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Abstract: Lithium manganese-based cathodes are widely used in rechargeable batteries due to their
low cost, safety, and ecological stability. On the other hand, fast capacity fade occurs in LiMn2O4

mainly because of the induced manganese dissolution and formation of additional phases. Confocal
Raman microscopy provides many opportunities for sensitive and spatially resolved structural
studies of micro- and nanoscale phenomena. Here, we demonstrate advantages of confocal Raman
spectroscopy approach for uncovering the mechanisms of lithiation/delithiation and degradation in
LiMn2O4 commercial cathodes. The analysis of Raman spectra for inspecting local lithiation state and
phase composition is proposed and exploited for the visualization of the inhomogeneous distribution
of lithium ions. The cycling of cathodes is shown to be followed by the formation and dissolution
of the Mn3O4 phase and local disturbance of the lithiation state. These processes are believed to be
responsible for the capacity fade in the commercial batteries.
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1. Introduction

The electrochemical studies of manganese oxides-based electrode materials based on LiMn2O4

(LMO) have been carried out since 1980 [1–3], thus providing an alternative to LiCoO2, which had been
proposed three years earlier [4]. LMO-based cathodes had been widely used in rechargeable batteries
and accumulators due to their ecological stability, safety, and low cost. Wide production of lithium
batteries based on LMO is motivated by the lower price of manganese and commercial availability as
compared to cobalt and nickel. The advantages of the material are high discharge potential of 4 V [2]
and large theoretical capacity 148 mA h g−1 [5].

Lithium manganese spinel has cubic Fd3m structure, where lithium ions occupy tetrahedral 8a
sites, oxygen—32e sites. Mn3+ and Mn4+ ions are randomly distributed in the 16d crystallographic
positions with 1:1 ratio of oxidization level [3,4]. During the deintercalation process, lithium
ions can be extracted from LMO up to Li0.015Mn2O4 phase, so-called λ-MnO2. When completely
delithiated, LMO has a very similar structure to the initial LiMn2O4, but with empty 8a lithium sites.
The intermediate phase, Li0.5Mn2O4, has lower symmetry (F43m space group) than λ-MnO2 and
LiMn2O4 [5,6].
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The main problem for using LMO as a cathode material is a fade of capacity with cycling [7–11].
LMO tends to degrade during intercalation-deintercalation processes caused by the formation of poor
electrochemically active structural phases and dissolution of manganese in the electrolyte on the surface
of active particles [7,9,12]. The capacity loss is accelerated at elevated temperature and at high potential
of the cathode, due to electrolyte instability (in fully delithiated state of λ-MnO2) [8,9]. Cycling of LMO
electrodes in a 0.6 < x < 1 range for LixMn2O4 is commonly used to avoid degradation [10]. Manganese
dissolution occurs due to disproportional transformation 2Mn3+→Mn2++Mn4+, when λ-Mn4+(O2-)2

oxide is formed and Mn2+ ions dissolve in the electrolyte [9]. Other reasons of a capacity fade in
LMO are phase transformations of LiMn2O4 to Li2Mn3O7 with MnO dissolution or to Li4Mn5O9

with Mn3O4 dissolution [8]. Recently, thin Mn3O4 layer formation in the vicinity of active particle
surface during intercalation and its further vanishing during deintercalation was demonstrated by
scanning transmission electron microscopy, X-ray photoelectron spectroscopy and X-ray tomographic
microscopy [7,13]. Our recent studies performed by electrochemical strain microscopy confirmed this
hypothesis and quantitatively evaluated the change of local diffusion coefficient due to this undesirable
phase transition during lithiation [14].

LixMn2O4 can be lithiated up to the Li2Mn2O4 state, but in a range 1 < x < 2 it has tetragonal
structure and lower discharge potential of about 3 V [10]. Phase transition from cubic to tetragonal
phase leads to the volume increase of 6.5%, and, therefore, fast degradation due to cracking with
capacity fade occurs during cycling in this range [6,10]. “Over-lithiation” during cycling can accelerate
degradation through the formation of a tetragonal phase [10]. Further studies of local variations
of structural and functional material properties are crucial in order to define new strategies for
reducing the electrode degradation by its modification via coating of the particles, doping or defect
engineering [15–18].

