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Abstract: A robust lithium-sulfur (Li–S) battery is constituted by a wide range of optimized
fundamental parameters (e.g., amount of electrolyte, electrolyte additive, sulfur loading density,
and the size of sulfur particles). In this paper, some other often-neglected “trivial” parameters
(including assembly pressure of the coil cells, thickness of spring/lithium foil in coin cells,
sheet number of separator, and cut-off voltage) of Li–S batteries have been demonstrated to show
pronounced effects on the battery performance. Our results indicate that the coin cell assembly
pressure and sheet number of the separator play the important roles in suppressing polysulfide
shuttling over battery cycling, which improves significantly the cycling life of Li–S batteries.
The thickness of springs/lithium foils also affects the battery performance greatly. When switching
the cut-off voltage of 1.5–3.0 V to narrower ones (1.7–2.5 V or 1.8–2.6 V), the cycling life of batteries at
0.2 C can be further enhanced to >300 cycles while with no drastic polysulfide shuttling. Adjusting
these trivial parameters can thus synergistically improve the cycling performance of Li–S batteries.

Keywords: lithium-sulfur battery; trivial parameters; polysulfide shuttling; assembly pressure; sheet
number of separator

1. Introduction

Lithium–sulfur (Li–S) batteries have drawn great interest, due to sulfur’s high theoretical specific
capacity of 1672 mAh g−1 [1,2], and promising advantages of nontoxicity, abundance, low-cost,
and so on. [3,4]. In a Li–S battery system, element sulfur (S8) reduction is a multistep electrochemical
process, and the reaction of S8 with Li metal can gradually produce a series of lithium polysulfides
(PSs) with a general formula Li2Sx (1 ≤ x ≤ 8) [3–6]. The battery chemistry of this kind and
some basic principles on the reversible electrochemical reactions were already known in the late
1970s [7], and the research on Li–S batteries was further invigorated by Nazar et al. in 2009 and by
many other researchers [1,5,8]. However, the application of Li–S batteries still suffers from several
drawbacks [3,4,6,9]. For example, the long-known “polysulfide shuttling” renders the accumulation
of insulating and insoluble precipitates (e.g., Li2S2/Li2S) on surface of cathode, anode, and separator
during cycling, leading to the continuous increase of battery impedance [10,11]. Therefore, the active
material is poorly recycled; discharge capacity and Coulombic Efficiency (CE) fade fast [1,12–15].
Thus far, many strategies for improving the performance of Li–S batteries, such as designing novel
conductive carbon hosts with various sophisticated architectures [16–23], using polymer/inorganic
materials coated on active composites of electrodes [24–26], adding interlayers/modified separators for
polysulfide blocking [27], employing functional binders [28–30], and so on, have been widely explored.
These strategies have been demonstrated to effectively trap the sulfur and lithium polysulfides within
the cathodes and improve the utilization of sulfur, therefore markedly enhancing the electrochemical
performance of batteries [1–4].
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In recent years, some important factors showing significant effects on the performance of Li–S
batteries have been gradually demonstrated and then standardized to some extent [5,10]. For instance,
lithium nitrate (LiNO3) is widely employed to hinder the polysulfide shuttling by forming a more
stable solid electrolyte interface (SEI) on the surface of the metallic lithium anode [5,12,31,32].
Some other fundamental parameters [5,33,34], including the amount of electrolyte [10,35], electrolyte
concentration [11], the type of electrolyte additive and solvent for electrolyte [36,37], sulfur/carbon
mass ratio [37], sulfur loading density [37,38], self-discharge behavior [32], the impact of high
temperature [13], and so on, also affect the battery performance significantly. By optimizing these
fundamental parameters, the performance (i.e., the charge-discharge capacity, polysulfide shuttling,
cycling life) of Li–S batteries can be further improved.

In this work, we have further investigated the effects of some “trivial” parameters, which are
often neglected and even not specified in the published works, on the performance of Li–S batteries.
These include the geometric parameters of the coin cell components (thicknesses of spring and
lithium foil), sheet number of the separator (separator sheets stacked together), coin cell assembly
pressure, and cut-off voltage during battery testing. By changing each individual parameter while
with the other parameters fixed, we have been able to identify the effect of each of these parameters.
We have demonstrated that these “trivial” parameters show significant, nontrivial effects on the battery
performance. Our results have shown that, by tuning these parameters, Li–S batteries with improved
cyclostability and higher capacity can be achieved.

