrogen reactor (5 tons) are shown in Figure 10. Operation details for the stationary and
rotational hydrogen reactors can be found in the associated U.S. Patents [48,49]. Further reduction to a
desirable size can be achieved by crushing [50], dry ball milling [51], wet ball milling [52], centrifugal
grinding, or jet milling [53]. Three different powder fabrication methods—hydrogenation, dry ball
milling, and wet ball milling—on a F-treated AB2 MH alloy, were compared and the third showed the
best electrochemical performance [54].
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2.3. Annealing

The main purpose of annealing is to improve uniformity in both composition and micro-structure.
Annealing is a necessary step to prepare commercial grade AB5 MH alloys with a long cycle
life [55] (Figure 11a,b). In the case of AB2 MH alloys, non-Laves secondary phases improve the
electrochemical properties of an alloy [56] through synergetic effects [57] and are diminished by
annealing treatments [58–61]. Therefore, annealing is not required for AB2 MH alloys, except for
those prepared by GA and with a surface oxide layer, which can be reduced to the metallic state by
annealing in hydrogen [62] (Figure 11c). Annealing in Ar was also improved the capacity of GA- [63]
and MS- [64] produced AB2 MH alloys because of the ability to increase the surface crystallinity.
The positive contribution of thermal annealing to electrochemical capacity was previously reported by
Klein et al. [65].
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2.4. Surface Treatment

Various surface treatments are available for AB2 MH alloys. A fluorination process can improve
the surface anti-corrosion capability [66–71] and HRD [72], while a hot alkaline bath helps remove
the native oxide that forms during the processes and creates a less dense oxide with catalytic Ni,
which further increases the surface’s catalytic ability [51,66,73,74] and HRD [72]. Other methods
include hot-charging performed at 80 ◦C [75], surface treatment in NH4F and NiCl2 solution [76],
NiO coating by the sol-gel method [77], electroless Cu-coating [78], ball-milling with [79,80] or without
Ni powder [81,82], ball-milling with La-containing AB5 or A2B7 MH alloys [83], and surface reduction
by KBH4 and NaBH4 [84].

3. Performance Criteria

The general requirements for an MH alloy that is suitable for use as the negative electrode in
Ni/MH batteries include high electronic conductivity, a durable anti-corrosion surface, high H-storage
capability, fast bulk hydrogen diffusibility, adequate metal-hydrogen (M-H) bond strength, acceptable
cost, small lattice expansion during hydrogenation, and environmental friendliness [85,86]. As the
applications of Ni/MH batteries become more versatile, the demands of MH alloys also vary.
We classify the prerequisites of specific alloy properties in accordance with application in Table 3.
For the AB2 MH alloys, the surface catalytic ability is not as good as those in AB5 and A2B7 MH
alloys, because of its lower B/A ratio, which contributes to a lower level of metallic Ni on the
surface [87]. But the corrosion product of AB2 alloy is dissoluble in electrolyte, which is different from
the highly packed oxide of rare earth elements (RE) in AB5 alloys, and makes it a better candidate for
high-temperature applications. The small hysteresis found in the pressure-concentration-temperature
(PCT) analysis between absorption and desorption isotherm in AB2 reduces the pulverization rate and
helps improve cycle stability [88,89].

Table 3. Performance requirements of MH alloy in various type of applications. The symbols are
++ (highly desirable), + (important), 0 (not critical), and × (unrelated). EV and HEV represent electric
vehicle and hybrid electric vehicle, respectively.

Alloy Requirements High-Energy
(EV)

High-Power
(HEV)

Stationary
General Purpose

Stationary at High
Temperature

Stationary at Low
Temperature

H-storage Capacity ++ 0 + + +
H-diffusibility + ++ + + ++

Surface Catalysis + ++ + ++ ++
Anti-corrosion + 0 + ++ +

Equilibrium Pressure 0 ++ 0 × ++
Pulverization ++ + 0 + +

Cost ++ + ++ + +

4. Failure Mechanism

While the failure mechanism of the AB5 MH alloy has been studied extensively and reviewed in
detail [90], similar studies on AB2 MH alloys are rare [91,92]. Unlike the surface of AB5 MH alloys,
which are covered by an inert layer of La(OH)3 after numerous cycles, the AB2 MH alloy forms soluble
complex ions, including HZrO3

−, HMnO2
−, and AlO2

−., which migrate through the separator into
the positive electrode, causing micro-shorts and particle pulverization at the electrodes, which leads to
positive electrode failure. The surface passivation of AB5 MH alloys causes stable capacity degradation,
while the failure at the positive electrode with AB2 MH alloys creates a pressure increase, cell venting,
and a sudden capacity drop near the end of the cycle life (Figure 12). Three AB2 MH alloy degradation
modes (oxidation, pulverization, and amorphization) are discussed in this section.
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Figure 12. Comparison of cycle life in C-sized cell from AB5 and AB2 (MF139.173, Ti12Zr21.5V10Cr8.5

Mn13.6Co1.5Ni32.2Sn0.3Al0.4) alloys as negative electrode active materials. N/P denotes the ratio of
capacities of negative and positive electrodes and capacity in the unit of Ah was obtained with a C/2
charge rate and a C/2 discharge rate to 0.9 V cell voltage.