Raman spectroscopy is an attractive technique for studying structural transformations in electrode
materials due to its high sensitivity to small structural changes and easy-way sample preparation [6].
It was shown to be efficient for the in situ investigation of cycling processes [19–22]. Optical microscopy
was also used in the past for the studying of intercalation/deintercalation of the graphite-based
composites [23,24]. Harris et al. performed in situ spectral measurements for the evaluation of
the state of charge (SOC) of selected oxide particles in a composite anode fabricated from a test
cell and revealed that the rates at which particles deintercalate/intercalate Li ions changes with
time and location [24]. The inconsistent kinetic behavior of the individual oxide particles was
attributed to degradation of the electronically conducting matrix in the composite anode upon
testing. In another work on meso carbon micro beads anode particles Harris et al. demonstrated
diffusion anisotropy, which depends on the orientation of crystallites in the particle [23]. Migge et al.
showed that intercalation in graphite particles is an inhomogeneous process, which varies with
crystallographic and local conditions (temperature, electric contact etc.) [25]. Powerful combination
of the Raman spectroscopy and optical microscopy, confocal Raman microscopy (CRM) approach,
allows the acquisition of Raman spectra with confocal optical resolution. CRM has been applied earlier
to some of the electrode materials, such as LiNi0.8Co0.15Al0.05O2 [26], LiNi1/3Co1/3Mn1/3O2 [27],
LiCoO2 [28], Li1−x(NiyCozAl1−y−z)O2 [29]. In LiNi0.8Co0.15Al0.05O2, LiNi1/3Co1/3Mn1/3O2, Kostecki
et al. demonstrated significant non-uniformity depending on SOC within the electrode [26,27].
They used intensity of some Raman bands to visualize state of charge of the material and to evaluate
its correspondence to the distribution of carbon conductive filler [26,27]. Nanda et al. also used CRM
to demonstrate inhomogeneity of the SOC distribution in fresh and aged Li1−x(NiyCozAl1−y−z)O2

(NCA) cathodes and showed limitation of the ionic transport due to a decrease in the conductivity at
the particle edges [29]. Nishi et al. performed CRM measurements in situ while charging/discharging
the LiCoO2 electrode [28]. An inhomogeneous distribution of the local state of charge in the LiCoO2

electrode was observed during the 1st cycle and the distribution was broadened during the 2nd cycle.
These changes in the state of charge distributions were attributed to the increase in the electronic
resistance between LiCoO2 particles, probably due to mechanical stress or by the formation of a solid
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electrolyte interface [28]. Nowadays, new capabilities to collect and analyze big data arrays open
up new perspectives to collect and store spectra by CRM with the highest possible spatial resolution
(about 200–300 nm), so as to extract useful information during post-processing [30].

LiMn2O4 was intensively studied by Raman spectroscopy in the past few decades [6,31–35].
Because LiMn2O4 belong to Fd3m symmetry group in lithiated state it has five Raman-active modes:

Г = A1g + Eg + 3F2g (1)

The A1g band near ~625 cm−1 relates to Mn-O bonds vibration in MnO6 octahedra. The Eg

band located at 426–432 cm−1 also corresponds to oxygen vibrations [5,6,31,32,35]. High-frequency
scattering bands F2g(2) and F2g(3) are due to large oxygen and small manganese atom vibrations.
They are localized at about ~480 cm−1 and ~580–590 cm−1, respectively [5,6,31,32,35]. Low intensity
F2g(1) mode near the 380 cm−1 is related to Li-O bond vibration [5,6,31,32,35]. Three most intensive
bands at 463 cm−1, 500 cm−1 and 590 cm−1 are observed for the λ-MnO2 and connected with Eg, F2g(2)
and A1g vibration modes, correspondently [5]. In addition, one weak peak is observed at 647 cm−1

