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Abstract: The responses of one AB5, two AB2, four A2B7, and one C14-related body-centered-cubic
(BCC) metal hydrides to an alkaline-etch (45% KOH at 110 ◦C for 2 h) were studied by internal
resistance, X-ray diffraction, scanning electron microscope, inductively coupled plasma, and AC
impedance measurements. Results show that while the etched rare earth–based AB5 and A2B7

alloys surfaces are covered with hydroxide/oxide (weight gain), the transition metal–based AB2 and
BCC-C14 alloys surfaces are corroded and leach into electrolyte (weight loss). The C14-predominated
AB2, La-only A2B7, and Sm-based A2B7 showed the most reduction in the internal resistance with
the alkaline-etch process. Etched A2B7 alloys with high La-contents exhibited the lowest internal
resistance and are suggested for use in the high-power application of nickel/metal hydride batteries.

Keywords: metal hydride alloy; nickel metal hydride battery; alkaline bath; high rate performance;
superlattice alloys; surface morphology

1. Introduction

Metal hydride (MH) alloy, or hydrogen storage alloy, is a group of intermetallic alloys (IMCs)
capable of storing hydrogen in the solid form [1]. One of its key applications is the rechargeable
nickel/metal hydride (Ni/MH) battery, which is used widely in consumer electronics, as well as
stationary and transportation energy storage areas. A large variety of IMCs have been used/proposed
as the active materials in the negative electrode of Ni/MH battery, such as A2B [2], AB [3,4], AB2 [5],
AB3 [6], A2B7 [7], A5B19 [8], AB5 [9], body-centered-cubic (BCC) solid solution [10], and their
combinations [11,12]. These IMCs are composed of mostly transition metals (TM), and some may
contain rare-earth (RE) elements. The electrochemical high-rate performances of some of these MH
alloys were compared in 2010 and the RE-based AB5 MH alloy had the best high-rate dischargeability
(HRD) performance [13]. The magnetic susceptibilities of these alloys, and a couple new ones, were
compared in a 2013 article [14]. With several new MH alloys, especially the recently discovered
superlattice A2B7-based ones with improved electrochemical properties, it is important to update the
comparison results.

A few pre-activation processes, such as surface fluorination, alkaline bath, acid etch, mechanical
alloying, etc., were proposed to shorten the activation process and improve the electrochemical
performance of the MH alloys (see a review in [15]). Among these processes, the alkaline bath is
very effective in dissolving the native oxide, so as to form a porous oxide surface with catalytic Ni
clusters imbedded [13,16–22] and to increase the surface reactive area [23]. In the past, we have
used this technique to prepare the alloy for the study of activated surfaces without going through
electrochemical formation cycling [24].
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2. Experimental Set-Up

MH alloys were prepared by either vacuum induction melting (VIM) or arc melting (AM).
Details of the melting process were reported before [25,26]. The main difference between these
two preparation methods is the size of ingot. While the former is usually used in large production
(1–1000 kg), the latter is mostly used in laboratories (5–200 g) [15]. Some alloys went through annealing
either in vacuum or Ar. The obtained ingot was hydrided first, followed by grinding and sifting
into a −200 mesh size powder. To make the electrode, the powder was compacted directly onto a
1 cm × 1 cm expanded Ni substrate without any binder or conductive metal powder. The loading
of powder per electrode ranged from 70 to 100 mg. The KOH etching (activation) experiment
was performed on the electrode assembly in 45 wt % KOH at 110 ◦C for 2 h. After the etching
process, the electrode was pulled out, rinsed by deionized water, dried, and tested. A Suzuki-Shokan
multi-channel pressure-concentration-temperature system (PCT, Suzuki Shokan, Tokyo, Japan) was
used to measure the MH-hydrogen interaction in gaseous phase. PCT measurements at various
temperatures were performed after activation, which consisted of a 2 h thermal cycle between room
temperature and 300 ◦C under 2.5 MPa H2 pressure. A Varian Liberty 100 inductively coupled
plasma optical emission spectrometer (ICP-OES, Agilent Technologies, Santa Clara, CA, USA) was
used to study the chemical composition of the solution after etching. A Philips X'Pert Pro X-ray
diffractometer (XRD, Philips, Amsterdam, The Netherlands) was used to perform the phase analysis,
and a JEOL-JSM6320F scanning electron microscope (SEM, JEOL, Tokyo, Japan) was also used to
investigate the phase distribution and composition.