4.1. Oxidation

The activated (alkaline bath treated or cycled) AB2 alloy surface consists of a top
non-electrochemical reactive ZrO2 patch, a surface oxide (~200 nm) with embedded metallic
Ni/Co-clusters [10,93], and an amorphous buffer layer (~100 nm) underneath [94]. In one example,
the Zr/Ti ratios are 8.2, 1.2, 0.8, and 1.9 for the top oxide, supporting oxide, buffer oxide, and bulk,
respectively, which indicates a higher leaching rate for Zr compared to that of Ti [94]. The metallic
inclusions on the surface of the AB2 alloy were thought to be vital for the surface electrochemical
reaction until it was determined that electrolyte-conducting channels coated with catalysts on the
surface of the inner side of the alloy bulk can significantly improve low-temperature performance [95].
The leaching rates of constituent elements from a typical C14 MH alloy are calculated in Table 4
and follow the trend of Al > V > Zr > Ti > Mn. Oxidation and pulverization are the major capacity
degradation mechanisms for AB2 MH alloys [96,97].

Table 4. Calculation of leaching rate in 100 ◦C/30% KOH of a C14 MH alloy with a composition of
Ti12Zr21.5V9.5Cr4.5Mn13.6Co2Ni36.2Sn0.3Al0.4. Data are from [87].

Element Ti Zr V Al Mn

Amount in alloy (at %) 12.0 21.5 9.5 0.4 13.6
Concentration in solution after 1 h etching (ppm) 0.6 15.6 11.4 7.8 0.4
Concentration in solution after 4 h etching (ppm) 1.0 48.9 33.8 28.1 0.5

Leaching rate after 1 h etching (ppm/at %) 0.05 0.73 1.2 19.5 0.03
Leaching rate after 4 h etching (ppm/at %) 0.08 2.27 3.6 70.2 0.04

4.2. Pulverization

Particle pulverization is a key failure mode for AB2 MH alloys, because it increases the surface
area of the electrode, which leads to more severe oxidation [98]. High internal stress exists in AB2 MH
alloy after hydrogenation, and cannot be removed by annealing because of the beneficial multi-phase
structure. Thus, the initial pulverization due to the internal stress in AB2 MH alloys is more severe
than that in AB5 MH alloys. But, because of the synergetic effect between the main storage phase
and the catalytic secondary phase, the PCT hysteresis (the main reason for pulverization during
hydride/dihydride cycling) in AB2 is much smaller than that in AB5 and, thus, a small degree of
pulverization during cycling is expected from AB2. Two SEM micrographs showing the pulverizations
after activation (10 cycles) and near the end of cycle life (450 cycles) are presented in Figure 13.
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Interestingly, a V-free AB2 MH alloy also shows a higher pulverization rate than a V-containing
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and (b) 450th cycle, at the end of cycle life.

4.3. Amorphization

Hydrogen-induced-amorphization (HIA) frequently occurs on AB2 alloys [99,100], especially
those with an atomic radius ratio between A- and B-site atoms (RA/RB) > 1.37 [101]. The amorphous
alloy may have a lower electrochemical capacity [101,102] but better HRD [103,104] compared to its
crystalline counterpart. An amorphous C14 MH alloy went through MA and its capacity decreased
from 325 to 25 mAh·g−1 [105]. A similar degradation of capacity caused by amorphization from MS
has been previously reported [64].

5. Non-Laves Secondary Phases

During cooling from the liquid, the C14 phase solidifies first, followed by the C15 phase, and then
finally a TiNi phase. The TiNi phase further transforms into Zr7Ni10, Zr9Ni11, and ZrNi phases via
solid-state reactions [106–109] (Figure 14). When other modifiers are present, additional secondary
phases are also formed. These secondary phases may not store large amounts of hydrogen, but they
may improve electrochemical performance through the synergetic effect [57].
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5.1. TiNi

A TiNi phase is a commonly observed secondary phase in C14 MH alloys. TiNi has a large
soluble Zr content [110]. Occasionally, the Zr-content in the TiNi phase can be larger than the
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Ti-content [111]. A TiNi phase was found to increase the discharge capacity, and to improve the
charge retention and cycle life while lowering HRD capability [56]. In addition, it is known to improve
low-temperature kinetics [112,113]. The electrochemical performances of TiNi-based MH alloys were
previously reported [114–117].

5.2. ZrxNiy

Three Zr-dominated secondary phases are commonly seen in C14 MH alloys, specifically
ZrNi [30], Zr9Ni11 [65,118], and Zr7Ni10 [118]. ZrNi and Zr7Ni10 phases are found to increase HRD,
but sacrifice capacity and cycle stability, while Zr9Ni11 does the opposite [56,119]. Zr7Ni10 gradually
shifted to Zr9Ni11 as secondary phases in C14 MH alloys with increasing V-content [120].
The electrochemical properties of ZrNi [30,121–123], Zr9Ni11 [121,124,125], Zr7Ni10 [30,121,124–127],
and other Zr8Ni21 [30,121,124,125,128], Zr2Ni7 [30,121,129], and ZrNi5 [130] based MH alloys are
also available.

5.3. V-Based bcc Solid Solution

In the MH alloys with a high V-content, a V-based body-centered-cubic (bcc) is commonly
observed [131–133]. This phase is unlikely to corrode and remains at the surface after activation [72].
As the V-content and the B/A ratio increases, the microstructure of the alloy will change
from a predominated Laves phase into a Laves-phase-related bcc two-phase solid solution [134].
The electrochemical storage of the two-phase alloy is higher, but the HRD suffers in the Laves-phase
alloy [135].