which is related to the F2g(3) vibration [5].
In the intermediate state with lower symmetry, Li0.5Mn2O4, every second lithium tetragonal site

is empty [36]. The vibrational modes, which are Raman inactive for LiMn2O4 and λ-MnO2, are active
for the Li0.5Mn2O4. The strongest bands in the spectrum at 597 and 611 cm−1 correspond to the A1 and
F2 modes (A1g and F2g(3) modes of Fd3m structure) [5,31]. The weak shoulder peak near 647 cm−1 is
usually observed and attributed to A1 band [5,31]. Several other experimentally resolved weak peaks
near 296 cm−1, 493 cm−1, 630 cm−1 are related to F2 vibration modes [4].

Raman spectra of LMO also were studied in relation to intercalation/deintercalation
processes [31,33–35]. Ab-initio calculations and experimental measurements showed the existence
of high-frequency shifts of all F2g modes during lithiation along with the decrease of A1g frequency.
F1g(1) peak is related to vibration of the lithium sublattice and, therefore, its intensity gradually
decreases upon delithiation [31]. This mode is absent in the λ-MnO2 state [31]. Kanoh et al. analyzed
in-situ Raman spectra of thin layered LMO electrode and correlated the ratio of ~600 cm−1 A1g

mode intensities in lithiated and completely delithated state to the state of charge of the material [34].
λ-MnO2 delithiated phase was shown to exhibit a strong enhancement of the Raman spectra intensity
for the excitation wavelengths 600–640 cm−1 [33,34,37]. This effect was attributed to the reduction of
conductivity during deintercatlation [33,34,37]. In spite of a variety of different Raman spectroscopy
measurements, the strict criteria for determination of LMO material ‘state of charge’ are still missing.

In this contribution, we are trying to shed further light on the understanding of delithiation
and degradation paths by local CRM measurements of LMO cathode material with different ‘state
of charge’ and ‘state of health’ parameters. We demonstrated a possibility to qualitatively separate
lithiated and delithiated states of active ionic particles. Local scale measurements performed on ‘fresh’
and ‘aged’ battery cathodes revealed significant differences in charge distribution inside distinct active
particles. The particles were lithiated inhomogeneously due to the peculiarity of delithiation kinetics
in the LMO cathodes. Analysis of the Raman spectra allowed to detect the appearance of Mn3O4 phase
diluting during further cycling. Cluster analysis performed on CRM images clearly separates different
lithiation states and additional phases in cathodes. The proposed approach of spatially resolved Raman
spectroscopy was shown to be an attractive method for studying lithiation/delithiation processes and
degradation of electrode material.

2. Materials and Methods

2.1. Sample Preparation

Samples of LMO cathodes were prepared and tested in the electrochemical cylindrical cells at
Robert Bosch GmbH. LiMn2O4 cathodes were cycled against the graphite anodes at 1 C-rate from 2.5 V
to 4.2 V. Cathodes with different state of charge (SOC) and state of health (SOH) were extracted from
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the commercial cells (Table 1). The ‘fresh’ cathodes cycled 3 times at 1 C charge rate and 1 C discharge
rate are referred further as 100% SOH. The ‘aged’ cathodes were cycled (106 times) down to 80% SOH
at 1 C charge rate and 16 C discharge rate, then cycled 3 times at 1 C-rate and discharged at 1 C-rate
before opening. The cells were opened in an argon-filled glove box. The cathode, separator and anode
were uncoiled and separated from each other. Pieces of the cathode on the current collector were cut
and washed in a dimethyl carbonate solution in order to remove the electrolyte. After that, samples
were taken out of the glove box and dried. The sample sections were embedded in a commercial epoxy
resin and then polished step-by-step, first, mechanically by diamond abrasive and silica suspension,
and, second, by Ar ion beam milling. A more detailed procedure of sample preparation can found
elsewhere [38,39].

