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Abstract: Prognosis and remaining useful life (RUL) estimation of components and systems (C&S)
are vital for intelligent asset-integrity management. The implementation of the traditional multi-level
particle filter (TRMPF) has improved prognosis when compared with the one-step traditional particle
filter that depended on the first-order state equation. However, despite this improvement, the need to
enhance the accuracy of fault prognosis, diagnosis and detection cannot be overemphasized. To this
end, an optimal multi-level particle filter (OPMPF) algorithm that combines genetic algorithm (GA)
optimization and multi-level particle filter (MPF) techniques is used to predict the RUL of the C&S
in order to enhance the accuracy of the estimation at different forms of deterioration in operation.
A 9-fold cross-validation ensemble MPF that utilized lithium-ion (Li+) batteries’ charge capacity
decay to test the developed OPMPF algorithm showed an improvement of over 200% in the estimated
RUL when compared with the TRMPF estimation.

Keywords: end-of-life; genetic algorithm; lithium-ion battery; multi-level particle filter; prognosis;
remaining useful life

1. Introduction

Since the components and systems (C&S) of microelectronics and other complex electromechanical
systems degrade over the period of operation, it is important that the trend of the deterioration is
understood to enhance maintenance management, forestall downtime and optimize operating cost.
Different techniques that include data-driven prognosis, physics-of-failure modeling and hybrid
prognosis that combines both data-driven and physics-of-failure methodologies have been used for
the integrity management of C&S of devices [1–5].

The abundance of condition-monitored data from numerous complex systems have unfortunately
not translated into enhanced fault diagnosis, detection and identification, as poor prognosis, resulting
from unoptimized performance characteristics of the C&S, have culminated in increased costs due to
unwarranted failures. To this end, it is important to develop prognostics architecture that will ensure
an increased level of accuracy for the remaining useful life (RUL) prediction of C&S to improve fault
detection and identification.

Li+ batteries capacity fade occurs during cycling due to factors that include the unwarranted
reactions that occur in the system resulting in volume change [6]. The overcharging and over discharging
of the battery results in electrolyte decomposition, passive film formation, active material dissolution,
mechanical degradation, lithium metal plating and corrosion [7,8]. Changes in electrode and electrolyte
interfaces, which is the result of the depletion of the active compositions of the active materials used for
their manufacture, cause a solid electrolyte interface that forms on the surface of the graphite materials [8].
This interface contributes to the capacity fade of the Li+ battery due to impedance rise at the anode,
corrosion of the lithium in the active carbon, loss of mobile Li+ and contact loss.
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Although many researchers [1–5,9] have used numerous techniques such as limit and trend
checking, reconstructed phase planes and regression curves for fault detection, diagnosis and prognosis,
the need to reduce error margins [10] in prognosis have made it imperative to keep searching for new
techniques. Hence, other researchers have implemented probabilistic estimation techniques [10–12],
physics-of-failure model-infused statistical techniques [13] and electrical signature analysis [14].
Similarly, the implementation of a hidden Markov model and semi-Markov model for prognostics
and diagnostics has also been popularized, due to the ease of applying the time-series analysis,
which gives information about the RUL of the C&S [15–18]. Again, there has also been increased
application of artificial intelligence procedures with machine learning in prognostics [19–21], due to
the convenience of developing algorithms for learning non-linear multivariate relationships of C&S
parameters. This area has been one of the core focus of researchers who have incorporated different
forms of particle filter (PF) and genetic algorithm (GA) techniques into the various optimization
frameworks to enhance prognosis.

Jiang et al. [22] implemented a multi-level particle filter (MPF) using least square support vector
regression (LSSVR) and GA to optimize fault prognosis of electronic devices. The study incorporated
multi-level state equations into a PF and used GA to determine the optimal values of the MPF. The results
of the study showed that the LSSVR-optimized MPF produced more accurate RUL estimations when
compared with the traditional on-step-before state PF technique. Despite the improved RUL estimation in
the procedure used by these authors, the implementation of the MPF with the same parametric values in
the optimization of the MPF raises a question about the practical applications of the results, since the decay
pattern of C&S will be distinctive in practice. The work of Sbarufatti et al. [23] used online adaptively
trained particle filter with a radial basis function (RBF) neural network for the prognostics of Li+ batteries’
charge capacity decay. Although the results of the study indicated that the end-of-life discharge of the
batteries was more accurately predicted with the algorithm than the traditional PF, the fact that MPF
has shown improved estimations accuracy than the traditional PF [22,24] makes it pertinent to use the
technique for enhancing battery charge capacity estimation. Similarly, Li et al. [25] showed that an
adaptive order PF made a better prediction of the RUL of an aviation piston pump compared with the
physics-of-failure modeling technique. This data-driven procedure showed the dynamic attribute of
real-time updating of the status of the aviation piston pump by fusing new observations to the current
model and using Monte Carlo simulation for estimating the posterior distributions. On the other hand,
Orchard et al. [26] used PF for the state-of-charge prognosis and risk of failure measurement of Li+