5.4. ZrO2

ZrO2 is formed during the melting stage and acts as an oxygen scavenger [136], which is ordinarily
seen in C14 MH alloys with higher Zr/Ti ratios [111]. It forms a protective barrier against oxidation [72],
but does not form hydride under normal operating conditions in batteries [137].

5.5. Other Secondary Phases

Other secondary phases can be detected using non-transition metal modifiers, such as RE.
The solubility of RE in the C14 phase is extremely low and the addition of Y, La, Ce, Nd results in
the formation of YNi [138], LaNi [139], CeNi [140], and NdNi [141] phases, respectively. These RE-Ni
phases are detrimental to the electrochemical performance of MH alloys [112]. Like RE-Ni, the ScNi
secondary phase increased discharge capacity, but weakened cycle stability [142]. A combination
of hypo-stoichiometry and the addition of RE can boost low-temperature alloy performance [113].
High Mg-content secondary phases have been detected and facilitate the activation process [143,144].
A ZrC phase was formed with a C-addition and improves charge retention but deteriorates cycle life,
HRD, and low-temperature performance. Zr2Ni2Sn [56,136] and Zr (Ni, Mn) Sn0.35 [145] phases can be
found in alloys with a relatively high Sn-content and are detrimental to the alloys’ electrochemical
performance. The structure and properties of Zr2Ni2Sn have been reported [146].

6. Selections of Element

AB2 alloys have a greater compatibility of constituent elements, compared to that of AB5 MH
alloys, because of their superb solubility of components and great number of available phases.
The compatibility of substituting elements makes AB2 a better candidate to meet various application
demands. Laves phase alloys are composed of A-site and B-site atoms (Figure 1). The A-site atom
is usually larger than the B-site atom, but tends to shrink as the electronegativity of the B-site atom
increases, resulting in electron transfer. The ideal RA/RB is 1.225 [147].
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6.1. A-Site Element

For electrochemical applications, Ni, with an atomic radius of 1.377 Å in the Laves phase, is the
major B-site element [148], which limits the choice of A-site element to those with an atomic radius of
approximately 1.68 Å. Some physical properties of the A-site atoms are summarized in Table 5. Ti and
Zr are the most frequently used A-site elements in Laves phase MH alloys because of their availability.
Zr has the strongest M-H bond (lowest heat of hydride formation [149]) and the adjustment of Zr/Ti
content is the most effective method to change M-H bond strength.

Table 5. Properties of A-site elements in AB2 alloys. IMC denotes intermetallic compound.

Properties Ti Zr Hf Nb Pd

Atomic Number 22 40 72 41 46
Atomic Radius in AB2 1.614 1.771 1.743 1.625 1.521

Electronegativity 1.54 1.33 1.30 1.60 2.20
Earth Crust Abundance (%) 0.66 0.013 3.3 × 10−4 1.7 × 10−3 6 × 10−7

Melting Temperature (◦C) 1668 1855 2150 2468 1555
∆Hh (kJ·mol H2

−1) −136 −164 −161 −83 −41
Number of IMCs with Ni 3 8 8 3 0

6.1.1. Titanium

Ti results in weaker M-H bond strength, higher PCT equilibrium pressure [65], and improved
HRD performance [41,150,151]. Ti forms an inert layer of TiO2 and impedes activation [31,152],
which improves cycle stability [153] and causes capacity degradation [154]. However, another group
reported that Ti is beneficial for improving activation [155]. Ti-content impacts the discharge capacity
in two competing ways: weaker M-H bonds lead to a lower capacity, but higher plateau pressure also
improves the reversibility and increases the discharge capacity. Previous research has documented that
increasing Ti-content has led to increasing [156–159], decreasing [155,158,160], and unchanged [150]
electrochemical discharge capacities. A high Ti-content also contributes to a higher abundance of bcc
phase [161] and a higher C14 abundance [162] because of its higher chemical potential [163].

6.1.2. Zirconium

To maintain stoichiometry in comparison to AB2, the sum of Ti- and Zr-contents is approximately
33 at %. Therefore, Zr has the opposite effects of Ti. A higher Zr-content will stabilize the hydride [163]
and lower HRD [150]. The bulk oxide of Zr is usually formed during solidification and has a higher
solubility in KOH solution than TiO2 [87]. A dense layer of ZrO2 formed on the surface of the Zr
particles during powder processing (grinding, sifting, and packaging), and impedes the activation
process [152,164,165].

6.1.3. Hafnium

Not many studies have examined the electrochemical properties of Hf- substituted AB2 MH
alloys [42,160]. An XRD study confirms that Hf and Ti share the A-site and V and Ni are found in the
B-site [166]. Hf-substitution yields a slightly smaller unit cell [167], which is unexpected because of
its relatively large atomic radius (Table 5). The reduced lattice constant c/a ratio with the addition
of Hf [167] predicts a lower pulverization rate. Partially substituting Hf for Zr results in a lower
electrochemical capacity, but a higher HRD [160].

