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Abstract: Battery ageing is an important issue in e-mobility applications. The performance
degradation of lithium-ion batteries has a strong influence on electric vehicles’ range and cost.
Modelling capacity fade of lithium-ion batteries is not simple: many ageing mechanisms can exist and
interact. Because calendar and cycling ageings are not additive, a major challenge is to model battery
ageing in applications where the combination of cycling and rest periods are variable as, for example,
in the electric vehicle application. In this work, an original approach to capacity fade modelling based
on the formulation of reaction rate of a two-step reaction is proposed. A simple but effective model
is obtained: based on only two differential equations and seven parameters, it can reproduce the
capacity evolution of lithium-ion cells subjected to cycling profiles similar to those found in electric
vehicle applications.
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1. Introduction

Lithium-ion batteries constitute the most reliable energy storage technology for electric
applications where energy density is critical. This is the case of electric vehicles, smart devices and
portable power tools. Lithium-ion is nowadays a mature technology: cost and lifetime were improved
in a very sensitive way in the last decades.

However, studying the ageing of batteries is still necessary because the degradation of their
features largely determines the cost, the performances and the environmental impact of electric
vehicles, particularly of full electric vehicles. In this type of studies, battery ageing is typically classified
in two types: calendar and cycling ageing. Calendar ageing occurs when a battery is at rest condition;
this is when no current flows through the battery whereas cycling ageing occurs when the battery is
charged or discharged.

Given that battery degradation occurs in a different way if the battery is in rest condition or if
a current flows through, a major challenge is to determine how calendar and cycling ageing effects
combine together. Electric cars spend most of the time (95% or more) parked and current rates of
the battery are relatively low when they are used. In these applications the average current rates are
frequently about C/5 to C/2 with peak values at about 3C. Except for fast charge, the main ageing
mechanism in this application is considered to be formation and growth of the Solid Electrolyte
Interface (SEI) [1,2].
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The chosen method in this work is divided in two distinct phases, namely characterisation
and modelling: The characterisation phase is based on accelerated ageing testing of battery cells,
the main results of this phase were reported in Reference [3]. In this paper we are focusing in second
phase: battery ageing modelling.

Battery ageing is modelled using the results obtained in the first phase. In our approach, we aim
to establish ageing laws, that is to find the relations between ageing test conditions and performances
decay and to quantify them. These ageing laws can be determined from test results and then generalised
to predict the performance degradation of a battery subjected to different use conditions.

This paper is organised as follows: Main battery ageing mechanisms and modelling approaches
are explained in Section 2. The experimental setup and results are reported in Section 3. In Section 4,
a calendar ageing model is developed and its parameters are identified to fit experimental results.
Then, a combined ageing model (cycling + calendar) is developed in Section 5. Finally, results are
discussed and conclusions are drawn in Sections 6 and 7.

The obtained ageing model is able to reproduce the non linear behaviour of different combinations
of calendar and cycling periods. Other reliability approaches (for example event-oriented modelling)
could not explain these non linearities in a simple manner. Our model is simple but effective: it lies in
a low number of equations (2 differential equations) and 7 parameters and enables to simulate the
capacity fade of a battery cell subjected to ageing conditions combining cycling and rest periods.
This model can be used for example to optimise the design and use of the battery in a vehicle by
minimising both energy consumption and battery degradation.

2. Battery Ageing

2.1. Main Ageing Mechanisms in Lithium-Ion Batteries

Battery ageing relies on parasitic physico-chemical reactions occurring between the different
components in a battery cell: electrodes, electrolyte, current collectors, additives. These mechanisms
degrade storable energy (capacity) and maximum power (impedance) of the battery. Each ageing
mechanism may depend of temperature (T), state of charge (SoC) and current I. Some mechanisms are
present in calendar ageing (I = 0), while others are activated by cycling (I 6= 0). In the literature, many
extensive bibliographic papers can be found, for example References [1,2,4,5].