A 30 wt % KOH electrolyte, a Hg/HgO reference electrode, and a sintered Ni(OH)2/NiOOH
counter electrode were used for the electrochemical testing. The internal resistance measurement was
performed in the following steps:

(1) Charge at 0.1 C and discharge at 0.1 C (to -0.7 V vs. Hg/HgO). Record discharge capacity;
(2) Charge at 0.1 C, discharge 0.1 C to 80% state-of-charge (SOC);
(3) Conduct internal resistance test at 80% SOC (1st internal resistance test):

a. Put in open circuit for 10 min;
b. Discharge at 0.5 C for 10 s;
c. Charge at 0.5 C for 10 s;
d. Put in open circuit for 10 min;
e. Discharge at 2 C for 10 s;
f. Charge at 2 C for 10 s;
g. Put in open circuit for 10 min;
h. Calculate internal resistance.

(4) Charge at 0.1 C back from 80% SOC to 100% SOC;
(5) Conduct 4 more capacity tests at 0.2 C charge rate and 0.1 C discharge rate. Record

discharge capacities;
(6) Repeat step 3 (2nd internal resistance test);
(7) Repeat step 4;
(8) Conduct rate test:

a. Charge at 0.2 C, discharge at 0.1 C;
b. Charge at 0.2 C, discharge at 0.2 C;
c. Charge at 0.2 C, discharge at 0.5 C;
d. Charge at 0.2 C, discharge at 1 C;
e. Charge at 0.2 C, discharge at 2 C;
f. Charge at 0.2 C, discharge at 3 C;
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g. Charge at 0.2 C, discharge at 5 C.

(9) Repeat step 3 (3rd internal resistance test).

A Solartron 1250 Frequency Response Analyzer (Solartron Analytical, Leicester, UK) with a sine
wave amplitude of 10 mV and a frequency range of 0.5 mHz to 10 kHz was used for the alternative
current (AC) impedance measurements.

3. Results and Discussions

3.1. Alloys Selection

Eight MH alloys (A–H) were selected for this study. The composition and preparation method
of each alloy are summarized in Table 1. Details in microstructures of these alloys can be found in
the cited reference at the last column in Table 1. A is the most commonly used RE-based AB5 alloy
in the Ni/MH battery. B and C are TM-based AB2 alloys with dominating C14 and C15 structures,
respectively. D is a Laves-phase related BCC solid solution MH alloy composed of a main BCC phase
and C14 and TiNi secondary phases, and shows a high capacity at a moderate rate that is suitable for
electric vehicle application [12]. Alloys E–H are RE-and Mg-containing A2B7-based superlattice alloys
used mainly in the high-performance consumer Ni/MH batteries [7,27,28]. PCT isotherms measured
at 30 ◦C and room temperature half-cell discharge capacities in the first 10 electrochemical cycles
for eights alloys in this study are compared in Figures 1 and 2, respectively. The capacities of these
alloys are summarized in Table 1. The BCC-C14 alloy (D) has the highest hydrogen-storage capacity
whereas C14 AB2 alloys (B), and superlattice alloys (E, G, and H) are next, followed by the standard
AB5 alloy (A). The half-cell discharge capacity of C15 AB2 alloy (C) is the lowest due to its relatively
high hydrogen equilibrium pressure, which makes it difficult to charge into higher state-of-charge in
the open-air environment. Alloy F has the lowest discharge capacity in the superlattice alloy family
(E–H) because of its high Sm-content. From Figure 2, the ease of activation in order is E, F, G > C, H
> A > D, B. In general, Mg-containing superlattice alloys are easier to activate, and alloys without
La (B, D) take more cycles to reach their maximum capacities. The addition of rare elements to a
TM-based MH alloy to improve the activation behavior is a well-known recipe for the preparation of
electrochemical applications [29–36].
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Figure 1. Pressure-concentration-temperature system (PCT) isotherms measured at 30 ◦C for as-is
alloys (a) A–D and (b) E–H. Open and solid symbols represent the absorption and desorption
curves, respectively.
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Table 1. Preparation and properties of alloys used in this study. Low-rate discharge capacity and
saturated magnetic susceptibility (Ms) are in the units of mAh·g-1 and emu·g-1, respectively. HRDs are
the ratio of capacities between 50 and 4 mA·g-1 for B–D and capacities between 100 and 8 mA·g-1 for
all other alloys.