Table 1. Electrochemical state of studied LiMn2O4 cathodes.
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2.2. Confocal Raman Microscopy

Raman measurements were carried out using a commercial confocal Raman microscope (Alpha
300 AR, WiTec GmbH, Ulm, Germany) based on the Olympus optical setup. A 488 nm laser light
was focused on the individual particle by a 100×, 0.75 NA objective which provided about 260 nm
spatial resolution. Spectral measurements were done at 1800 grids per mm grating with a 1.22 cm−1

spectral resolution. 60 s exposure time and 5 averaging steps were used for the integral spectrum
measurements. Deconvolution of the bands was done using a Peak Fit 4.0 software. The superposition
of Lorenz functions was chosen for the fitting. Strong narrow peaks in the spectra, so-called ‘cosmic
particles’, were removed using FFT filtering. The background from the CCD matrix and steady-state
luminescence were also removed. All spectra were normalized by the area.

Microscopic measurements were realized by the scanning of the sample with the help of
piezoelectrically driven stage. Accumulation time in each point during scanning was 25 s. In each point
of the scan, full spectrum was saved as 3D-dimensional array (XY-coordinate and Raman shift) and
further fitted by superposition of Lorenz functions via a home-made program written with Wolfram
Mathematica package. The peak position, its amplitude and half-width were extracted and represented
as pseudo-color images, where XY coordinate refers to a spatial position at the surface and color
corresponds to one of the studied parameters. Gwyddion software (Department of Nanometrology,
Czech Metrology Institute) was used for data treatment and final representation.

3. Results and Discussion

3.1. Integral Raman Spectroscopy Measurements

Cross-section of lithium-ion battery cathode is represented in Figure 1a in which active LMO
particles embedded into polymeric matrix of polyvinylidene fluoride and carbon black are shown.
This mixture was spread over both sides of a metal sheet, on which a current collector made of Al is
clearly seen. The average radius of active LMO particle ranged from 5 to 10 µm. First, we compared
Raman spectra integrated over the particle surface for the ‘fresh’ (100% SOH) and ‘aged’ (80% SOH)
LMO cathodes in lithiated (discharged) and delithiated (charged) state (Figure 1b).
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The integral Raman spectra of the particles with different SOC and SOH were predictably different.
We separated 6 scattering peaks in the spectra for lithiated cathodes. Major band at the 633 cm−1 was
seen on all samples and corresponded to A1g vibration. The band near the 410 cm−1 is associated
with Eg vibration. The bands at 366–370 cm−1, 485–486 cm−1 and 586–596 were assigned to the F2g

vibrations. While Raman spectra look similar in fresh and partially aged cathodes, some differences
can be nevertheless found. The intensity of scattering peak at 586 cm−1 in aged cathodes increases and
its’ position shifts about 10 cm−1 to higher frequency.

Raman spectra of delithiated cathodes were fitted by 7 bands. Bands around of 313, 488–495,
629–639 cm−1 were related to F2 vibrations. We observed also two bands related to A1 modes between
565–570 and 597–604 cm−1. Earlier Amanieu et al. also compared Raman spectra for completely
lithiated and delithiated particles of LMO cathodes [40]. They related strong peak at 592 cm−1 for
the delithiated samples to the A1g vibration of the λ-MnO2 phase [40]. However, other peaks, which
are specific for the λ-MnO2 phase were not found [6]. Thus we attributed the peak around 592 cm−1

to LiMn2O4 phase [6]. The weak peak near 350 cm−1 was found, which could not be referred to any
vibration mode. Probably it is a part of a wide low-intensity luminescence plateau.