The degradation of lithium-ion batteries is assumed to depend on three fundamental factors:
T, I, and SoC. It should be underlined that not only the instantaneous value of these three factors,
but also their temporal variations can impact the battery life. For example, in ageing tests campaigns
in References [6,7] batteries were cycled at different levels of SoC and different amplitudes (DoD).
In these two works an important influence of the cycling amplitude was found. As pointed out by
Reference [5], SoC (or DoD) influence on ageing is not simple to analyse, because in some situations
low SoC levels (high DoD) can be beneficial while it could be harmful in other cases. Finally, a very non
linear SoC dependence of cycling ageing was identified experimentally by Reference [8]. In that work,
five cycling tests of the same SoC amplitude (20%) at different average SoC levels were carried out.
Cycling at very low and at very high levels of SoC (0% to 20% and 80% to 100%) caused respectively
the slowest and the fastest degradations, but no big difference was found between intermediary SoC
levels (20% to 40%, 40% to 60% and 60% to 80%).

In modern lithium-ion batteries, the main calendar ageing mechanism is the growth of the Solid
Electrolyte Interface (SEI) layer on the negative (graphite) electrode [9,10]. It consists in an electrolyte
reduction by the lithium that should be inserted into the graphite electrode. The composition of the SEI
layer is very complex because it depends of the composition of the electrolyte solvents and electrode
additives. In fact, the SEI layer is a multiple reaction mechanism [11].

SEI formation is accelerated at high levels of temperature (T) and State of Charge (SoC) [1].
Depending on the positive electrode composition, SEI growth may be accelerated by other mechanisms,
particularly manganese or iron dissolution and migration at high levels of T and SoC [1,12].
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The most representative cycling ageing mechanism is the lithium plating on the negative (graphite)
electrode. This mechanism consists in a diffusion limitation of lithium insertion when the battery is
charged at high current rates or low temperatures. In this conditions, lithium may be deposed on the
negative electrode instead to be inserted into graphite [13,14].

Other cycling ageing mechanisms in lithium-ion batteries are, for example, particle cracking and
collector corrosion. However, this type of mechanisms occurs mostly in extreme use conditions at very
high current rates or very deep discharges, not in normal use conditions [1].

2.2. Modelling Approaches

A classification of ageing modelling approaches was made in Reference [15]. In that work, three
approaches were considered—physico-chemical, weighted Ah and event-oriented ageing modelling.

In the physico-chemical approach, internal state of each battery component (electrodes, current
collectors, electrolyte) is modelled. This approach can be interesting to better understand ageing
mechanisms and interactions between battery components, but it needs a heavy experimental setup.
Moreover, this type of models are usually very complex with a high number of multi-variable
differential equations and a high number of model parameters to determine.

The weighted Ah model is an empirical approach where battery performances are modelled as
a function of Ah-throughput. Here, the main assumption is that ageing is directly related to quantity of
charge (Ah-throughput) delivered by the battery. Depending on use conditions (temperature, SoC, etc.),
ageing will be faster or slower for the same Ah-throughput, and this model attempts to take into
account these differences by weighting discharged Ah according the stress factors.

The event-oriented model is another empirical approach where battery use is divided in phases
(events). The main assumption here is to suppose that the performance degradation produced by
an event is independent of past events.

With the weighted Ah or the event-oriented approaches, it is difficult to consider interactions
between use phases, as for example, the interactions between calendar and cycling phases that have
been found in Reference [3].

Many preceding works focused either in modelling calendar ageing [16–18] or cycling
ageing [19,20]. The problem is that, in real life, batteries are sometimes at rest (calendar ageing),
sometimes in use (cycling ageing). To cope with this, some works (e.g., Reference [21]) consisted
in decomposing battery use in rest phases and cycling phases: when battery is at rest the used
ageing model is a calendar one and a cycling ageing model is used during use phases. Other authors
considered that calendar and cycling ageing are additive [6,7]. The problem with these approaches is
to deal interactions existing between calendar and cycling.