2. Materials and Methods

2.1. Materials

Chemicals, including sulfur powders (100 mesh particle size, Aldrich, Oakville, ON, Canada),
Super-P carbon black (IMERYS Graphite & Carbon, Willebroek, Belgium), poly(vinylidene
fluoride) (PVDF, Mw ~534,000 g mol−1, Aldrich), poly(diallyldimethylammonium chloride)
(PDADMA-Cl, high molecular weight, 20 wt % in water, Aldrich), bis(trifluoromethane)solfonimide
lithium salt (LiTFSI, 99.95%, Aldrich), 1-methyl-2-pyrrolidone (NMP, reagent Plus® 99%,
Sigama-Aldrich), lithium nitrite (LiNO3, reagent Plus®, Aldrich), 1,3-dioxolane (DOL, 99%, Aldrich),
1,2-dimethoxyethane (DME, anhydrous, 99.5%, Aldrich), Super-Hydride® solution (1.0 M lithium
triethylborohydride in tetrahydrofuran, Aldrich) were all as received without any additional
purification, except that LiTFSI was dried under vacuum for over 12 h at room temperature, and DME
and DOL were dried and stored over a 4 Å molecular sieve. Other solvents, including methanol (>99%)
were obtained from Fisher Scientific and were also dried and stored over 4 Å molecular sieves.

2.2. Electrode Fabrication

A cationic polymer, polydiallyldimethylammonium (PDADMA-T) having quaternary ammonium
cation and bis(trifluoromethane)sulfonimide (TFSI) counter anion as reported in our recent work [39]
was predominantly used as the binder in this work due to its superior performance, relative to PVDF.
The S/C composite was prepared by mechanically mixing sulfur and Super-P carbon at a mass ratio
of 3:1, followed with melt diffusion at 155 ◦C for 12 h in a sealed vacuum glass tube. The sulfur
content in the resulting composite is 74.7 wt % as per thermogravimetric analysis (TA Instruments
Q50 TGA). The slurries for sulfur electrodes were prepared by adding a known mass (400 mg)
of the S/C composite into the solution containing the prescribed mass of the binder (PDADMA-T or
PVDF; 50 mg) and Super-P carbon black (50 mg) in NMP to achieve a final S/C/binder mass ratio
of 60:30:10, followed with thorough mixing with a mechanical stirrer. Electrodes were prepared by
evenly depositing a known volume (16 µL) of the slurry on carbon-coated aluminum foil (0.018 mm
in thickness, 1.32 cm2 in area) as the current collector. The sulfur loading for all electrodes was all
controlled at ca. 1.0 mg cm−2. The electrodes were dried in an oven at 65 ◦C for 5 h, then in a vacuum
oven at 50 ◦C prior to use.
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2.3. Electrochemical Testing

The electrochemical performance of the sulfur electrodes was tested in CR2032 coin cells
(see Figure 1). All cells were assembled in an Ar-filled glove box using a metallic lithium foil as counter
electrode and sealed by a press (Shenzhen Teensky Technology Co., Shenzhen, China). The electrolyte
contained 1.0 M LiTFSI in a binary solvent of DOL and DME (volume ratio of 1:1) with 2 wt %
LiNO3 as additive. To guarantee enough electrolyte on electrodes, a volume of ca. 40 µL was added
for electrodes with a sulfur loading of 1.0 mg cm−2. Considering that electrolyte solution could be
squeezed out during the battery assembly, the actual volume of electrolyte in each assembled cell
was determined based on weight difference (m) of battery hardware and the assembled coin cell,
and density of electrolyte (ρ: ca. 1.26 g mL−1). Celgard®2500 membrane (Asahi Kasei Corp. Kanda
Jinbocho, Chiyoda-ku, Tokyo, Japan) was used as the separator and lithium metal foils (Li-foils) of
a diameter of 15.8 mm and a thickness of 0.60 and 1.20 mm, respectively, were used. In addition,
trumpet-shaped stainless steel springs of a diameter of 15.8 mm, a thickness of 0.18, 0.36 and 0.54 mm,
respectively, and a corresponding height of 1.28, 1.46 and 1.64 mm, respectively, were used. The current
collector for the lithium anode had a thickness of 1.00 mm. Current density and specific capacity were
calculated based on the mass of sulfur active material. It was reported that higher current rate could
retard the polysulfide shuttling [13,36]; therefore, Li–S batteries were intentionally cycled at a current
rate of 0.5 C (1 C = 1675 mAh g−1) to evaluate the cycling performance, except some other specific
situations (e.g., 0.2 C). All the cells were tested through galvanostatic charge-discharge (GCD) cycling
at room temperature on a LAND CT2001A battery testing system (Wuhan LAND electronics Co., Ltd.,
Wuhan, China).
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Figure 1. Illustration of a CR2032-type Li–S coin cell assembly, and the repeat unit structures of
polydiallyldimethylammonium (PDADMA-T) and poly(vinylidene fluoride) (PVDF).