batteries and computed the confidence interval of the prediction algorithm by using the time of failure
and the standard deviation of the RUL. Due to the enhanced time of estimation of the RUL and the
confidence intervals, the algorithm can be integrated into a real-time prognostic and risk-management
monitoring system. Again, Hu et al. [27] showed that Li+ batteries state-of-charge, and the RUL can be
determined with Gauss–Hermite PF because of the computational advantage of not requiring a Jacobian
matrix, which makes the extended Kalman filter require much computational time.

In this study, the advantages of the MPF over the traditional PF will be explored in a prognostic
and RUL estimation of C&S by implementing a GA optimization framework that will enhance
the MPF estimations for different GA generations. A multiphase sigmoidal model (MPSM) will
be used to describe the decay pattern of the Li+ batteries’ charge capacities that will be used to
exemplify the working of the developed algorithm. Using MPSM to extract the decay pattern of the
Li+ batteries’ charge capacities will help to show the uniqueness in the GA estimated charge capacities
at each generation. Hence, this gives more credence to the optimal multi-level particle filter (OPMPF)
estimation results given that the MPF will be implemented with distinct charge decay information that
depicts the original experimental results. This procedure will be in sharp contrast to the technique of
using similar parametric values to determine the OPMPF by other researchers [22] who embarked on
a similar study. The study will also compare the traditional multi-level particle filter (TRMPF) with
the OPMPF that implements optimization of the charge capacities at the GA generations, prior to the
establishment of the optimal generation that will give the best estimation of the charge capacities.
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The RUL will be estimated with the optimal MPF charge capacities in consideration of the different
training/testing dataset partitions (TTDP) in a 9-fold cross-validation ensemble MPF architecture.

To further enhance the estimation of the retained life of C&S, and improve the prognostics,
diagnostics and fault estimation, an algorithm that implements MPF with GA optimization is
developed in this study. The use of MPF and GA is warranted by the effectiveness of the techniques
in solving numerous computational modelling problems and the ease of implementation in complex
systems analysis due to the robustness in the management of unknown data. The objective of this study
is to develop a technique for prognostics health monitoring and estimation of the RUL of C&S, and test
the developed algorithm with Li+ batteries’ charge capacity fade over the cycle time. This paper
discusses the PF concept and the procedures for using MPF for future estimation of C&S states in
Section 2. Section 3 describes the framework for OPMPF whereas Section 4 explains the working of the
developed algorithm based on lithium-ion battery capacity fade. The new algorithm for OPMPF was
also compared with the TRMPF in Section 4 while results and discussion are discussed in Sections 5
and 6 was used for concluding the findings of the study.

2. Particle Filter Concept

The particle filter, which was introduced for optimal solutions of non-linear and non-Gaussian
problems, has a great advantage of non-reliance on the local linearization technique for the computation
process, which can be time-consuming with an increasing number of particles [28]. As a special form
of generic sequential Monte Carlo simulation algorithm, it involves a state-space discretization that
changes with time, due to the influence of measurement noises at the time steps [29]. Therefore, for a
discrete state model, the state of the system will change according to Equation (1):{

xk = fk(xk−1, νk−1)

zk = hk(xk, Υk−1)
(1)

where, xk, νk−1, fk, zk, hk, and Υk represent the vector of the system state at time k, the state noise vector
at time k − 1, a non-linear, and time-dependent function of the state vector, noisy measurement of xk,
a nonlinear, and time-dependent function that describes the noise measurement process, and noise
measurement vector, respectively.

The optimal solution of a particle filter problem involves the estimation of the system state (z1:k) at
time 1, 2, 3, . . . , k − 1, k using a Bayesian approach that has predicting steps requiring the probability
distribution function p(x0:k|z1:k−1) to be computed recursively at the time k − 1 as per Equation (2):

p(x0:k|z1:k−1) =
∫

p(x0:k|xk−1)p(xk−1|z1:k−1)dxk−1 (2)

Generally, a system with probability distribution p (x0:k−1|z1:k−1), will form the prior distribution
for a future state p(x0:k|z1:k−1) if the future state depends on the discrete state function shown in
Equation (1) [29]. In the same vein, p(x0:k|z1:k−1) will be the prior distribution for a future state
p(x0:k|z1:k) if the system follows the condition of the system state vector xk. Hereafter, the updating
step of the Bayesian concept depends on the prior probability distribution, and the probability density
function of the observed new measurements obtained from the system at the time k, to determine the
posterior distribution as per Equation (3) [29,30]:{

p(x0:k|z1:k) ∝ p(zk|x0:k)p(x0:k|z1:k−1)

p(x0:k|z1:k) =
p(zk |x0:k)p(x0:k |z1:k−1)

p(x0:k |z1:k−1)