In this paper we are focusing in the combination of calendar and cycling ageing. This is
a continuation of a preceding work reported in Reference [3], where it has been shown that calendar
and cycling ageing are not additive: we cannot simply add degradations produced at each use phase.
From the results of that work, a strong interaction between calendar and cycling exists, even at low
current rates.

3. Experiments

3.1. Experimental Setup

The ageing test campaign was designed to put into evidence the existing interactions between
cycling phases and rest periods on ageing. Accelerated ageing tests were conducted on 36 lithium-ion
cells (KOKAM, nominal capacity 0.35 Ah, NMC/C) at 60 °C. For practical reasons we have chosen
smaller cells (0.35 Ah) for the test campaign. Notice that the same cell technology exists in a bigger
format for EV applications (e.g., 12 Ah) with a similar composition. Some cells were tested in calendar
ageing and others in cycling ageing. Calendar ageing consisted in leaving the cells at rest condition
(disconnected) at 5 different SoC levels: 100, 90, 80, 70 and 50%. Cycling ageing consisted in periodically
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charge and discharge the cells following 7 different profiles. In this work we will focus on the results of
profiles shown in Figure 1, for further details about these experiments, a full description and analysis
of ageing test results can be found in Reference [3]. Profile a represents a daily use of an electric vehicle,
for instance: home to work, then work to home with a full charge at the end of the day. Profile b is
a variation of profile a without the return trip. Profiles c and d are like profile b (same SoC levels),
but with higher frequencies. Finally, profiles e and f were designed to investigate the influence of this
type of cycling at lower SoC levels. Three cells were tested at each ageing condition to confirm the
results repeatability.

Cycling ageing is performed at very low current rates (C/2 in discharge, C/5 in charge) compared
to maximum allowed rates indicated by the battery manufacturer (20C in discharge, 2C in charge).
These current levels are representative of those in electric vehicle applications. Moreover, as in electric
vehicle application, cells are most of time at rest condition.

Cells’ performances were periodically measured by the means of Reference Performance Tests
(RPT). The RPT consisted in measuring the self-discharge and the cell capacity at two current rates
(1C and C/10).
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Figure 1. Cycling profiles.

3.2. Experimental Results

Once data are collected, they must be analysed to determine if differences in degradation rates
exist between pure calendar ageing and combined (cycling/calendar) ageing. In Reference [3] an
analysis of degradation rates has been made showing that an interaction exists even at low current
rates (typically those of batteries in electric vehicle applications). It was found that degradation can be
much faster when cycling phases are combined to calendar ageing periods respect to the case of pure
calendar ageing.

Figure 2 shows the results (capacity fade) of ageing tests. In this figure we can see that calendar
ageing is very sensible at higher SoC levels (90%, 100%) and it is nearly the same for lower levels
(80%, 70%, 50%).

Concerning the cells subjected to cycling profiles, they spent most of time at rest. For example,
for profile b, the cells are most of time at rest, either at 100% or at 80% SoC. If only calendar ageing
existed in these tests, their capacity fade would be between that of calendar ageing at SoC 100% and
that of SoC 80%. However, the degradation of these cells is very fast, at a similar rate than calendar
ageing at SoC 100%, showing a strong influence of cycling phases on ageing even with low current rate.



Batteries 2020, 6, 14 5 of 18

On the contrary, for cells subjected to profiles e and f cycling influence is less important, showing that
cycling influence can be very non linear.

A result that may seem surprising appears when comparing the capacity fade evolution of cells
subjected to profiles a and b. These two profiles are identical, except for the second partial discharge of
the profile a (Figure 1). All ageing factors (T, I, average SoC) are similar between these two profiles,
except for the depth of discharge: DoD in profile a is twice compared to DoD in profile b. However,
the cells subjected to profiles a or b evolved in the same way despite the fact that the DoD is very
different (Figure 2).
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Figure 2. Capacity fade under different calendar/cycling ageing conditions. Relative values of capacity
fade are expressed in p.u. which means “per unit”.