3. Results and Discussion

3.1. Effect of Spring Thickness

In our investigation of the effects of the “trivial” parameters, a simple composite of commercially
available low-cost sulfur and Super-P carbon black were exclusively employed for the convenient,
low-cost cathode fabrication. We have first investigated the effect of spring thickness (0.18, 0.36,
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and 0.54 mm) on the performance of Li–S coin cells. Sulfur cathodes were fabricated with PVDF and
PDADMA-T, respectively, as the binder. As a cationic polymer containing quaternary ammonium
ions and TFSI counter anions, PDADMA-T has been recently demonstrated by us to show desired
polysulfide-adsorbing properties, and thus act as a functional binder to render cathodes with
significantly improved cyclostability and capacity than those fabricated with PVDF by alleviating
polysulfide shuttling [39]. Coin cells were assembled with a 0.6 mm-thick Li-foil as the anode and two
sheets of Celgard®2500 membranes as the separator, but with springs of different thicknesses. The cells
were assembled with under the same press pressure of 65 kg cm−2. Galvanostatic charge-discharge
cycling of the coin cells were undertaken within a voltage window of 1.5–3.0 V, which is broader than
those typically used (e.g., 1.7–2.8 V or even narrower) for sulfur cathodes [36]. This broader voltage
window is intentionally chosen herein to evaluate the cycling performance under the more severe
condition involving more thorough redox reactions.

In the case of cells assembled with the spring with a thickness of 0.18 mm, the majority (>80%)
of them could not be discharged or charged, indicating the poor contact between the electrodes and
the current connectors due to the insufficient spring thickness despite the high assembly pressure.
On the contrary, those assembled with springs of 0.36 and 0.54 mm in thickness could be successfully
cycled. This indicates that a minimum spring thickness (around 0.36 mm) is required with the given
thicknesses of the other components in the coil cell assembly in order to provide sufficient electrical
contact between the electrodes and the current collectors.

Figure 2a compares the discharge capacity and Columbic Efficiency curves (at 0.5 C) of four cells
fabricated with springs of 0.36 and 0.54 mm, respectively, in thickness and with PDADMA-T and
PVDF, respectively, as the binder. A similar pattern is observed with the discharge capacity curves
of all four cells. The specific discharge capacity shows an initial increase to reach a maximum value
(around 700 mAh g−1) followed with the subsequent gradual decrease. For example, for the cathode
fabricated with the spring of 0.36 mm in thickness and with PDADMA-T, the specific capacity increases
from 711 mAh g−1 in the first cycle to 737 mAh g−1 in the 9th cycle, followed with the gradual decrease
to 466 mAh g−1 in the 65th cycle as the last cycle. While the initial increase results from the activation of
the cathode upon the diffusion of the electrolyte into the cathodes, the latter capacity decrease indicates
the gradual loss of sulfur active material from the cathodes due to polysulfide dissolution and shuttling.
Eventually, all four cells became unstable, and experienced abnormally long charge (see Figure 2b)
and a sudden drop of Columbic Efficiency (to as low as 13.6%; see Figure 2a), at which point the
cycling was terminated and it was termed as the last cycle. This is indicative of the occurrence of
severe polysulfide shuttling. It should be noted that the cells have very similar amounts of electrolyte
(30 and 26 µL for the cells with PVDF; 33 and 32 µL for the cells with PDADMA-T) despite the use of
different spring thicknesses (0.36 and 0.54 mm, respectively). The significant effects of the electrolyte
amount on cell performance, as shown by Zhang [35], can be neglected here.