The parameters of deconvoluted Raman peaks and their assignment to different vibration bands
are summarized in Table 2. It should be noted that deconvolution and evaluation of Raman shifts were
difficult to do for the peaks with small intensities: Eg, F2g(1), F2g(2). That is why we focused mostly
on the bands with high intensity: F2g(3), A1g, where Raman shift can be determined more accurately.
The Raman bands at about 660 cm−1 were observed in all samples, and they were especially strong they
in delithiated LMO. We suppose that these peaks are due to the appearance of Mn3O4 phase during
intercalation/deintercalation process [31]. The alternative explanation for delithiated state would be
A1 vibration, however the intensity of this peak must be significantly lower [6]. Besides that, the peak
with the similar shift was observed in the lithiated state as well. For the delithiated samples we also
observed Raman band around of 680–690 cm−1, which cannot be related to LMO vibration modes.
Following Ammundsen et al. [19] we linked this scattering peak to the appearance of Mn2O3 phase [31].
Determination of vibration mode related to this band is complicated due to its small intensity.
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Table 2. Raman bands observed in spectra from LMO cathodes and correspondent vibrational modes.

Li0.9Mn2O4 Fresh Aged Li0.6Mn2O4 Fresh Aged

F2g(1) 370 cm−1 366 cm−1 F2 350 cm−1 313 cm−1

Eg 409 cm−1 410 cm−1 F2 495 cm−1 488 cm−1

F2g(2) 486 cm−1 485 cm−1 A1 565 cm−1 570 cm−1

F2g(3) 586 cm−1 596 cm−1 A1 597 cm−1 604 cm−1

A1g 629 cm−1 633 cm−1 F2 629 cm−1 639 cm−1

A1g(Mn3O4) 657 cm−1 663 cm−1 A1g(Mn3O4) 661 cm−1 661 cm−1

ν(Mn2O3) 691 cm−1 680 cm−1

3.2. Characterization of Lithiated State

Firstly, we analyzed the Raman band positions in completely lithiated Li0.9Mn2O4 particles from
fresh and aged cathodes. The maps of the F2g(3) and A1g Raman band position are plotted in Figure 2.
It is seen that the positions of the peaks change significantly (by more than 10 cm−1) in some particle
regions. We clearly observed the shift of F2g band to higher frequency in the middle of the particles both
in fresh and aged cathode, while at the edges of the particle F2g band the shift was smaller (Figure 2a,c).
In contrast to F2g band, A1g band position was lower in the middle of the particle (Figure 2b,d).
These peaks clearly demonstrate an opposite behavior. Lithium intercalation/deintercalation induces
the change of the atomic bond length, responsible for the corresponding bond force constant changes.
This transformation directly affected the Raman bands: all F2g modes shift to higher frequency and A1g

modes shift to the lower one [32]. Spatially resolved imaging of these shifts reveals an inhomogeneity
of the lithiated phase in the middle of the particles, producing a core structure, while shell is enriched
by lithium (Figure 2). This observation is in line with recent electrochemical strain microscopy
measurements in the same material [14].
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Figure 2. Mapping of the (a,c) F2g, and (b,d) A1g peak positions in the active ionic particles of (a,b)
fresh and (c,d) aged LMO cathodes. Completely lithiated state: Li0.9Mn2O4 (0% SOC).

Though Raman band position can be used as a signature of the lithiation state, the accuracy of
this approach is not very high due to the apparent difficulties in the precise evaluation of the peak
positions in complex Raman spectra with many overlapped peaks. Therefore, we further evaluated
the ‘intensity-based’ parameters. Accuracy of the intensity determination is obviously better. We used
two parameters for our analysis. Following the work Kanoh et al. [34] we plotted the ratio of A1g

and F2g peak intensities, which was shown to be influenced by the material state of charge. Decrease
of this ratio in the border of the particles was related to its’ preferable lithiation. Maps of this ratio
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(Figure 3a,c) correlate to those constructed by the peak position. We refer thereby the ratio of A1g and
F2g peak intensities to be roughly proportional to the “state of charge”.
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Even better marker of charged state is F2g(1) peak. F2g(1) scattering peak relates to lithium
sublattice vibration and its intensity should decrease during a lithium deintercalation process [31].
Appearance of intense F2g(1) peak testifies highly lithiated phase [31]. We plotted intensity of this peak
and found that it was absent in the middle of the particle, while it dominates at the border.