Since in this work we are focusing on ageing modelling, the results are summarised. For further
details about these experiments, a full description and analysis of ageing test results can be found in
Reference [3].

4. Calendar Ageing Model

4.1. Model Formulation

In this work we are focusing on the SEI growth mechanism. As explained above, SEI layer
composition is not simple and many reactions occur at the same time to form this layer. Nevertheless,
in some cases several parallel multi-step reactions may be merged as one unique reaction (Equation (1)).
Since capacity is proportional to the quantity of usable lithium, capacity fade is proportional to
the quantity of immobilised lithium ions by each mechanism. Thus, the rate of this equivalent
single-step reaction, kSEI , is proportional to the capacity fade rate

(
dQF

dt

)
or acceleration coefficient,

Ca (Equation (2)).

Reactants + Li+
kSEI SEI (1)
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Q ∝ quantity of usable Lithium⇔ kSEI ∝
dQF
dt

= Ca. (2)

In reliability assessment, acceleration models are developed to predict the time-to-fail (t f ): the time
from Beginning-of-Life (BoL) to End-of-Life (EoL) of a system or a component. Some of these models
are based on empirical models like Arrhenius and Eyring laws. The Arrhenius law was originally used
to model the dependence of a reaction rate with temperature. Later, Eyring law was developed to
expand the Arrhenius law to other stress factors [22].

The general form of the Eyring law for a stress factor S1 is given in Equation (3). A is the
pre-exponential factor, n is the temperature exponent, Ea is the activation energy, k is the
Boltzmann constant, B1 the direct influence factor of S1 and C1 the interaction factor between S1 and T.
This law was used in preceding works to model capacity fade [23,24] as a function of temperature and
SoC (S1 = SoC).

Ca(T, S1) = A · Tn · exp [−Ea/(k · T) + B1 · S1 + (C1 · S1)/(k · T)] (3)

An interesting feature of Eyring law is that it is easily expandable to other stress
factors, for example, a second stress factor can be added to Equation (3) by adding a term
B2 · S2 + (C2 · S2)/(k · T).

Due to the non-linearity of battery behaviour respect to SoC, sometimes it is convenient to
use another stress factor formulation. For example, in Equation (4), the SoC ageing dependence is
expanded to several stress factors (Si = fi(SoC)). This is equivalent to consider two or more stress
factors depending on the SoC (S1 = f1(SoC), S2 = f2(SoC), . . . ):

Ca(T, SoC) = A · Tn · exp [−Ea/(k · T) + B1 · f1(SoC) + B2 · f2(SoC) + . . .]. (4)

4.2. Parameter Identification

In this work, we are focusing in the SoC behaviour of ageing: experiments were performed
on NMC/C cells at one single temperature (60 °C). For this reason, there is no way to calculate the
parameters defining the temperature behaviour (n, Ea, C1, C2,. . . ), so Equation (4) becomes Equation (5)
and the influence of these parameters is gathered in A′:

Ca(SoC) = A′ · exp [B1 · f1(SoC) + B2 · f2(SoC) + . . .]. (5)

A parameter identification is performed to fit our model (Ca) to the results of calendar ageing
tests (Figure 2). This task has already been reported in References [23,24]. For the purpose of this work,
we are not considering SoC drift influence in the identification process. In fact, a sensible SoC drift
influence was found in LFP/C cells [23] but not in NMC/C cells which are studied here [24]. Another
important assumption is to consider that Ca is independent of the State of Health (SoH), meaning that
at each SoC level a value of Ca can be found independently of the current capacity loss. With these
assumptions, at each calendar ageing condition capacity fade can be approximated to a straight line:

QF(t) = Ca · t (6)

The first step is to fit the capacity fade measurements of each tested cell (Figure 2, only calendar
results) by performing linear regressions that is, for each cell j, Ca,j is obtained as the slope of QF(t).