6.1.4. Niobium

Nb occupying the A-site was confirmed by a Rietveld analysis with XRD data from a substituted
ZrCr2 alloy [168]. Partial replacement of Zr by Nb leads to a smaller C14 unit cell volume and,
consequently, a higher PCT plateau pressure [169]. It increases the C14 phase abundance and reduces
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lattice constants [167]. Like Hf, Nb also contributes to a reduced lattice constant c/a ratio [167] leading
to a smaller pulverization rate. The NiNb secondary phase is a poor catalyst/H-storage material
and, remarkably, reduces the surface exchange current [169]. Like Hf, Nb-substitution deteriorates
capacity [42], but enhances HRD [160].

6.1.5. Palladium

Pd is smaller than both Ti and Zr, and when it enters the A-site, it reduces the unit cell of the Laves
phases, which results in a decrease in discharge capacity. However, it also enhances the surface catalytic
ability and improves both HRD and low-temperature performance for the alloy [170]. Improvement in
HRD of C14 alloys was also reported by Yang, Ovshinsky, and their coworkers [171,172].

6.1.6. Scandium

Use of Sc, another expensive additive, in AB2 MH alloy is scarce. The gaseous phase H-storages
of C15/C36 ScM2 (M = Fe, Co, and Ni) were reported [173] with an electrochemical study of a C15
ScNiCo0.2Mn0.5Cr0.2 alloy [174]. The partial replacement by Zr and Y in Sc-based C15 showed cycle
stability improvement with the corresponding sacrifice in discharge capacity [142]. The addition
of Sc increased the abundance of the ZrNi secondary phase, improved the activation and capacity,
but resulted in a trade-off in HRD [175].

6.2. B-Site Element

Ni is the most widely used B-site element in alkaline battery applications. However, Ti, Zr,
and their mixture do not form Laves phase intermetallic compound (IMC) with Ni [176]. Therefore,
B-site substitutions, mainly from the first row of transition metals—because of their availability and
light weight—are essential for the stability of Laves phase IMC. Both the electron affinity and the
atomic radius decrease as the atomic number of the modifier atom increases, which reduces the
average metal-hydrogen bond strength, increases plateau pressure, and decreases H-storage capacity.
With different solubility and chemical properties related to corrosion, these modifier elements are
crucial for engineering various electrochemical properties and will be reviewed in the following
sections. Various properties of the first-row transition metals are summarized in Table 6. The atomic
radius of the element decreases as the atomic number increases until Ni and then increases from Cu
and Zn. The number of IMC with Ti also increases roughly with increasing atomic number.

Table 6. Properties of first-row transition metal elements as B-site atoms in AB2 alloys.

Properties V Cr Mn Fe Co Ni Cu Zn

Atomic Number 23 24 25 26 27 28 29 30
Atomic Radius in AB2 1.491 1.423 1.428 1.411 1.385 1.377 1.413 1.538

Electronegativity 1.63 1.66 1.55 1.83 1.88 1.91 1.90 1.65
Earth Crust Abundance (%) 0.019 0.014 0.11 6.3 0.003 0.009 0.007 0.008
Melting Temperature (◦C) 1890 1857 1245 1535 1495 1453 1083 420

∆Hh (kJ·mol H2
-1) −35 −8 −8 10 15 −3 20 8

Number of IMCs with Ti 0 1 1 2 4 3 5 7

6.2.1. Vanadium

V is the only B-site element that brings high H-storage capacity [17]. It results in a more stable
hydride, more disorder, but also decreases peak power and charge retention [177]. The high leaching
rate of V is the main cause of poor charge retention in conventional V-containing MH alloys [87,178].
The high electronic conductivity of V also improves the activation property of alloys [179]. A balance of
V-content is needed to optimize battery performance [180]. V-free MH C14 MH alloys were designed
to address the charge retention issue, but did so at the expense of cycle stability [144,178]. The large
atomic radius of V enlarges the alloy unit cell and reduces the volume expansion during hydrogenation,
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which in turn reduces PCT hysteresis and pulverization tendency [181], which results in a shorter cycle
life [42]. Reports of V lowering capacity are also available [42].

6.2.2. Chromium

The addition of Cr in C14 MH alloys improves cycle stability [11,131,182–185] and charge
retention [11,184,186] but decreases the HRD [11,186,187], capacity [131], and activation tendency [11].
Cr can suppress segregation of Ti, Zr, and V on the surface of MH alloys [188], retarding the
oxidation of V by forming a V-based bcc solid solution secondary phase [131,189], and slowing
down pulverization [190]. Retarding HRD by adding Cr was further attributed to poor bulk hydrogen
diffusibility and surface exchange current [133]. Compared to Co, Cr promotes a dendritic grain
structure that is beneficial for cycle stability [118]. Its capability of reducing PCT hysteresis also
contributes to a longer cycle life [11].

6.2.3. Manganese

Partial replacement of Ni by Mn increases capacity [17,186], facilitating the formation process [186],
but deteriorating the cycle life of the battery because of its poor oxidation resistance [186,191] and
results in micro short-circuits [192]. A high Mn-content in an alloy reduces the cycle life and charge
retention because of poor oxidation resistance in the KOH electrolyte [11]. A low Mn-content provides
improves activation, capacity, and HRD [193]. Therefore, a careful balance between the content of
Mn- and other B-elements is necessary to optimize battery performance [11,42]. In a separate report,
Mn was found to increase the discharge capacity and exchange current density while hindering HRD
and cycle stability [194]. Mn facilitates homogenizing the chemical composition of different constituent
phases in a multi-phase alloy system [11].