Alloys System Composition Melting Annealing Capacity HRD MS Reference

A AB5
La10.5 Ce4.3Pr0.5Nd1.4Ni60

Co12.7Mn5.9Al4.7
VIM In

vacuum 331 0.99 0.43 A in [13]

B AB2-C14 Zr21.5Ti12V310 Cr7.5Mn8.1
Co8Ni32.2Sn0.3Al0.4

VIM None 354 0.90 0.04 Mo0 in [37]

C AB2-C15 Zr25Ti6.5V3.9Mn22.2Fe3.8
Ni38Sn0.3La0.3

AM None 307 0.99 0.04 C15 in [38]

D BCC-C14 Zr2.1Ti15.6V44 Cr11.2Mn6.9
Co1.4Ni18.5Al0.3

VIM None 397 0.95 0.39 P17 in [39]

E A2B7 La16.3Mg7Ni65.1 Co11.6 VIM In Ar 361 0.98 0.37 C in [13]
F A2B7 La6Sm13.8Mg3Ni73.8Al3.4 VIM In Ar 320 0.99 0.60 A3 in [40]

G A2B7
La11.3Pr1.7Nd5.1Mg4.5Ni63.6

Co13.6Zr0.2
VIM In Ar 370 0.98 1.19 B in [41]

H A2B7
La3.9Pr7.7Nd7.7Mg3.9Ni68.1

Co4.7Al4
VIM In Ar 354 0.94 0.62 C3 in [42]

3.2. Electrochemical Results

Four electrodes from each alloy went through half-cell electrochemical testing. Examples of
capacities measured at different rates and three internal resistances (R) from alloy A (as-is), alloy B
(as-is and etched), and alloy E (as-is and etched) are plotted in Figures 3 and 4. The voltage dropped
very quickly with the increase in the discharge current, which resulted in a significant decrease in
measured capacity. The etched C14 AB2 alloy (B) shows the highest discharge capacity, up to a 2 C rate.
In the comparison of R, the etched E shows the lowest resistance, and, in general, the HRD capability
is in the order of A2B7 (E) > AB5 (A) > AB2 (B) regardless of being etched. This finding is consistent
with our previous reports [40,43].

The electrochemical testing results are summarized in Table 2. The reported capacity and internal
resistance are highest when obtained with a 0.1 C discharge rate and the lowest value in the three
measurements, respectively. The specific power (P) was estimated by using formula:

P = 2(0.45 − Voc)2/9R (1)

where 0.45 and Voc are the voltage of Ni(OH)2/NiOOH electrode and the open-circuit voltage of the
tested alloy electrode vs. Hg/HgO reference electrode, respectively. The estimated specific power is
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inversely proportional to the measured internal resistance as shown in Figure 5. From Table 2, it is
obvious that KOH-etching (activation) is very effective to reduce the internal resistance in C15 AB2 (C,
-25%) and Sm-based A2B7 (F, -19%) alloys. The reduction in the internal resistance is less significant
in La-based A2B7 (E, -12%), C14 AB2 (B, -9%) and Mm-based Al-free A2B7 (G, -8%) alloys. Etching
in KOH (activation) even increases the internal resistance of AB5 (A, +36%) and BCC-C14 (D, +30%)
alloys by large percentages. Three A2B7 alloys (E, F, and G) show lower R than that of the standard
AB5 (A) after KOH-etching. The as-prepared (no etch) E and G show even lower R than that from A
and have been used in the high-power design of Ni/MH batteries [41,44]. Overall, G shows the lowest
R and the highest estimated specific power of 390 W·kg-1, which is considerably higher than that from
the standard A (317 W·kg-1).
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Table 2. Electrochemical discharge capacity measured at 50 mA·g-1, surface charge-transfer resistance
(R) from AC impedance measurement, and specific power density.