(3)

The complex nature of Equation (3) results in the use of Monte Carlo estimation for the solution.
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2.1. Sequential Important Sampling (SIS)

This basic Monte Carlo estimation technique has found a useful application in the optimal solution
of PF problems because of the challenges of obtaining analytical solutions of the posterior distributions
of the system state vector [29,31]. Sequential important sampling (SIS) uses weighted sets of samples
for the recursive approximation of the values of the posterior distribution p(xk|z1:k) at a time k from
the prior distribution p(xk−1|z1:k−1) at a time k − 1, by using the target distribution [p(x)] samples
drawn from a proposed distribution [q(x)]. This is done in such a way that the future sample µ is
a representative of the non-linear function of the original sample f(x) and can be represented with
Equation (4) [31]:

µ = E( f (x)) =
∫

f (x)p(x)dx (4)

For f(x)p(x) 6= 0, q(x) ≥ 0 and E|.| represents the expectation of q(x), Equation (4) can be rewritten
as per Equation (5) [28]: {

µ = E|w(x) f (x)|
w(x) = p(x)

q(x)
(5)

If the sample is identically and independently drawn from a distribution of q(x), it can be used to
estimate p(x) once the weighted element (important weight) w(x) in Equation (5) is properly sorted
out [29,31]. Henceforward, for some random samples drawn from q(x), the future sample µ(ns) can be
estimated with Equation (6):

µ(ns) =
ns

∑
i=1

w
(

xi) f
(

xi)
w
(
xi
) (6)

The value of the future distribution µ(ns) obtained with ns samples tends to µ at infinity [32]
and solving Monte Carlo simulation problems requires an enormous generation of many variables
over a given time k. However, the target distribution p(x) induces a chain-looking decomposition of
x = (x1, . . . , xd) in a state-space model, and that can be represented by Equation (7) [33]: p(x) = p(x1)

d
∏

k=2
p(x0:k|z1:k)

f or [x1, x2, . . . , xd], 1 ≤ k ≤ d
(7)

The proposed distribution q(x) unto the time (1 ≤ k ≤ d) can equally be written in the form
of Equation (7) as per Equation (8), and the important weight w(x) shown in Equation (5) can be
represented by Equation (9) [31]:  q(x) = q(x1)

d
∏

k=2
q(x0:k|z1:k)

f or [x1, x2, . . . , xd], 1 ≤ k ≤ d
(8)

wi
k = wi

k−1
p
(
xi

0:k

∣∣zi
1:k
)

q
(
xi

0:k

∣∣zi
1:k
) (9)

2.2. Resampling Technique

Sequential important sampling has a few issues such as degeneracy, which is a situation where few
particles have significant weights whereas others have smaller weights, and sample impoverishment,
which occurs due to the redrawing of particles with large important weights many times in a simulation
experiment [29]. Minimization of the variance of the important weight via resampling has been
adopted to solve the problem of degeneracy whereas the introduction of an auxiliary random variable
to the sample has acted as marginal distribution to the target distribution and helped to increase the
variability of the important weight [28,34].
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2.3. Multi-Level Particle Filter (MPF)

For a state-space model that has multiple levels, the system state of the PF can be represented
using the original PF formulation in Equation (1) as per Equation (10) with τ representing the higher
levels [23,24]:

xk = fk(xk−1, xk−2, . . . , xk−τ , νk−1) (10)

By applying the SIS theory that requires the particles to be drawn from the important density
q(x0:k|z1:k) and using the conditional independency property, the relationship between particle filter
and MPF can be obtained by substituting the vector of the system state shown in Equation (1) with
that shown in Equation (10), and updating the important weight shown in Equation (9) will result in
the new MPF important weight as per Equation (11) [22,24]:

wi
k ∝

p(zk|xi
k)p(xi

k|xi
k−τ:k−1)p(xi

0:k−1|z1:k−1)
q(xi

k|xi
1:k−τ:k−1)q(xi

0:k−1|z1:k−1)

wi
k = wi

k−1
p(zk|xi

k)p(xi
k|xi

k−τ:k−1)
q(xi

k|xi
1:k−τ:k−1,zk)

(11)

In this study, the implementation of the MPF involves following the procedures shown below:

- for i = 1, 2, 3, . . . , ns samples;

- x(i)k ∼ q
(

xi
k

∣∣∣xi
k−τ:k−1,zk

)
;

- then set x(i)k ,
(

x(i)k , x(i)k−τ:k−1

)
;

- estimate the importance weights using Equation (11) and normalize them;

- the normalized important weights w(i)
k = w(i)

k

[
∑ns

i=1 w(i)
k

]−1
;

- randomly select a variable θ with values between 0 and 1;

- find particles from x(i)k such that θ ≥ w(i)
k ; NB: normalized weight is used;

- the estimated particle: x(est)
k = x(1)k−τ:k−1;

- end.