The second step consist in gathering the obtained values of Ca,j to fit them to an Eyring law
defined in advance. Equation (5) can be transformed by logarithms to a multi-linear expression:

ln(Ca(SoC)) = ln(A′) + B1 · f1(SoC) + B2 · f2(SoC) + . . . (7)

Z = α + β · X + γ ·Y + . . . (8)
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Equation (7) is equivalent to a multi-linear equation (Equation (8)) where Z = ln(Ca(SoC)),
X = f1(SoCj), Y = f2(SoCj) and α = ln(A′), β = B1 and γ = B2. A multi-linear regression allows to
identify the parameter values (α, β, γ, . . . ) from a set of value tuples (Xj = f1(SoCj), Yj = f2(SoCj),
Zj = Ĉa,j). As mentioned above, three cells for each SoC level (50%, 70%, 80%, 90% and 100%) were
tested, then there are fifteen tuples (Xj, Yj, Zj).

Finally, the Eyring parameters are respectively A′ = exp (α), B1 = β and B2 = γ.
Figure 3 shows the natural logarithm of obtained values of Ca,j versus SoC (blue circles).

These values were obtained with linear regressions of QF, versus time (by Equation (6)). Notice that
SoC of each cell drifts from the initial values due to both self-discharge and capacity fade (reversible
and irreversible losses), this effect has been reported and explained in Reference [25]. For example,
SoC50 cells were in fact at an average SoC between 40 and 50%. The results of the second step (i.e.,
multilinear regression of Ca to obtain A and B, Equation (7)) are also shown in Figure 3 for three
different models (respectively Equations (9)–(11)):

Ca(SoC) = A′ · e(B·SoC) (9)

Ca(SoC) = A′ · e(B·SoCz) (10)

Ca(SoC) = A′ · e(B· fre(SoC)) (11)

Model 1 (Equation (9)), is the typical Eyring law considering directly SoC as stress factor
( f1(SoC) = SoC). The logarithmic plot versus SoC shows this model as a linear function. This model
fits very well for every SoC from 70% to 100%. However, Ca stop decreasing under 70% SoC. The model
performs well for every SoC except for 50%: at this SoC, QF is underestimated.

Choosing other functions may improve the fitting results. For example, in model 2 (Equation (10))
a power function of SoC is used: f1(SoC) = SoCz. For simplicity reasons, it has been decided to fix the
value of z instead to include it in the identification process. So the identification algorithm outputs
the values of A′, B for a each chosen value of z. Different values of z from 1 to 10 were tested and
z = 5 provided the lowest errors compared to RPT measurements (Table 1). This model provides more
satisfactory results than model 1, especially for 50%. Nevertheless, the capacity fade is now slightly
underestimated at SoC = 90%.

Other functions were tested by using different combinations of
√

SoC, SoC, SoC2, SoC3.
The results are even better with absolute mean errors under 4% of initial capacity (Table 1). But these
models have the inconvenient of complexity, because they need more than two parameters.

Finally, an “exponential ramp function” ( fre(SoC)) was tested in Equation (11)). fre(SoC) is defined
in Equation (12) and the returned values by this function are quite similar to those returned by a ramp
function ( fr(SoC), Equation (13)). For values of SoC lower than a, fre(SoC) ' fr(SoC) = a; for values
greater than a, fre(SoC) ' fr(SoC) = SoC. The advantage of fre(SoC) over fr(SoC) is the derivability.