The particles from fresh and aged cathodes revealed a difference in the distribution of the
extracted parameters (Figure 3e–h). The F2g/A1g peaks intensity ratio distribution for aged cathodes
had statistical deviation significantly larger than in fresh cathodes. That means that lithiation is more
inhomogeneous in the cathode. Not all regions of the particles play a role in lithiation/delithiation
process in the cathode. The maximal real ‘state of charge’ for aged samples thereby decreases leading
to general capacity fade of the battery. This result is consistent as well with the F2g(1) peak behavior.
We could not analyze the distribution of the peak positions due to their low intensity and, consequently,
high statistical error. Nevertheless, it is seen that normalized peak intensity is higher in fresh cathodes,
which suggests stronger lithiation of the cathode. Freshly lithiated sample demonstrated small increase
of peaks near 660 cm−1 connected to A1g mode of Mn3O4, however high experimental noise makes
spatial resolution more difficult in this phase.

3.3. Characterization of Delithiated State

At the next step, we analyzed delithiated samples. The principal difference of Raman spectra in
lithiated and delithiated cathodes was noted. LixMn2O4 delithiation up to state with x < 0.6 involves
the phase transition from Fd3m to F43m phase, leading to rearrangement of Raman modes. F2g mode is
substituted by the A1 mode, while A1g mode is substituted by F2. At the same time, the position of the
peaks remains almost the same: about 590 cm−1 and about 630 cm−1 (Figure 1b). Independently of the
change of vibration modes the intensity of the peak at ~590 cm−1 gradually increases with delithiation,
while peak at ~630 cm−1 gradually decreases [31].

We repeated the measurements of the maps using A1 and F2 band peak position (Figure 4).
The peak position maps were essentially heterogeneous for both samples. The regions with large and
small frequency shifts were mixed in the interior and edges of the particles. As discussed above, change
of the lithiation state induces peak shift in the opposite direction. More lithiated phase corresponds to
regions with F2 band shift to lower frequency and A1 band shift to higher frequency. However, some
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regions do not show this behavior (Figure 4, selected area). We suggest that the formation of additional
phase with scattering peaks at the similar frequencies is responsible for this effect. Besides, we observed
the scattering peak at 660 cm−1 related to the A1g vibration of Mn3O4 phase for delithiated particles,
which increases in intensity at the particle interior. We did not observe intense scattering peak with
similar frequency for lithiated cathodes.Batteries 2018, 4, x 8 of 12 
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Figure 4. Mapping of the (a,c) A1 and (b,d) F2 peak positions in the active ionic particles of (a,b) fresh
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In order to resolve different phases of this heterogeneous system, we plotted separately the ratio
between A1 and F2 intensities and demonstrated inhomogeneity of delithiation as well as intensity
of A1g band of Mn3O4 phase (Figure 5). The images confirmed formation of regions with dominant
signal from Mn3O4 phase appearing as a result of battery intercalation/deintercalation, while in
other regions in the particles ratio of A1 and F2 intensities revealed the distribution of lithiation state.
More delithiatied regions were preferably localized at the particle borders oppositely to the case of
lithiated state.

Batteries 2018, 4, x 8 of 12 

 
Figure 4. Mapping of the (a,c) A1 and (b,d) F2 peak positions in the active ionic particles of (a,b) fresh 
and (c,d) aged LMO cathodes. Delithiated state: Li0.6Mn2O4 (100% SOC). 

In order to resolve different phases of this heterogeneous system, we plotted separately the 
ratio between A1 and F2 intensities and demonstrated inhomogeneity of delithiation as well as 
intensity of A1g band of Mn3O4 phase (Figure 5). The images confirmed formation of regions with 
dominant signal from Mn3O4 phase appearing as a result of battery intercalation/deintercalation, 
while in other regions in the particles ratio of A1 and F2 intensities revealed the distribution of 
lithiation state. More delithiatied regions were preferably localized at the particle borders oppositely 
to the case of lithiated state. 