At the same spring thickness (either 0.36 mm or 0.54 mm), cells fabricated with PDADMA-T show
significantly longer cycling life (65 and 71 cycles, respectively) than those with PVDF (39 and 48 cycles,
respectively). Consistent to our recent report [39], this is attributed to the polysulfide-trapping
ability of PDADMA-T due to its possession of quaternary ammonium cations that can form ionic
interactions with polysulfide anions. In all following experiments, PDADMA-T was thus used
exclusively. With each binder, the increase of spring thickness from 0.36 mm to 0.54 mm appears
to slightly improve the cycling life (from 65 to 71 cycles with PDADMA-T and from 39 to 48 cycles
with PVDF).

Meanwhile, the increase in spring thickness tends to reduce the specific capacity in the beginning
of cycling and leads to the more pronounced initial capacity increase. In the case of the cathode
fabricated with the spring of 0.54 mm in thickness and with PDADMA-T, the discharge capacity in the
first cycle is 635 mAh g−1, much less than that (711 mAh g−1) found for the one fabricated with the
spring of 0.36 mm in thickness. These suggest the more compact packing of the sulfur composites upon
the enhanced spring thickness, which slows down the diffusion of the electrolyte in the beginning and
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meanwhile alleviates the polysulfide loss from the cathode over cycling. On the basis of these results,
the spring of 0.54 mm in thickness is most optimum with the given other components in the coin cells.
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charge-discharge curves of cells fabricated with springs of 0.36 and 0.54 mm in thickness and with
different binders (PDADMA-T and PVDF).

3.2. Effect of Assembling Pressure and Li-Foil Thickness

Following the above results, three cathodes were subsequently fabricated with the use of spring of
the optimum thickness of 0.54 mm (Li-foil of 0.6 mm in thickness; 2 sheets of Celgard®2500 separators)
by using different coin-cell assembly pressures of 65, 75 and 85 kg cm−2, respectively, to investigate
the effect of assembly pressure on the cycling performance of cathodes. Figure 3 shows the specific
discharge capacity as a function of cycles at 0.5 C (cut-off voltage, 1.5–3.0 V). With the increase of
assembly pressure, there is a small reduction in the initial discharge capacity from 716 to 694 and to
665 mAh g−1. This is accompanied with the significant increase of cycling life of the cathodes from
82 to 90 and to 110 cycles. Meanwhile, the discharge capacity decay is also much lowered with the
increase of assembly pressure, with the corresponding decay rates of 0.66%, 0.43%, and 0.31% per cycle
(calculated based on the maximum discharge capacity and the capacity in the final cycle), respectively.
In particular, the cell assembled at 85 kg cm−2 shows a nearly linear capacity decay, while the one
assembled at 65 kg cm−2 has an abrupt capacity drop after about 50 cycles, indicating severe sulfur
loss. The above assembly pressure effect is ascribed to the more compact S/C composites at the higher
assembly pressure and the less preserved electrolyte [decreasing from 34 µL to 28 µL and to 23 µL
with the increasing assembly pressure, corresponding to the electrolyte/sulfur (E/S) ratio from 25.8 to
21.2 and to 17.4 mL g−1, respectively], which help reduce sulfur loss from the cathodes.

Another group of experiments was further designed by changing the thickness of Li-foil.
We increased the thickness of Li-foil from 0.60 mm to 1.20 mm. To accommodate this increase in
Li-foil thickness, the spring thickness was decreased from 0.54 to 0.18 mm. Cells were also assembled
at different assembly pressures, 65, 75, and 85 kg cm−2. The thicker Li-foil was expected to compensate
the reduced spring thickness. Meanwhile, we also reason that the thinner spring and the thicker soft
Li-foil are beneficial for better buffering the dramatic volume change involved in the cathode over
the charge-discharge process [13,40–46]. In this case, the net increased thickness is 0.24 mm relative
to the cells with a spring of 0.54 mm and a Li-foil thickness of 0.60 mm. As shown in Figure 4a,
cells fabricated with the thicker Li-foils of 1.20 mm in thickness at 65 kg cm−2 (electrolyte, ca. 32 µL;
E/S ratio, 24.2 mL g−1) and 85 kg cm−2 (electrolyte, ca. 23 µL; E/S ratio, 17.4 mL g−1) show a cycling
life of 187 and 132 cycles, respectively, whereas that fabricated by using pressure of 75 kg cm−2