As illustrated by Figure 3, model 3 gives the best result. While models 1 and 2 underestimate
QF for SoC = 50% and 90% respectively, model 3 does not. The accuracy of model 3 was judged
to be satisfactory with errors in the order of magnitude of the dispersion due to differences in cell
manufacturing. For this reason, for the following sections (combined ageing modelling) we have
adopted model 3 for Ca.

fre(SoC) = a +
(SoC− a)

(1 + e−b(SoC−a))
(12)

fr(SoC) =

{
a, SoC ≤ a

SoC, SoC ≥ a
(13)
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Figure 3. Calendar ageing modelling results: natural logarithm of acceleration coefficient (Ca)
versus SoC. The blue circles are the experimental points, the lines are the result of model 1, 2 and 3
(Equations (9), (10) and (11) respectively). For model 2: z = 5. For model 3: a = 0.7, b = 10.

Table 1. Calendar ageing model results: absolute mean errors and maximum errors of Ca for different
stress formulations.

Ca

abs. Mean Error
/Max. Error (%)

Identified
Parameters

Fixed
Parameters Comments

A′ · exp (B · SoCz)

7.1/22.5

A′, B

z = 1 model 1 (Equation (9))

6.2/22.1 z = 2
5.0/17.1 z = 3
4.1/13.1 z = 4

4.0/11.4 z = 5 model 2 (Equation (10))

4.4/13.2 z = 6
4.9 /14.4 z = 7
5.4/15.0 z = 8
5.8/15.2 z = 9
6.1/15.6 z = 10

A′ · exp (B1 ·
√

SoC + B2 · SoC) 3.7/11.4 A′, B1, B2

A′ · exp (B1 · SoC + B2 · SoC2) 3.8/12.2 A′, B1, B2

A′ · exp (B1 · SoC + B2 · SoC2 + B3 · SoC3) 3.5/11.9 A′, B1, B2, B3

A′ · exp (B · fre(SoC)) 3.5/11.7 A′, B a = 0.7, b = 10 model 3 (Equation (11))

5. Combined Ageing Model

5.1. Model Formulation

As explained above, the main hypothesis is to consider that ageing is mainly calendar and due
to SEI growth. The effect of cycling on ageing is an acceleration of calendar ageing: this means that
calendar ageing rate is modified by charges (and discharges).

The precise side reactions behind such ageing behaviour will remain unknown because a lack of
analysis equipments. A possible explanation would be the following: cycling induces volume changes
on the electrode; these dilatations make the SEI layer to be more propitious to further electrolyte
reduction and thus to SEI growth. This should be validated by physico-chemical analyses.
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To model this behaviour, we consider that SEI formation is a two-step reaction (Equation (14)).
This reaction is inspired by Reference [26]. In that article, SEI formation is suggested to be formed by a
two-step reaction. First step is a reversible reaction consisting in the formation of a complex between
electrolyte solvent and lithium ions. The second one is the irreversible transformation of the previously
formed complex to form SEI layer.

Consider the following multi-step reaction where X is irreversibly transformed into Z through the
intermediary substance Y:

X
kXY

kYX
Y

kZ Z (14)

If reactions are zero order respect to X and first order respect to Y, the transformation rate is
defined by the following ordinary differential equations (ODE) system, where [X], [Y] and [Z] are the
concentrations of X, Y and Z:

−d[X]

dt
= kXY − kYX [Y] (15)

d[Y]
dt

= kXY − kYX [Y]− kZ[Y] (16)

d[Z]
dt

= kZ[Y] (17)

Reaction (14) can represent the lithium loss which is directly related to capacity fade, then let
assume the following equivalences: Q ≡ [X], QF,rev ≡ [Y] and QF ≡ [Z], where Q, QF,rev and QF are
respectively the capacity, reversible capacity fade and capacity fade.

The operation of the proposed model is summarised by Figure 4: Q is first transformed in QF,rev
depending of the values of Qeq

F,rev and ks · I. After this, a part of QF,rev is reversibly transformed to Q
and the rest is irreversibly transformed to QF (krev + kirr = 1).

Q F,revQ FQ

F,revQeq (SoC), ks·I

revk irrk

Figure 4. Combined model diagram.