 
Figure 5. Mapping of the (a,c) ratio between A1/F2 peak intensities; (b,d) intensity of A1g peak related to 
Mn3O4 phase in the active ionic particles of (a,b) fresh and (c,d) aged LMO cathodes; (e–h) histograms of 
the signal corresponding to maps (a–d). Delithiated state: Li0.6Mn2O4 (100% SOC). 

3.4. Cluster Analysis of the confocal Raman Spectroscopy Images 

The cluster analysis is an approach based on the separation of the Raman spectra at the map to a 
few classes with the similar features. Here we used implementation of K-means clustering incorporated 
in Witec Project software [41]. This approach allowed to select areas with inhomogeneous variations of 
SOC and with M3O4 phase appeared as a result of LiMn2O4 → Mn3O4 phase transformation. The 
cluster analysis was based on our findings presented in Sections 3.2 and 3.3. We obtained similar 
results on the distributions (but without any anomalies) by realizing clustering into three classes for 
fresh samples and two classes for aged samples (Figure 6). 

Figure 5. Mapping of the (a,c) ratio between A1/F2 peak intensities; (b,d) intensity of A1g peak
related to Mn3O4 phase in the active ionic particles of (a,b) fresh and (c,d) aged LMO cathodes;
(e–h) histograms of the signal corresponding to maps (a–d). Delithiated state: Li0.6Mn2O4 (100% SOC).
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3.4. Cluster Analysis of the confocal Raman Spectroscopy Images

The cluster analysis is an approach based on the separation of the Raman spectra at the map to a
few classes with the similar features. Here we used implementation of K-means clustering incorporated
in Witec Project software [41]. This approach allowed to select areas with inhomogeneous variations
of SOC and with M3O4 phase appeared as a result of LiMn2O4 → Mn3O4 phase transformation.
The cluster analysis was based on our findings presented in Sections 3.2 and 3.3. We obtained similar
results on the distributions (but without any anomalies) by realizing clustering into three classes for
fresh samples and two classes for aged samples (Figure 6).

Batteries 2018, 4, x 9 of 12 

The particles revealed a distinct separation of the clusters with different ‘state of charge’. 
Actually, the ion concentration profile has to be changed smoothly, but this approximation is valid 
in case of a sharp profile, appearing due to specific kinetics of lithiation accompanied with the 
formation of the lower lithiation state in the center of particle and higher lithiation state near the 
particle edge (so-called, ‘radial model’) [38,42]. Such a structure can be caused by slowing down the 
ionic mobility in the middle of the particle due to reduction of the local potential. In this 
experimental situation, concentration of the lithium ions increases too fast near the particle edge 
and, therefore, potential of the particles decreases and lithiation stops prematurely at lower lithiated 
cores of particles. 

Freshly lithiated sample did not demonstrate any inhomogeneity of the state of charge. 
However, near the particle edge, we could clearly indentify the cluster in the subsurface region 
attributed to Mn3O4 phase (peak at ~660 cm−1). Delithiated fresh particles also revealed regions with 
Mn3O4 phase. It is interesting to note also that the position of Mn3O4 often correlates with the cracks 
on the particles surface revealed by optics, which means that appearance of Mn3O4 phase can be 
responsible for the appearance of the stress in the material. On the contrary, Mn3O4 phase was not 
revealed in aged cathodes, which probably evidences that the dissolution of this phase occurs mostly 
at the beginning of cycling while further mechanism of capacitance fade is due to inhomogeneity of 
the delithiation process. 

 
Figure 6. Cluster analysis of CRM images for LMO particles with different SOH and SOC. (a,b) 
lithiated and delithiated state for aged cathodes; (c,d) lithiated and delithiated state for fresh cathodes. 
Blue color: higher lithiated state, green color: less lithiated state, red color: Mn3O4; (e–h) Averaged 
Raman spectra from selected clusters with marked vibration modes corresponding to upper images. 
Dashed lines identify major lines in spectra related to ‘state of charge’ and Mn3O4 phase. 