3. Framework for Optimal Multi-Level Particle Filter (OPMPF) Estimation

Despite the ease of implementing a PF and the possibilities of obtaining improved results with MPF
as exemplified with the works of different authors [22,24,35], there is also room for improvement. This is
the reason why it is important to improve the results that are obtained from the MPF via an optimization
framework, which can be provided by the GA via evolutionary theory-based new estimations.

Genetic Algorithm (GA) for OPMPF Estimation

GA is an evolutionary theory technique that employs natural evolution principles to find solutions to
natural problems using chromosomes, which represent individual solutions to problems [36,37]. GA has
found useful applications in many industrial problems and has been used by numerous authors [38–43] in
literature for numerous optimization problems; hence, interested readers could consult the references for
more insight on the topic. In GA, the arrangement of the discrete constituents of the chromosomes known
as genes, give them their unique characteristics; hence, the need for selection, crossover, and mutation
in GA to develop new traits of emerging individuals in the solutions of real-world problems. A binary
(“1” & “0”) encoding of the chromosomes was used in this work given the successful implementation of
the technique by many researchers [36,37]. The process of natural selection in GA requires the picking of
the best genes of the chromosomes involved in the evolutionary process and combining them according to
a certain proportion (crossover rate). These genes can also be flipped in some special instances (mutation)
due to modifications caused by their specific adaptations and environmental constraints. The processes of
chromosome selection, gene crossover and mutation are shown in Figure 1.
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experimental results, using error estimation standards. 

Figure 1. Chromosomes, genetic arrangement, selection, crossover and mutation procedures in the
genetic algorithm (GA): PA and PB represent original parents’ chromosomes; OA and OB are offspring
from the parents; OAM and OBM are offspring with mutated genes.

For the GA to be used for solving optimization problems, many chromosomes are randomly
generated from the known parametric values that represent the original or known characteristics of
the variable(s) of interest, and two parents (PA and PB), which are the best fit amongst the populations,
are selected. The combination of the genes of these parents through a process known as crossover requires
the swapping of the genes to form new offspring (OA and OB). The crossover normally occurs at a rate
that is sufficient to allow for evolution to occur and can range from 50% to 85% [37]. Since genetic traits
can be influenced by environmental conditions, and the passage of time in the evolutionary process,
the genes in the chromosomes sometimes develop some new adaptive features via the process of mutation.
This procedure (mutation) results in the flipping of the genes from “1” to “0” or vice versa, as shown
in OAM and OBM. Considering the influence of time on evolutionary changes, it is possible that the
near-ideal characteristics of the chromosomes could be achieved after many generations, hence, helping
in the optimization of a given real-life problem. The procedure for using GA to estimate the evolution of
C&S characteristics over time is shown in Figure 2. To determine the generation of the GA that will give
the OPMPF solution, the estimated values at the generations are subjected to MPF and the best fit result
determined by comparison with the original experimental results, using error estimation standards.
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4. Illustrative Case Study of Lithium-Ion Battery Charge Capacity Decay

To illustrate the application of GA in OPMPF estimation, and the determination of the RUL of
C&S, the charge capacity fade of lithium-ion batteries was used. Three lithium ion (Li+) batteries
designated as C#1, C#2 and C#3 were obtained from the database of the Centre for Advanced Lifecycle
Engineering (CALCE) of Maryland University [44,45]. The batteries were tested at room temperature
using an Airbin BT 2000 battery-testing system with the initial manufacturer-rated capacity of 1.35 Ah.
This lithium cobalt oxide (LiCoO2) cathode battery underwent constant charging at the rate of 0.5 C to
a voltage of 4.2 V, which was constantly maintained until the current got to 0.05 A. The discharge of
the battery also followed the same procedure with a constant discharge current of 0.5 C from 4.2 V to a
cutoff voltage of 2.7 V. The estimated charge capacities of the batteries from the experimental results is
shown in Figure 3.