6.2.4. Iron

In V-containing C14 alloys, the addition of Fe facilitates activation, increases the discharge
capacity and surface reaction area, decreases HRD [131] and hydrogen diffusibility, and impairs
low-temperature performance [195]. However, reports also suggest that Fe contributes to a low
capacity [42] and higher cycle life [196,197]. In a V-free C14 alloy, the addition of Fe improves
low-temperature performance, but hinders cycle life and charge retention [144]. The solubility of Fe in
Zr7Ni10 and Zr9Ni11 phases is lower than that in TiNi phases, which explains the promotion of TiNi
phase by Fe-addition [195].

6.2.5. Cobalt

Co promotes an equiaxial grain structure that improves surface reaction kinetics, activation,
and capacity, but deteriorates cycle stability [196]. An optimal Co-content in a C14 MH alloy of 1.5 at %
provides the best performance in terms of formation, cycle life, and charge retention, but exhibits worse
specific power and low-temperature performance compared to other compositions [111]. Compared to
other modifiers, such as Fe, Cu, Mo, and Al, Co-substituted C14 MH alloys show a relatively higher
discharge capacity [120,198,199], good cycle performance [120,193,199], and poor HRD [152]. Reports
on Co-substituted C14 MH alloys with increased plateau pressure [200], a reduced capacity [200],
and a lower cycle life [42] are also available.

6.2.6. Nickel

Ni is the most efficient catalytic B-site element because of the formation of metallic clusters
embedded in the surface oxide after activation [87,201,202]. The introduction of Ni greatly improves
electrochemical behavior [203], HRD [11], low-temperature performance [11,202], surface exchange
current [204], and cycle stability [186], but impedes charge retention [11].
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6.2.7. Copper

In a typical C14 MH alloy, the addition of Cu, with is high degree of pulverization, facilitates
activation processes and improves discharge capacity and low-temperature performance, but decreases
HRD because of lower hydrogen diffusibility [205]. Cu has also been reported to impair cycle
stability [206] and lower capacity [42].

6.2.8. Zinc

Zn has an extremely low melting point compared to its neighbors’ in the periodic table (Table 6)
and is unable to remain in the C14 alloy at a melting point above 1350 ◦C. Therefore, ZnNi [207] and
ZnCu [208] IMCs were used as raw materials to reduce Zn loss from evaporation. 1 at % Zn results
in an increase in discharge capacities, a slight decrease in HRD, an easier activation process, and a
satisfactory low-temperature performance [207].

6.2.9. Second Row Transition Metals (Mo)

Mo is the only element in the second row of transition metals that is used as a modifier in the C14
MH alloys, as it is accessible and not very toxic. According to our recent study, partial substitution of
Co by Mo in a C14 MH alloy increases both the bulk diffusibility of hydrogen and surface catalytic
ability, which leads to improved HRD and low-temperature performance [209]. Mo also improves
charge retention and cycle stability, but yields a slightly lower capacity [209]. The cycle stability
improvement of C14 MH alloy using Mo was also reported [42]. However, reports on the negative
impact of Mo on the capacity, cycle life, and activation of C14 MH alloy are also available, presumably
due to lack of Cr or Co in the composition [197,199]. Partially replacing Cr with Mo increases the
gaseous phase H-storage capacity [210,211], ease of activation, and HRD [212].

6.2.10. Third Row Transition Metals (W, Pt)

W and Pt are the only two elements in the third row of the transition metals that are used because
of concerns with availability and weight. W improves corrosion resistance and self-discharge of C14
MH alloys [213]. The addition of Pt in a C14 ZrCrNi alloy with an annealing treatment improved HRD
and capacity because of the high catalytic activity of Pt for hydrogen electrosorption processes [214].

6.2.11. Group 13 Elements (B, Al)

B exhibits excellent solubility in V-free C14 MH alloys and contributes to a lower capacity,
a high HRD, and improved superior low-temperature performance [144]. In V-containing alloys,
B increased cycle stability [215] and bulk diffusion [216], however it also results in decreased capacity
and HRD [216]. Reports on the positive contributions of B to HRD and low-temperature performance
in V-containing C14 alloys are also available [217]. Ball milling C14 alloys with B show improved cycle
stability at the cost of a lowered capacity [218].

Al is the most frequently used non-transition metal in Laves phase MH alloys. Al use has been
shown to strongly correlate with a high capacity and a good HRD performance [219]. Al additives,
together with Co, positively contribute to activation, charge retention, HRD, and low-temperature
performances [136,220]. In the gaseous phase, Al was also shown to reduce PCT hysteresis, which in
turn retards pulverization [200]. This also contributes to a lower flammability, which enhances
safety in powder handling [221]. Even with the highest leaching out rate observed in Table 4,
Al has been reported to improve the corrosion resistance of alloys, leading to better charge retention
performance [164,213,222].

6.2.12. Group 14 Elements (C, Si, Ge, Sn)

In V-free C14 alloys, the addition of C promotes the formation of a ZrC secondary phase
and improves charge retention, but also deteriorates low-temperature performance, cycle life,
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and HRD [144]. In a Ti-only C14 alloy, adding C promoted the formation of a TiC secondary phase,
which facilitated the activation and decreased the gaseous phase H-storage capacity [223]. In one
Zr-based C14 MH alloy, C improved cycle stability [17].