4. Conclusions 

We used confocal Raman spectroscopy approach for studying intercalation/deintercalation 
processes in lithium manganese spinel cathodes. Precise analysis of the Raman spectra acquired on 
large areas of active particles combined with spatially resolved ones (inside the individual particles) 
could shed light on the main features of inhomogeneous lithiation and delithiation kinetics. Major 
parameters of the local Raman spectra reflecting ‘state of charge’ of active particles thus allowing 
visualization of its local distribution were found. The lithiation pathway was found to occur via the 
formation of the spatially inhomogeneous Li distribution in the middle of the particles and their 
edges. It was shown that cycling leads to: (1) formation of Mn3O4 phase with its further dissolution 
in the electrolyte; (2) qualitative change in the lithiation process in cycled LMO cathodes with 

Figure 6. Cluster analysis of CRM images for LMO particles with different SOH and SOC. (a,b) lithiated
and delithiated state for aged cathodes; (c,d) lithiated and delithiated state for fresh cathodes. Blue color:
higher lithiated state, green color: less lithiated state, red color: Mn3O4; (e–h) Averaged Raman spectra
from selected clusters with marked vibration modes corresponding to upper images. Dashed lines
identify major lines in spectra related to ‘state of charge’ and Mn3O4 phase.

The particles revealed a distinct separation of the clusters with different ‘state of charge’. Actually,
the ion concentration profile has to be changed smoothly, but this approximation is valid in case of
a sharp profile, appearing due to specific kinetics of lithiation accompanied with the formation of
the lower lithiation state in the center of particle and higher lithiation state near the particle edge
(so-called, ‘radial model’) [38,42]. Such a structure can be caused by slowing down the ionic mobility
in the middle of the particle due to reduction of the local potential. In this experimental situation,
concentration of the lithium ions increases too fast near the particle edge and, therefore, potential of
the particles decreases and lithiation stops prematurely at lower lithiated cores of particles.

Freshly lithiated sample did not demonstrate any inhomogeneity of the state of charge. However,
near the particle edge, we could clearly indentify the cluster in the subsurface region attributed to
Mn3O4 phase (peak at ~660 cm−1). Delithiated fresh particles also revealed regions with Mn3O4

phase. It is interesting to note also that the position of Mn3O4 often correlates with the cracks on the
particles surface revealed by optics, which means that appearance of Mn3O4 phase can be responsible
for the appearance of the stress in the material. On the contrary, Mn3O4 phase was not revealed
in aged cathodes, which probably evidences that the dissolution of this phase occurs mostly at the
beginning of cycling while further mechanism of capacitance fade is due to inhomogeneity of the
delithiation process.
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4. Conclusions

We used confocal Raman spectroscopy approach for studying intercalation/deintercalation
processes in lithium manganese spinel cathodes. Precise analysis of the Raman spectra acquired
on large areas of active particles combined with spatially resolved ones (inside the individual particles)
could shed light on the main features of inhomogeneous lithiation and delithiation kinetics. Major
parameters of the local Raman spectra reflecting ‘state of charge’ of active particles thus allowing
visualization of its local distribution were found. The lithiation pathway was found to occur via the
formation of the spatially inhomogeneous Li distribution in the middle of the particles and their edges.
It was shown that cycling leads to: (1) formation of Mn3O4 phase with its further dissolution in the
electrolyte; (2) qualitative change in the lithiation process in cycled LMO cathodes with significant
inhomogeneity of the formed lithiation state. These processes are believed to be responsible for
the capacity fade in the real battery cathodes. We demonstrated how the cluster analysis could be
used in the confocal Raman microscopy imaging of electrode materials for the separation of various
structural phases and lithiation states. In contrast to X-ray tomography and scanning transmission
electron microscopy, confocal Raman microscopy does not require special sample preparation and,
therefore, can be easily performed on commercial batteries. The implementation of the proposed
approach, supplemented by advanced statistical analysis methods, opens up new perspectives in the
understanding of intercalation/deintercalation kinetics in electrode materials.
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