4.1. Lithium-Ion Battery Remaining Useful Life (RUL) Estimation

It is very important to note that the TRMPF implemented the MPF procedure for the Li+ batteries’
charge capacities with the original experimental data, whereas GA optimization of the charge capacities
at different generations was done prior to MPF in OPMPF estimation. For effective prognosis and RUL
estimation with MPF, GA was introduced to determine the optimal generation of the battery charge
capacity that will produce the best fit result when compared with the experimental data. To this end,
to determine the OPMPF of the Li+ battery charge capacity, GA was used to estimate the evolutionary
charge capacities of the batteries at the charging cycles for different generations, and the charge
capacities at the generations were subjected to MPF following the procedures described in Section 2.3.
The framework used for TRMPF and OPMPF is shown in Figure 4.Batteries 2018, 4, x FOR PEER REVIEW  8 of 18 
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In this study, 2000 random uniform values of the charge capacities of the Li+ batteries were
generated using the minimum and maximum values of the experimental data of the charge capacities,
for each of the charging cycles. This count of the random numbers was used after several trials because
it provided the adequate randomization for selecting the values that best fit the charge capacities of
the batteries for each of the charging cycles.

For an experimental Li+ battery dataset given by Q(exp)(k) = {Q(exp)(ki), Q(exp)(k2), . . . , Q(exp)(kns)}
obtained at a given experimental charging cycle time ki = {k1, k2, . . . , kns}, the objective functions {f 1,
f 2, . . . , fns} of the GA is to obtain the optimal values of the charge capacities for each charging cycle.
This was determined using the expression shown in Equation (12):

Obj( f unction) = min



f1 =
M
∑

i=1

∣∣∣Q(exp)(k1)−Q(sim)
i (k1)

∣∣∣
f2 =

M
∑

i=1

∣∣∣Q(exp)(k2)−Q(sim)
i (k2)

∣∣∣
...

fns =
M
∑

i=1

∣∣∣Q(exp)(kn)−Q(sim)
i (kns)

∣∣∣
(12)

Here, M represents the number of the randomly generated initial population of the charge
capacities of the battery, Q(exp)(k1), Q(exp)(k2), . . . , Q(exp)(kns) represents the experimental charge
capacities of the battery at the different charging cycle, Q(sim)(k1), Q(sim)(k2), . . . , Q(sim)(kns)
represents the simulated value of the charge capacities at the charging cycles, and ns represents
the number of charging cycles from which the charge capacities were measured in the
charging/discharging experiment.

The optimal solutions obtained at each of the charge capacities helps to select the two parents
for crossing. Although several crossover rates could be used as stated previously, 0.70 was adopted
because it gave reasonable estimations, and the mutation rate of 0.01 was applied to the evolutionary
process. Some researchers have used mutation rates that were as high as 0.2 because of the need to give
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significant room for evolution, and to prevent chromosomes from being similar [37]. Unfortunately,
high values of the mutation rate could result in the introduction of new genetic characteristics that may
significantly alter the original traits of the chromosomes, and then result in an excessive evolutionary
variation [36]. The crossed chromosomes from the parents result in two offspring with one of them
most fitted to the original chromosomes of the experimental battery charge capacity. This offspring
is taken as the expected evolutionary generated battery charge capacity at that generation and the
charging cycle. To preserve the genetic traits of original chromosomes, the two offspring are used for
randomly generating the new population that is used for selecting the next fitted offspring for the
succeeding generation. This procedure continues until the expected number of generations of interest
is reached.

The optimization for obtaining the OPMPF solution was formulated according to the objective
function shown in Equation (13):

obj ( f unction) =



min fR

(
Q(exp)

i , Q(g)
ij

)
fR =

ng

∑
j=1

ns
∑

i=1

[
Q(exp)

i −Q(g)
ij

Q(exp)
i

]2

∗ 100

Q(g)
ij =


Q(g)

(1,1) · · · Q(g)
(1,i)

...
. . .

...

Q(g)
(j,1) . . . Q(g)

(j,i)


i = 1, 2, . . . , ns

j = 1, 2, . . . , ng

(13)

Here, Q(exp) is the experimental data of the charge capacities that is expressed as Q(exp) = {Q(exp)(k1),
Q(exp) (k2), . . . , Q(exp)(kns)}and k1, k2, . . . , kns are the charge cycles at which the charge capacities were
obtained, Q(g) represents the charge capacity obtained at the GA generations, ns represents the number
of samples of the experimental data, and ng represents the number of generations of the GA under
consideration. For this study, the algorithm has been used to obtain 20 generations of the battery
charge capacities, which were further used to get the OPMPF by determining the generation with the
least root mean square percentage error (RMSPE) after MPF at the various TTDP.

4.2. Decay Trend of GA-Estimated Lithium-Ion Battery Charge Capacity

Before the implementation of MPF, the decay pattern of the GA-estimated battery charge capacities
at the generations was determined. This was done with a MPSM that represents a confined exponential
decay model shown in Equation (14) because the battery charge capacities decay follows a sigmoidal
pattern [27,45,46]:

Q(k) = P1e(−r1k) + P2e(−r2k) (14)

Here, P1, r1, P2, r2 are model parameters that will be estimated with the battery charge capacities
(Q) and k represent the charging cycle.