The addition of Si to C14 MH alloys improved the self-discharge [17], high-temperature discharge
performances [17,224,225], low-temperature performance [226], and cycle stability [17,226] with
trade-offs for lower capacity caused by an inert layer of SiO2 on the surface of the alloy [224,225].
Si-incorporated C15 MH alloys’ improved low-temperature performance is attributed to a layer of
Ni2O3 that formed on the metal surface and can be detected by transmission electron microscopy (TEM,
CM200/FEG, Philips, Amsterdam, The Netherlands) [227]. Si also contributes to a lower flammability
that enhances safety in powder handling [221]. Both Si and Ge additives to ZrCr2 MH alloy reduce
gaseous phase H-storage capacity [228].

Zr is widely used in nuclear power plants because of its stability from a low neutron scattering
cross-section. The costly separation process from Hf (neutron absorber) makes pure Zr metal
expensive [229]. Future cost reduction of Zr is expected as the demand of a Hf-containing Zr for battery
applications (Hf impurities do not matter since Hf is also a hydride former) increases. Currently, a large
amount of Zircaloy (a Sn-Zr alloy [230]) scrap is available from demolished nuclear power plants
and the addition of Sn is essential for cost reduction in raw materials. According to our own study,
a small amount of Sn (0.1 at %) can improve activation, HRD, charge retention, and low-temperature
performances at the expense of capacity and cycle life loss [219,231]. Sn also promotes the formation of
detrimental secondary phases. Thus, the content of Sn should be limited [145].

6.2.13. Group 16 Elements (O, S, Se)

The only report on the addition of O, S, and Se to C14 MH alloys compares gaseous phase
characteristics and shows the same order of effectiveness (S > Se > O) in raising plateau pressure and
PCT hysteresis, increasing storage capacity, and reducing the PCT slope factor [232].

6.3. Secondary Phase Promoter

The addition of elements with large atomic radii, but extremely low solubility in Ti-Zr based AB2

MH alloys, in the Laves phase will form secondary phases either in an element form or a Ni-containing
alloy form. These secondary phases may play an important role in the electrochemical performance of
the host alloy.

6.3.1. Group 1 Elements (Li, K)

Li has an extremely low melting point and very high vapor pressure at liquid temperatures for
C14 MH alloys, therefore adding Li at the last stage and in the mold results in failure. However,
Li-incorporated AB5 MH alloys with their lower melting temperature, were successfully prepared by
AM [233], VIM [234], and a diffusion method [235]. Li did promote unidentified secondary phases,
based on XRD analysis [235]. KB was added in a Ti2Ni based MH alloy as a source of K and showed
improved cycle stability [215].

6.3.2. Group 2 Elements (Mg)

Solubility of Mg in the Laves phase is extremely low (0.l–0.3 at % [143]). In V-containing C14
alloys, it forms a cubic secondary phase, which facilitated the formation process but did not improve
other electrochemical properties [143]. In V-free C14 alloys, the addition of Mg formed a Mg2Ni
secondary phase and improved low-temperature performance and charge retention, but hampered
cycle life and HRD [144]. Ball milling with Mg2Ni can also introduce Mg into AB2 MH alloys [236].
In recent years, Mg and La were introduced to AB2 MH alloys by either remelting [237] or MA [238]
with an AB2/superlattice alloy mixture where superlattice alloys contain both La and Mg.
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6.3.3. Rare Earth (RE) Metals

A great number of studies have focused on how to solve the slow activation of RE-incorporated
C14MH alloys [67,165,184,239–243]. Low solubility of RE in Zr, Ti-based C14 IMC promotes a
RE-Ni (AB) secondary phase and facilitates activation processes [244]. Properties of commonly
used REs as modifiers in the AB2 MH alloy are summarized in Table 7. La, Ce, and Sm are the least
expensive. In general, the ionic radius, ease of oxidation, and MH-bond strength become smaller
when the atomic number increases. Previous studies in a comparison series of RE-doped C14 MH
alloys [112,113,138–141] showed that the RE-Ni phase is beneficial for activation, but detrimental to
HRD and low-temperature performance, and that a careful stoichiometric design is needed to balance
the abundance of the RE-Ni and TiNi phases [113]. The incorporation of La provides the greatest
low-temperature performance, but a contradictory microstructure (an increase in the detrimental LaNi
phase and corresponding decrease in the beneficial TiNi phase). Further TEM studies indicated that
the Ni-Cr alloy channeled and catalyzed by a single-crystal sheet contributes to improvements in the
surface catalytic ability of La-incorporated alloys [95]. Gd remains as a metallic inclusion when melted
with C14 MH alloys and improves low-temperature performance, but deteriorates HRD, cycle stability,
and charge retention [144]. Instead of using RE, which are nearly insoluble in Laves phase alloys,
MA was used and achieved similar effects of capacity and activation [245]. In addition to adding RE in
elemental form, RE-containing AB5 [246,247] and A2B7 [248] can be used for similar results.

Table 7. Properties of some REs used as additives in AB2 MH alloys.