(electrolyte, ca. 21 µL; E/S ratio, 15.9 mL g−1) could proceed to >300 cycles though with a gradual
decrease of Columbic Efficiency to 95% over cycling (see Figure 4b). Along with the result above
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(Figure 3), it can be concluded that the cell assembly pressure affects the E/S ratio, which is the
underlying parameter essentially affecting the cycling performance of the cell, with improved cycling
life achieved at a lowered E/S ratio. Compared to the corresponding cells fabricated with the thinner
Li-foil and the thicker spring above, the cycling life data of this set of cells with the thicker Li-foil
are significantly improved. However, cells fabricated with the thicker Li-foil show relatively lower
discharge capacity (maximum value) compared to, those fabricated correspondingly with the thinner
Li-foil (641 vs. 733 mAh g−1, 628 vs. 727 mAh g−1 and 642 vs. 702 mAh g−1) at 65, 75 and 85 kg cm−2,
respectively. We reason this results from the increased dead volume within the former cells given the
net increased thickness, which leads to reduced effective electrolyte preserved in carbon/sulfur/binder
matrix for electrochemical reactions [35].

From this set of cells with the thicker Li-foil, the assembly pressure of 75 kg cm−2 is most optimum
in rendering the cell with the lowest E/S ratio and in consequence the longest cycling life. This differs
from the cells with the thinner Li-foil, where the optimum assembly pressure is 85 kg cm−2. These data
thus indicate that a proper tuning of the geometric parameters of the coil cell components (spring
thickness, Li-foil thickness) and the assembly pressure is critical to render better-performing Li–S cells.Batteries 2018, 4, x FOR PEER REVIEW  6 of 12 
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3.3. Effect of Sheet Number of Celgard 2500 Separator

Porous separator [polyethylene (PE), polypropylene (PP)] physically keeps anode and cathode
from contacting with each other, while enabling free ionic transport [5,44]. The most commonly
used porous separators for Li–S cells are Celgard®2400, Celgard®2500, Celgard®3500, Celgard®3501,
Celgard®3401, etc. [5,32,37,41,46] with different pore size and porosity [47]. In literature reports,
one sheet of separator is most commonly employed. Hart et al. [37] used two sheets of separators
in their work. However, there is no specific study reporting the effect of sheet number of separator
(separators stacked together). Herein, we have investigated the effect of sheet number of Celgard®2500
on cell cycling performance. Coin cells were assembled with the 0.60 mm Li-foil and the 0.54 mm
spring at the assembly pressure of 65 kg cm−2, but with different sheets (1, 2, and 3) of Celgard®2500.
Figure 5 compares the cycling performance of the different cells at 0.5 C. The cells show significantly
improved cycling life (41, 65, and 161 cycles) with the increasing sheet number of Celgard®2500.
Clearly, the separator can act as the barrier for polysulfide shuttling. Increasing the sheet number can
retard the transport of the dissolved polysulfides through the separator to the anode and thus improve
the cycling life. However, the Li+ transportation was also hindered upon the increased separator
sheet number, which is reflected from the relatively lowered discharge capacity in the first 45 cycles as
shown in Figure 5. Therefore, battery kinetics slows down and discharge capacity decreases, which
is in agreement with the results reported by Zhu et al. that the separators with greater thicknesses
and smaller porosities increase the cell resistances and negatively affect the ionic transportation [48].
Therefore, two sheets of Celgard®2500 are suggested to be the optimum number in the coin cells.Batteries 2018, 4, x FOR PEER REVIEW  8 of 12 
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one, two, and three sheets of separators, respectively (0.60 mm Li-foil; 0.54 mm spring; 65 kg cm−2

assembly pressure).