The model equation is vital for determining the system state equation of the GA obtained charge
capacities and gives an initial working guide for estimating the measurement noise in the MPF.
The prediction errors of the MPSM, which were determined as the difference between the MPSM and
GA-estimated charge capacities at the generations, were used to compute the measurement noises in
the MPF. After different trials of various values of the mean absolute errors (MAEs) in the MPF, the best
estimates for the measurement noises were obtained as 35% of the MAE for batteries C#1, and C#2,
and 50% for battery C#3. This variation in the estimated measurement noises of the batteries could be
attributed to the process of the genes’ recombination in the evolution processes at the GA generations.
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4.3. Lithium-Ion Battery RUL Estimation

The RUL of the batteries were determined at 80% end-of-life (EOL) threshold by estimating the
time it takes to have the initial charge capacity of the batteries depleted to 80% for the various TTDP,
using a 9-fold cross-validation ensemble (Figure 5) of the TRMPF and OPMPF. The average of the
RUL estimation at the TTDP formed the expected cumulative RUL (RULav) of the batteries as per
Equation (15). The fitness of the cross-validation ensemble of the TRMPF and OPMPF were also
determined using RMSPE as per Equation (16), and the average RMSPE (RMSPEav) was computed
with Equation (17):

RULav(k) =
RUL1(k) + RUL2(k) + . . . + RULncv(k)

ncv
=

1
ncv

ncv

∑
i=1

RULi(k) (15)

RMSPE =

√√√√√ 1
ns

ns

∑
i=1

[
Q(exp)

i −Q(mp f )
i

Q(exp)
i

]2

(16)

RMSPEav =
RMSPE1 + RMSPE2 + . . . + RMSPEncv

ncv
=

1
ncv

ncv

∑
i=1

RMSPEi (17)

Here, Q(mpf), Q(exp), ncv and ns represent TRMPF or OPMPF estimated charge capacities,
experimentally determined charge capacity, number of the TTDP and the number of tested samples in
the computation, respectively.Batteries 2018, 4, x FOR PEER REVIEW  11 of 18 
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5. Results and Discussion

The results obtained from the GA of the three Li+ battery charge capacities for some of the GA
generations for the 80% training and 20% testing dataset partition (80:20 TTDP) is shown in Figure 6.
The difference between the GA estimations of the charge capacities at the various generations and
the experimental results of the datasets were determined with mean absolute error (MAE) and mean
absolute percentage error (MAPE), and are shown in Table 1. The small difference between the GA
values of the charge capacities and the original experimental results (<1.2%) is a good indication of
the high precision of the study technique. Lithium-ion battery C#3 charge capacities were determined
with the highest accuracy level with MAPE of between 0.79% and 0.85% followed by battery C#1 with
MAPE of 1.02% to 1.08%, whereas battery C#2 has a MAPE of between 1.09% to 1.17%.
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Table 1. Summary of the difference between the GA estimated charge capacities and the experimental
results as determined with the mean absolute error (MAE) and mean absolute percentage error (MAPE)
at the 80:20 TTDP.

Genetic Algorithm
Generations

Battery C#1 Battery C#2 Battery C#3

MAE MAPE (%) MAE MAPE (%) MAE MAPE (%)

1 0.012542 1.0262 0.014126 1.1692 0.009827 0.7885
2 0.012780 1.0494 0.013663 1.1326 0.009964 0.8084
3 0.012692 1.0426 0.013521 1.1211 0.010006 0.8123
4 0.012692 1.0426 0.013590 1.1267 0.009875 0.8022
5 0.012693 1.0427 0.013614 1.1290 0.009932 0.8066
6 0.012472 1.0240 0.013190 1.0919 0.010561 0.8568
7 0.012583 1.0327 0.013432 1.1102 0.010215 0.8281
8 0.012591 1.0334 0.013410 1.1083 0.010224 0.8287
9 0.012512 1.0268 0.013429 1.1091 0.010210 0.8275

10 0.012539 1.0287 0.013446 1.1114 0.010172 0.8243
11 0.012437 1.0201 0.013350 1.1032 0.010081 0.8158
12 0.012690 1.0398 0.013484 1.1112 0.009742 0.7879
13 0.012690 1.0398 0.013478 1.1107 0.009742 0.7879
14 0.012648 1.0357 0.013847 1.1398 0.009795 0.7907
15 0.012585 1.0306 0.013723 1.1292 0.009771 0.7888
16 0.012454 1.0194 0.013779 1.1333 0.009680 0.7812
17 0.012967 1.0583 0.013960 1.1443 0.010447 0.8396
18 0.013049 1.0647 0.013625 1.1170 0.010437 0.8389
19 0.013126 1.0714 0.013863 1.1355 0.010392 0.8352
20 0.013250 1.0810 0.013605 1.1133 0.010576 0.8499Batteries 2018, 4, x FOR PEER REVIEW  12 of 18 
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Figure 6. Comparison of some GA-estimated lithium-ion battery charge capacities with the
experimental results for 80:20 TTDP, (a) battery C#1, (b) battery C#2, (c) battery C#3.
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The MPF estimations of some of the GA generations shown in Figure 7 give an indication of the
correlation of the original experimental dataset with the MPF of the GA generations at 80:20 TTDP.
The figures also show that battery C#3 has a higher prediction accuracy with a smaller difference
between the MPF and the experimental dataset compared to batteries C#1 and C#2. This is further
substantiated by the difference between the MPF-estimated charge capacities and the experimental
results per Table 2.