Properties Y La Ce Pr Nd Sm Gd Yb

Atomic Number 39 57 58 59 60 61 55 70
Price (US$/kg) [249] 35 7 7 85 60 7 55 95

Ionic Radius in Laves (Å) [148] 1.990 3.335 2.017 2.013 2.013 1.990 1.992 1.990
Electronegativity 1.22 1.10 1.12 1.13 1.14 1.17 1.20 1.24

Melting Temperature (◦C) 1522 918 798 931 1021 1072 1313 819
Oxidation potential (V) −2.372 −2.379 −2.335 −2.353 −2.323 −2.304 −2.279 −2.19

Heat of Hydride Formation (kJ·mol H2
−1) [250] −114 −97 −103 −104 −106 −100 −98 −91

6.4. Summary of Modifier Studies

Unlike AB5, AB2 MH alloys are compatible with a remarkable number of elements. The degree
of impact for commonly used elements on MH alloy properties are summarized in Table 8. Proper
selection of elements can be based on the alloy requirements after checking each of the seven rows.
Meanwhile, the pros and cons of each element can be easily evaluated in the corresponding column.

Table 8. Influence of commonly used modifiers to C14 alloy performance. The symbols are ++ (highly
beneficial), + (beneficial), 0 (no significant effect), and − (detrimental). Degree of pulverization is the
combination of actual measurement [88] and estimation from PCT hysteresis and C14 phase lattice
constant ratio a/c. Equilibrium pressure changes are indicated with up or down arrows.

Alloy Requirements Ti Zr V Cr Mn Fe Co Ni Cu Zn Al Si La

H-storage Capacity − ++ + 0 0/+ 0 + 0 0 0 + 0 0
H-diffusibility + − − 0 0 − 0 0 − + + + +

Surface Catalysis − + + − − − 0 ++ − + + + ++
Anti-corrosion + − − ++ − 0 0 ++ 0 0 0 0 0

Equilibrium Pressure ↑↑ ↓↓↓ ↓↓ ↓ ↓ 0 ↑ ↑ 0 0 ↑ 0 0
Anti-pulverization + − 0 − 0 0 0 0 − − + − 0

Cost 0 0 − + ++ ++ − 0 ++ ++ ++ ++ +

7. Stoichiometry

An IMC with a fixed stoichiometry comes with a large negative heat formation [45]. The different
energy levels of anti-site and vacancy defects in a specific IMC may change its stoichiometry
range [251–253]. If the energy for such defects is relatively low, a wide range of compositions
(off-stoichiometry) are expected, among which AB2 Laves phase alloys make up the largest portion in
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IMC [21]. Compositions of a few IMCs based on Group 4 elements (Ti, Zr, and Hf) as A-site atoms
are listed in Table 9 and plotted in Figure 15 as a function of RA/RB. IMCs with a C14 structure
have a wider composition range (more likely to suffer from point defects) and the phase solubility
of IMCs with a C15 structure becomes larger as the radii ratio increases. An AB2 alloy with a B/A
ratio below 2.0 is a hypo-stoichiometric IMC. The reason that more hypo-stoichiometric IMCs tend
to form as the radii ratio increases is that a relatively small B-atom more rapidly forms a double B
in A-site (dumbbell model [254]) and further increases the B/A ratio. The characteristics of a few
off-stoichiometric C14 MH alloys were previously compared [45,255,256] and important results are
summarized in the next three sections.

Table 9. Solubility (range of A-site atom concentration in at %) of Laves phase IMCs (radius from [148]
and solubility from [257]).

IMC Structure RA/RB Solubility (at%)

ZrV2 C15 1.19 33.3
HfV2 C15 1.17 33.5–34.5
TiCr2 C15 1.13 35–37
ZrCr2 C15 1.24 31–36
HfCr2 C15 1.22 33–35
TiMn2 C14 1.13 30–40
ZrMn2 C14 1.24 20.8–40
HfMn2 C14 1.22 25.5–38
TiMn2 C14 1.14 27.5–35.5
ZrMn2 C15 1.26 27.1–34
HfMn2 C15 1.24 32–33.5
TiCo2 C15 1.17 33–33.5
ZrCo2 C15 1.28 27–35
HfCo2 C15 1.26 27–36Batteries 2017, 3, 27  19 of 33 
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7.1. Stoichiometric Alloy

The stoichiometric C14 MH alloys with a B/A ratio close to 2.0 have the highest electrochemical
capacity and surface exchange current, and the smallest PCT hysteresis (least pulverization) [256] and
is the most studied alloy stoichiometry in the field of battery applications.
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7.2. Hypo-Stoichiometry

A C14 alloy with a B/A ratio below 2.0 is a hypo-stoichiometric IMC. The relatively low B/A
ratio promotes the occurrence of AB phase (typically TiNi with a B2 structure) and improves activation
behavior [256]. In a MS + annealing sample, the additional Ti (hypo-stoichiometry) increases both
the capacity and cycle life of the electrode [64]. In a gaseous phase study of a TiCr based C14 alloy,
a hypo-stoichiometry ratio (B/A of 1.8) gave the highest H-storage capacity [211].

7.3. Hyper-Stoichiometry

A hyper-stoichiometric C14 alloy has a B/A ratio higher than 2.0 and shows a high HRD [151,256],
a high open-circuit voltage (from a higher PCT hydrogen equilibrium pressure) [256], and a flat PCT
plateau [256]. The hyper-stoichiometric alloy also shows an improved cycle life, due to increased
mechanical stability during cycling [185,258]. As x increases in a series of hyper-stoichiometric
alloys ABx (x = 2–6), the bcc phase abundance increases, and results in improvements in capacity,
kinetics [259], and cycle stability [260].