Equations (15)–(17) can be rewritten to put into evidence the influence of the model paramaters on
the dynamic evolutions of Q, QF,rev and QF. To introduce the cycling effect into the model, we propose
to add a term that modifies the reversible capacity fade rate (dQF,rev/dt). This term is proportional to the
current: ks · I. The new ODE system is composed of Equations (18)–(20):

dQ
dt

= −λ · (Qeq
F,rev − krev ·QF,rev)− ks · I (18)

dQF,rev

dt
= λ · (Qeq

F,rev −QF,rev) + ks · I (19)

dQF
dt

= λ · kirr ·QF,rev (20)
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The relations between the parameters of both ODE systems are:

λ = kYX + kZ (21)

Qeq
F,rev =

kXY
λ

(22)

kirr =
kZ
λ

(23)

krev =
kYX

λ
= 1− kirr (24)

The meaning of the new parameter set is the following: krev and kirr define the distribution of
QF,rev decomposition into reversible and irreversible parts (krev + kirr = 1). λ defines the response
speed of the system. In other words, 1/λ is the time constant of the system. Finally, Qeq

F,rev is the
equilibrium level of QF,rev when the system is not forced (I = 0).

Since Q, QF,rev and QF are capacities (quantities of charge), they are directly related to mass
(quantity of lithium) and they are subjected to mass constraints:

(i) Mass is non-negative, then capacities must be non-negative:

Q(t), QF,rev(t), QF(t) ≥ 0 (25)

(ii) Conservation of mass: the sum of capacities is constant and equal to initial capacity Q0:

Q(t) + QF,rev(t) + QF(t) = Q0. (26)

Equation (26) allows to reduce the number of ODE’s of the system given by Equations (18) to (20).
Thereafter, we will focus on Equations (19) and (20) enabling to calculate QF,rev and QF. Q can be
calculated afterwards by using Equation (26). Finally, the initial conditions are typically the following:
Q0 = Qnom and Q0

F,rev = Q0
F = 0.

In conclusion, this model is defined by 2 independent ODE’s (Equations (19) and (20)),
2 constraint equations (Equations (25) and (26)), 4 independent (Note that krev is directly related to kirr,
Equation (24)) parameters (λ, Qeq

F,rev, kirr and ks) and a set of initial conditions (Q0, Q0
F,rev and Q0

F).
In order to facilitate comparisons between different battery sizes, capacities are expressed in

the p.u. system (capacity relative to nominal capacity of the battery, Qnom). Thus, every capacity
(Q, QF,rev and QF) can be valued between 0 and 1 p.u.

The chosen unit of time is the day, then capacity rates dQ/dt, dQF,rev/dt and dQF/dt are expressed
in p.u./day. In order to homogenise the units of the preceding equations, current (I), which is typically
expressed in C-rate, will be expressed also in p.u./day. In fact, the C-rate system are units of p.u./hour:
1C is the current rate discharging (or charging) the battery in 1 hour. The conversion factor between
C-rate (p.u./hour) and p.u./day is 24. For example, 1C is equivalent to 24 p.u./day and C/24 is
equivalent to 1 p.u./day.

An important property of this model is that, in calendar conditions, it is equivalent to the calendar
model proposed in Section 4. When no current flows through the battery I = 0, the term ks · I of
Equation (19) is 0. In these conditions, QF,rev evolution is that of a first order system, that is, QF,rev will
converge to Qeq

F,rev from its initial value Q0
F,rev. Then, after a certain time the equilibrium is found:

dQF,rev

dt
= 0⇔ QF,rev = Qeq

F,rev (27)

dQF
dt

= λ · kirr ·Q
eq
F,rev = Ca(SoC). (28)
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By using Equations (11) and (28), Qeq
F,rev can be expressed as a function of calendar ageing

parameters obtained in the preceding Section (A′ and B) and combined ageing parameters (λ and kirr):

Qeq
F,rev(SoC) =

A′ · e(B fre(SoC))

λ · kirr
. (29)

5.2. Parameter Identification

The parameter identification consists in solving a non-linear problem: to find the minimum of f (x),
where x is a parameter set (λ, kirr, Qeq