The GA generation, which gave the best fit value of the charge capacities for the testing dataset at
the TTDP, was used as the optimal value for estimating the RUL at the OPMPF (see Table 2). The testing
dataset was used for determining the optimal solution because it was not used in the initial training
of the model, and will give an unbiased judgement of the trained model’s behavior. Considering
the 9-fold cross-validation ensemble in Figure 5, and using Equation (16), the average RMSPE of the
OPMPF was obtained for the batteries. The average RMSPE for the TRMPF was also determined at
the TTDP after using the experimental data for the RMSPE estimation. The summary of the results of
the RMSPE estimated with TRMPF and OPMPF are shown in Table 3. It is important to note that the
difference between the battery charge capacities obtained at the various TTDP was consistently lower
for the OPMPF than the TRMPF. This is an indication of the immense importance of the GA in the
optimization of the Li+ battery charge capacities. From Table 3, the RMSPE of battery C#1 obtained
by TRMPF is 6.3 times more than that obtained by OPMPF while batteries C#2 and C#3 have the
RMSPE obtained by the TRMPF as 3.08 times and 7.33 times, respectively, higher than those obtained
by the OPMPF.

Table 2. Summary of the difference between the MPF-estimated charge capacities at the GA generations
with the experimental data, as measured with the root mean square percentage error (RMSPE) at the
80:20 TTDP.

Generations

Battery C#1 Battery C#2 Battery C#3

Training Testing Training Testing Training Testing

RMPSE (%) RMPSE (%) RMPSE (%) RMPSE (%) RMPSE (%) RMPSE (%)

1 1.0119 1.4345 1.6339 2.0210 1.2979 0.9196
2 2.2817 1.7134 1.7442 1.1866 0.9316 0.8407
3 2.1552 1.0190 * 1.6275 2.9504 1.0506 2.5433
4 2.9195 3.0299 1.8242 0.9584 * 0.9463 0.7707
5 2.3627 2.4592 1.6717 1.3328 1.0331 0.9112
6 2.4744 2.4617 1.6797 3.4521 1.0659 1.8295
7 2.7419 1.1883 1.6813 3.7837 0.8799 2.8126
8 2.4283 2.0409 1.5439 2.6058 1.0385 1.8660
9 2.3687 1.5284 1.5756 3.5130 1.0959 2.7003

10 4.8160 5.3376 2.7919 1.1718 1.7588 1.0078
11 1.8373 1.5030 1.7296 3.3415 1.1747 2.1394
12 3.9640 4.7354 2.0801 1.1794 1.2603 0.6644
13 2.6407 1.8496 1.7156 2.8668 1.1547 2.1764
14 1.6035 1.6166 1.8933 2.7728 1.7223 2.2987
15 2.7887 2.0031 1.6621 2.1270 1.0690 1.6782
16 2.9095 4.0364 1.6345 1.2570 1.1555 0.4609
17 2.2468 2.4977 1.6312 1.2087 1.4299 1.1629
18 2.1851 1.3490 1.6992 3.3097 1.1238 2.0182
19 2.4045 2.6096 1.7789 1.5067 1.3861 0.7031 *
20 3.5188 3.9359 1.8373 0.9990 1.3124 1.2113

Bold *: represents the optimal GA generation, which was considered with respect to the RMSPE of the testing dataset.
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Figure 7. Experimental results of the lithium-ion battery charge capacity and some MPF results
obtained with the different genetic algorithm generations using 80:20 TTDP, (a) battery C#1, (b) battery
C#2, (c) battery C#3.

Table 3. Comparison of the RMSPE of the OPMPF and traditional multi-level particle filter (TRMPF) of
the batteries.