Alloys Treatment Capacity (mAh·g-1) Resistance (Ω·g) Specific Power (W·kg-1)

A
None 321 1.28 317

KOH-etch 321 1.74 238

B
None 360 1.88* 228*

KOH-etch 352 1.71* 261*

C
None 290 2.25* 192*

KOH-etch 291 1.68* 256*

D
None 390 1.80 235

KOH-etch 349 2.34 181

E
None 356 1.22* 334*

KOH-etch 358 1.07* 388*

F
None 300 1.42* 287*

KOH-etch 304 1.15* 355*

G
None 353 1.13* 347*

KOH-etch 353 1.04* 390*

H
None 345 1.86 218

KOH-etch 320 2.04 202

Note: * The reduced R from the KOH-etch treatment.
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The HRD capability of MH alloy was associated with the metallic nickel clusters embedded in
its surface oxide after activation [45,46]. The saturated magnetic susceptibility (MS) obtained from
the magnetic susceptibility measurement shows clear correlation to the HRD of a series of A2B7 MH
alloys [13]. However, we also reported that some MH alloys with HRD were more related to the
structure of the metal/oxide interface [47,48]. Therefore, it is interesting to compare the internal
resistance of the etched alloy with the MS values reported in the literature (Table 1). The resulting
plot is shown in Figure 7 (red dots) and does not reveal any clear correlation. The difference in R
before and after etching is also plotted in the same figure (triangles) and no clear trend can be seen.
We conclude that an MS estimation of surface catalytic ability can be used only in the comparison of
a series of MH alloys with a similar composition/structure and cannot be elaborated freely among
various alloy systems.Batteries 2017, 3, 30 7 of 13 
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3.3. Microsnalysis of the Activated Surface

SEM micrographs taken from the surfaces of etched alloys are shown in Figure 8. While the
surfaces of RE-based AB5 (A) and A2B7 (E–H) alloys are covered with RE(OH)3 needles, those from
TM-based AB2 (B and C) and BCC-C14 (D) are modified by patches of ZrO2. Needles from La(OH)3

are smaller compared to hydroxides from other RE elements [24]. The microstructures of RE- and
TM-based MH alloys were studied by transmission electron microscope before and can be summarized
as a 50 nm buffer oxide (amorphous) and a 100 nm surface oxide with Ni-inclusion with RE(OH)3

needles on top in the former and a 100 nm buffer oxide layer and a 200 nm surface oxide with
Ni-inclusion with patches of ZrO2 on top in the latter [24]. While the RE in AB5 and A2B7 alloys
formed an impeccable passive surface oxide when reacting with hot KOH, the TM just leaches out into
electrolyte. The weight comparison of three B (AB2) and three E (A2B7) electrodes before and after
KOH-etching (dried in vacuum over for 24 h) were conducted and results are listed in Table 3 and
plotted in Figure 9. The average weight loss (gain) for B and E (MH powder only) are −2.2% and
+1.0%. The leached-out species were further analyzed by examining the composition of the alkaline
solution after the etching experiment with ICP and results are summarized in Table 4. In the solutions
with RE-based alloys, only Al (A, F, and H) and a very small amount of Mg (E, F, and G) are detected.
In the TM-based alloys (B–D), larger concentrations of Ti, V, and Zr are found. The Ni-concentrations
in the solutions from TM-based alloys are much higher than those from the RE-based one, while the
former have smaller Ni-content in their compositions. This is additional evidence showing that when
the TM-based alloys were attached by hot KOH they went through a preferential leach-out and the
RE-based alloys formed a passive hydroxide layer under the same situation.
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To confirm the results from SEM and ICP analysis, XRD was performed, and the resulting
patterns obtained before and after KOH-etch for each alloy in this study are plotted in Figure 10.
All RE-based MH alloys (A, E–H) show peaks of RE(OH)3 after etching. Only etched B shows ZrO2