8. Discussions

The Ovonic Battery Company (Troy, MI, USA) focused on research about AB2 MH alloys
for Ni/MH battery applications for more than three decades before being acquired by BASF
(Ludwigshafen, Germany) in 2012. Throughout the years, we witnessed changing market demands
and the corresponding reaction from the research communities. Before the successful debut of the
commercialized Ni/MH battery in 1988, two main hurdles of the AB2 MH alloy were slow activation
and poor cycle stability. While the former was addressed by fluorination and hot alkaline baths,
the latter was improved substantially by composition modifications, mainly the introduction of Cr and
consequent bcc secondary phase. The challenge to the first generation AB2-made Ni/MH battery was
the self-discharge and was solved by the combination of V-free alloys and the use of the sulfonated
separator. At that stage, AB2 MH alloys were successfully used in products made by Hitachi-Maxell
(Tokyo, Japan), Gold-peak (Hong Kong, China), and General Motors (Detroit, MI, USA). With the
cheap misch-metal (main raw material for the rival AB5 MH alloy) available from China, AB2 MH
alloys started to phase out from the consumer market at the turn of the century. Later, the upset of RE
prices in 2010 created opportunities for AB2 MH alloys. However, the bar to enter the market has not
been raised in favor of AB2, mostly in the high-rate dischargeability requirement for HEV and power
tools. The superlattice alloy used by FDK (Tokyo, Japan), Panasonic (Osaka, Japan), and Kawasaki
Heavy Industry (Tokyo, Japan) became a strong competitor with a capacity between AB2 and AB5,
but better high-rate performance. Mg, an indispensable element in the superlattice alloy, makes it more
vulnerable to KOH electrolyte attack, but was mitigated using surfactant additives in the negative
electrode paste [44]. The structure of the superlattice allows the removal of Mn and Co from the
composition and improves the charge-retention characteristics tremendously [261]. At the current
stage, AB2 has a hard time competing with AB5 in term of price and superlattice alloys in terms
of performance.

However, new opportunities started to appear when the conventional Ni/MH battery based on
the RE-based AB5 or A2B7 alloy lost the battle against the rival Li-ion technology. New applications
require greater performance improvement in certain areas. For example, a solid-state battery with
a thin solid separator [262] and ultra-high-power application with a very thin separator require a
spherical MH alloy shape, which can be produced using GA techniques. Superlattice alloy with Mg
inside cannot tolerate the Mg-vaporization because of the large surface area of the powder produced
in the GA process, whereas GA with an associated annealing process already been successfully
developed for AB2 MH alloy [62]. The battery/fuel cell combination requires a MH alloy operated at
intermediate temperature range (200–250 ◦C) [263]. The other opportunity is in stationary applications
that require tolerance in the environment of above 50 ◦C [3,4,264]. While the RE-containing AB5 and
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A2B7 MH alloys form an impeccable surface oxide in the high-temperature environment, the transition
metal-based AB2 MH alloys leach out at a higher speed and are totally controllable by the composition
re-adjustment. In the case of the new start-stop automobile application, a low-temperature cranking
power is desperately needed [265]. There are a few elements contributing to the low-temperature
performance of AB2 MH alloys through different mechanisms, for example, Y for surface area increase,
La, Pd and Mo for surface catalytic ability improvement, and Fe for the increase of beneficial TiNi
secondary phase. The pouch cell design (like commercially available Li-ion battery for cell phones) of
Ni/MH battery operating under a flooded electrolyte configuration requires new MH alloys with a
very low plateau pressure and a highly electrochemically catalytic surface [266,267]. The last example
is the need for new high-capacity MH alloys that fully utilize the wide voltage window of the newly
developed ionic liquid electrolyte [268]. The new chemical environment (electrolyte interface) and
lifting of voltage constraint (from competition of hydrogen evolution) present new challenges (i.e.,
opportunities) for the development of new MH alloys. Although the function of each modifying
element in specific areas has been studied and reported in the current work, combinations and the
accompanying synergetic effects among these elements have not been reported. Therefore, a review
like the current work only provides a guideline for future research. Readers are encouraged to use
the results of this study to pursue further performance improvements in C14 Laves phase based
MH alloys.

9. Conclusions

The main advantages of C14 Laves phase based metal hydride alloys are higher capacities and
flexibilities in composition, stoichiometry, and constituent phases, which allow fine tailoring in the
electrochemical performance to meet the demands of different applications. Decades of research in this
area have already solved historical hurdles in C14-based alloys, such as slow activation, low cycle life,
high self-discharge, and poor low-temperature performance. To face the new challenges from future
applications, we have compiled comprehensive comparisons of preparation methods, alloy property
requirements, the pros and cons of each constituting/modifying element, and choice of stoichiometry
in the current study. Based on these previous works, new directions for additional improvement
in the electrochemical performance should focus on the combination of modifier elements with
different functions.
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Abbreviations

The following abbreviations are used in this manuscript:

Ni/MH Nickel/metal hydride
MH Metal hydride
H-storage Hydrogen-strorage
VIM Vacuum induction melting
AM Arc melting
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CC Centrifugal casting
MS Melt spinning
GA Gas atomization
MA Mechannical alloying
PS Plasma spray
SEM Scanning electron microscope
bcc Bady-centered cubic
HRD High-rate dischargeability
M-H metal-hydrogen
RE Rare-earth elements
PCT Pressure-concomposition-temperature
EV Electric vehicle
HEV Hybrid electric vehicle
N/P Negative/Positive
HIA Hydrogen-induced amorphization
IMC Intermettalic compound
TEM Transmission electron microscope
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