Training/Testing Dataset
Partitions (TTDP)

Battery C#1 Battery C#2 Battery C#3

OPMPF TRMPF OPMPF TRMPF OPMPF TRMPF

90:10 0.4798 9.028 1.0752 2.3793 0.5422 9.4759
80:20 1.0191 7.4073 0.9756 2.1281 0.4413 8.2846
70:30 1.159 11.0494 1.0518 5.7559 0.7156 11.8412
60:40 1.0437 11.8767 1.1141 9.3161 0.652 12.6843
50:50 1.2067 13.2404 1.219 8.7671 0.8023 12.1215
40:60 0.9692 13.4266 0.9435 10.8667 1.0859 15.5847
30:70 0.8164 12.7947 1.6497 11.3206 1.5076 17.0099
20:80 7.5976 27.6519 7.3983 12.0204 11.8386 31.4732
10:90 7.855 33.1341 9.6566 14.6807 1.4086 20.922

RMSPEav (%) 2.4607 15.5121 2.7871 8.5817 2.1105 15.4886
Standard deviation 2.8224 8.2709 3.1203 4.0882 3.4572 6.7322

The variation of the RUL of the batteries determined with the OPMPF and TRMPF for some
of the TTDP is shown in Figure 8. The figures show that the greater the training dataset, the closer
the determined RUL of the batteries to the ideal values because of the enhanced fitting. To avoid an
overfitting problem, the cross-validation ensemble that considered training and testing partitions from
lower values to higher ones was necessary; hence the estimation of the RUL as the average values of
the individual RUL results at the TTDP, as per Table 4. The information in the table, which depicts the
mean RUL of the batteries and the difference between the RUL obtained with TRMPF and OPMPF,
indicates the superiority of the OPMPF values over the TRMPF estimates. The better values of the RUL
obtained with OPMPF in comparison to those gained with TRMPF, indicates that the evolution of the
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charge capacities with GA overly influenced the computational results of the MPF. Again, the OPMPF
results are highly comparable to most of the PF prognosis results in the literature [46–48] because the
error inherent in the entire prediction process is minimal judging from the information in Table 4.

Table 4. End-of-life (EOL) failure cycle for the optimal and traditional particle filters for the batteries.

Experimental Result

Battery C#1 C#2 C#3

80% EOL failure cycle 746 660 830

OPMPF and TRMPF predictions RUL at different Training (TR) and Testing (TS) datasets partitions

Training/Testing Dataset Partition
(TTDP):TR:TS

C#1 C#2 C#3

OPMPF TRMPF OPMPF TRMPF OPMPF TRMPF

90:10 738 630 614 606 822 788
80:20 736 821 626 746 834 n/a
70:30 824 737 679 649 860 863
60:40 808 856 694 666 835 n/a
50:50 790 n/a 700 783 815 n/a
40:60 789 n/a 642 711 823 854
30:70 767 n/a 714 n/a 830 n/a
20:80 508 476 n/a n/a 466 426
10:90 539 345 500 n/a n/a n/a

RULav (cycle) 722 644 646 694 786 733
Standard deviation 110 184 65 60 121 179

Difference 24 102 14 −34 44 97
% variation 3.20% 13.65% 2.10% −5.08% 5.35% 11.72%

(n/a means that prediction did not converge, and negative signs show cycle beyond the experimental results).
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Figure 8. Alpha–Lambda accuracy plot of the RUL of the Li+ batteries using a combination of some of
the TTDP, (a) battery C#1, (b) battery C#2, (c) battery C#3.
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6. Conclusions

To better estimate the retained life of C&S, an algorithm that combines MPF and GA optimization
was used in an OPMPF to determine the RUL. The study implemented the prognosis and RUL of Li+
batteries by using the charge capacities at the cycling in a TRMPF and OPMPF to predict the capacity
fade. The TRMPF was done by using the experimental charge capacities at different charging cycles in
a direct MPF at different TTDP, whereas in OPMPF GA helped to optimize the charge capacities at the
different generations. The optimized charge capacities at the generations were used for MPF prior to
the determination of the expected values.

Three experimental results of Li+ batteries were tested with the technique by implementing a
9-fold cross-validation ensemble that represented a TTDP with training and testing ratios of 10:90, 20:80,
30:70, 40:60, 50:50, 40:60, 30:70, 20:80 and 10:90. At the 80% EOL threshold, the average RMSPE and
RUL of the batteries determined with TRMPF were found to be between 8.58~15.51% and 5.08~13.65%,
respectively. These values were 4.07~5.60 times and 2.42~2.55 times more than the RMSPE and RUL
values of the OPMPF, respectively. The variation in the estimation results of the TRMPF and OPMPF
gives a good indication of the superiority of the OPMPF technique over the TRMPF. This advantage,
which can be traced to the GA optimization of the charge capacities at the different generations,
has helped to enhance the prediction accuracy of MPF that has already been shown to give better
predictions of components/systems performance than the particle filter.

It may be important to have the OPMPF technique incorporated into real-time components/
systems prognosis architecture since GA optimization has the potential to enhance MPF estimation.
The number of generations of the GA can be further improved by increasing the number of GA
generations in the optimization framework prior to the MPF to further boost the OPMPF result.
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