phase, and both AB2 alloys (B and C) contain metallic Ni as a product of corrosion after etching.
D exhibited a small portion of partially hydride (α-phase) formed by storing the hydrogen generated
from the high level of oxidation of TM (mainly V [11]). The metal-hydrogen bond of the product from
the initial hydrogenation is very strong, as seen from the large portion of low-pressure irreversible
hydrogen storage in D (PCT in Figure 1). The XRD analysis results indicate that the leaching-out
(corrosion) of the alloy surface by hot KOH is in the order of D > C > B > the rest.Batteries 2017, 3, 30 8 of 13 
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Table 3. Measurement of weight change before and after KOH-etch for A and B. All numbers are
in mg.

Sample # Substrate Weight Electrode Wright Before Electrode Weight After Weight Difference

B 1 192.8 262.3 260.8 −1.5
B 2 182.7 257.4 255.7 −1.7
B 3 178.4 252.0 250.5 −1.5
E 1 199.5 279.6 280.3 0.7
E 2 181.3 278.7 279.8 1.1
E 3 186.4 289.0 290.1 1.1
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Figure 10. X-ray diffractometer (XRD) patterns using Cu-Kα as the radiation source for alloys (a) A, B,
(b) C, D, (c) E, F and (d) G, H before and after KOH-etching.
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Table 4. ICP results (in unit of ppm) from the solutions after etching experiment. N.D. and LLD denote
non-detectable (below LLD) and lowest limit of detection, respectively.

Alloy A B C D E F G H LLD

Al 58 1.6 N.D. 29 N.D. 78 N.D. 20 0.012
Co N.D. 0.1 N.D. 1.0 N.D. N.D. 1.2 N.D. 0.004
Cr N.D. 4.3 N.D. 48 N.D. N.D. N.D. N.D. 0.054
Fe N.D. N.D. 1.0 N.D. N.D. N.D. N.D. N.D. 0.002
Mg N.D. N.D. N.D. N.D. 0.05 0.3 0.5 N.D. 0.001
Mn N.D. 2.0 0.1 8.0 N.D. N.D. N.D. N.D. 0.001
Ni N.D. 6.0 0.3 5.0 N.D. N.D. N.D. N.D. 0.001
Ti N.D. 150 7 416 N.D. N.D. N.D. N.D. 0.004
V N.D. 125 92 988 N.D. N.D. N.D. N.D. 0.013
Zr N.D. 495 518 309 N.D. N.D. N.D. N.D. 0.002

4. Conclusions

Combining the electrochemical testing results and microstructure analysis, we have the following
findings: The improvement in the high-rate capability (reduction in R) by KOH-etch is the most
prominent in C15 AB2 (C) with a small La-content, followed by two A2B7 alloys (E and F) with Mg,
and then C14 AB2 (A) and an A2B7 with Mg and no Al (G). The KOH-etch deteriorates the high-rate
performance (increase in R) in the standard Mg-free AB5 (A) and V-rich BCC-C14 (D) alloys, whereas
Mg-content in A2B7 MH alloys responds well with the KOH-etch and La also helps the decrease in
surface charge-transfer resistance by etching. BCC phase in a multiple phase alloy is more robust
against the KOH corrosion [49] and is inert in the electrochemical environment [50–52]. Etching at a
high temperature will increase the density of BCC phase on the surface and impede the electrochemical
reaction, which explains the severe degradation in high-power performance of alloy D after KOH-etch.
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Abbreviations

The following abbreviations are used in this manuscript:

MH Metal hydride
IMC Intermetallic compound
Ni/MH Nickel/metal hydride
BCC Body-centered-cubic
TM Transition metal
RE Rare earth
HRD High-rate dischargeability
VIM Vacuum induction melting
AM Arc melting
PCT Pressure–concentration–temperature

ICP-OES
Inductively coupled plasma-optical emission
spectrometer

XRD X-ray diffractometer
SEM Scanning electron microscope
SOC State of charge
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MS Saturated magnetic susceptibility
AC Alternative current
R Internal resistance
P Specific power
Voc Open-circuit voltage
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