3.4. Effect of Cut-Off Voltage

A narrow electrochemical window (e.g., 1.7–2.5 V) has often been used for the cycling of Li–S
cells as an important capacity retention optimization strategy [49], because the electrolyte additive
LiNO3 participates in reaction below 1.7 or 1.8 V [36,49]. In addition, a third plateau on the discharge
curve can result in the large irreversible capacity loss during the first few cycles [47,50]. Zhang further
demonstrates that LiNO3 is capable of catalyzing the conversion of high soluble polysulfide to slightly
soluble elemental sulfur near the end of charging process [32]. In addition, Zhang also suggests that the
deep discharge must be avoided in order to achieve a long cycle life when LiNO3 is used as an additive
or a co-salt of the electrolyte.
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To further clarify the effect of the voltage window, cells (fabricated with 0.60 mm Li-foil; 0.54 mm
spring; two sheets of Celgard®2500; assembly pressure of 65 kg cm−2) were cycled at different cut-off
voltage windows. Figure 6 compares the cycling performance at the different cut-off voltages of
1.5–3.0 V, 1.7–2.5 V and 1.8–2.6 V at 0.5 C. As per Figure 6, the cycling life of the cells within 1.7–2.5 V or
1.8–2.6 V (at 0.5 C) is over 270 cycles, much longer than that (72 cycles) of the cell cycled within 1.5–3.0 V
though with unavoidable gradual capacity decay, which is consistent with the results from Zhang [32]
and from Nazar et al. [49]. To further illustrate this superior performance, the charge-discharge current
was lowered to 0.2 C. As shown in Figure 6, the cell at 0.2 C (1.8–2.8 V) could cycle over 300 cycles
with Columbic Efficiency well maintained at about 98%. On the contrary, the cycling life of another
cell operated at 0.2 C within 1.5–3.0 V was only 60 cycles. These data thus confirm that the narrower
cut-off voltage is indeed beneficial to improve the cycloability of Li–S cells.Batteries 2018, 4, x FOR PEER REVIEW  9 of 12 
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voltages (1.5–3.0 V, 1.7–2.5 V, 1.8–2.6 V). Assembly pressure, 65 kg cm−2; spring, 0.54 mm in thickness;
Li-foil, 0.60 mm in thickness.

Another group of experiments was undertaken on cells fabricated with 1.20 mm Li-foil and
0.18 mm spring (2 sheets of Celgard®2500; assembly pressure of 75 kg cm−2) to investigate the effect
of cut-off voltage. From Figure 7, the cell cycled at 0.2 C within 1.5–3.0 V only has a cycle life of
132 cycles as opposed to over 300 cycles at 0.5 C. This behavior agrees well with the results from
literatures [13,40] that a higher current rate (0.5 C in this case) can retard the polysulfide shuttling
to some degree. When switching to the narrower cut-off voltage of 1.8–2.8 V, the cell can smoothly
cycle over 300 cycles at 0.2 C (total charge-discharge cycling life, 40.8 days) with no drastic polysulfide
shuttling. Consistent with the above results, this is also suggestive of the narrower cut-off voltage is
helpful to enhance the battery cycloability.

Besides the avoidance of LiNO3 consumption below 1.7 V/1.8 V, it is most likely that, within
the narrowed voltage windows, less insulated and undissolved Li2S2/Li2S forms [51], enhancing
the reversibility of sulfur active material. Results from Figures 6 and 7 demonstrate that polysulfide
shuttling can be effectively suppressed by narrowing the cut-off voltage.
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4. Conclusions

We have investigated in this work the effects of some “trivial” parameters, including the
thicknesses of spring/Li-foil, assembly pressure, sheet number of separator, and cut-off voltage
on the cycling performance of Li–S cells. Often ignored in the literature, we have shown that these
“trivial” parameters indeed show pronounced, nontrivial effects on the cycling performance of the cells.
Optimization of these parameters can synergistically enhance the cycling life. In particular, narrower
cut-off voltages (e.g., 1.7–2.5 V and 1.8–2.6 V), as opposed to 1.5–3.0 V, can improve the cycling life to
over 300 cycles at 0.2 C. We feel that this work is of value to the practical application of Li–S batteries.
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