F,rev, ks) and f (x) is the simulation error respect to experimental
results. This process is iterative: it means that for each parameter set x = (λ, kirr, Qeq

F,rev, ks), the error
is evaluated and a new parameter set is established for next iteration until a satisfactory result is
found (minimum of f (x)). In this work, f (x) is defined as the mean value of the errors on each profile
(index i indicates the profile number):

f (x) = error(x, pro f ilei), (30)

where the error is calculated as the mean absolute error of simulated capacity fade respect to measured
capacity fade in RPT tests (index j indicates the RPT number):

error(x, pro f ilei) = |QF,sim(j)−QF,meas(j)|. (31)

In Section 4, a calendar ageing model based on the acceleration coefficient, Ca(SoC) was found.
As explained above, in calendar conditions, the combined ageing model is equivalent to the calendar
ageing one. With this relation (Equation (29)), the number of parameters to identify is decreased of one:
at each iteration a three parameter set is established x = (λ, kirr, ks) and Qeq

F,rev have to be obtained
from λ, kirr and Ca(SoC). The iterative process is summarised by the following steps:

(i) establish a new parameter set: x = (λ, kirr, ks)
(ii) calculate Qeq

F,rev(SoC) (Equation (29))
(iii) run simulation on each cycling profiles to obtain QF,sim (Equations (19) and (20))
(iv) calculate the mean absolute error, f (x) (Equation (30))
(v) while a minimum is not found, go to step (i)

We have used Mathworks’ MATLAB and Optimisation Toolbox to solve the parameter identification
problem. The initial value of the parameter set, their constraints and the obtained parameter set are
described in Table 2.

Table 2. Minimisation parameters.

Parameter Initial Value (x0) Upper Bound (xmax) Lower Bound (xmin) Obtained Value (xend)

λ 10 20 0.1 7.41

kirr 0.1 0.5 0.0001 0.0547

ks 0.1 0.5 0.0001 0.0548

For the identification we have used profiles b to f. Profile a is the more complex one (see Figure 1)
and is used as model validation profile. The obtained combined ageing model is summarised by
Table 3. In this table, all the necessary equations and parameters are indicated.

The simulation results for all ageing conditions are shown in Figure 5. First, we can see that
calendar ageing simulations (dashed lines) fit very well to measurements (circles).

For the cycling profiles, the results are not very good for profiles b and e: capacity fade is
underestimated in profile b and it is overestimated in profile e. Nevertheless, the model reproduces
quite well the capacity fade found by experiments for all other profiles (a, c, d, f), especially capacity
fade for profile a that has not been used for identification (profile a).



Batteries 2020, 6, 14 12 of 18

Table 3. Summary of model parameters and equations.

(a) Model equations.

Main equations (ODE system):

dQF,rev(t)
dt = λ · (Qeq

F,rev −QF,rev(t)) + ks · I(t) Equation (19)

dQF(t)
dt = λ · kirr ·QF,rev(t) Equation (20)

Auxiliary equations:

SoC(t) = SoC0 +
∫

I(t)·dt
Q(t)

t in days
I in p.u./day

fre(SoC) = a + (SoC−a)
(1+e−b(SoC−a))

Equation (12)

Ca(SoC) = A′ · e(B fre(SoC)) Equation (11)

Qeq
F,rev(SoC) = Ca(SoC)

(λ·kirr)
Equation (29)

Q(t) = Q0 −QF,rev(t)−QF(t) from Equation (26)

(b) Model parameters.

Parameter Units Value

A′ p.u./day 8.8765 × 10−5

B (no units) 3.2162

a (no units) 0.7

b (no units) 10

λ day−1 7.41

kirr (no units) 0.0547

ks (no units) 0.0548
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(a) Calendar ageing
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(b) Cycling ageing
Figure 5. Capacity fade simulations compared to measurements under different ageing conditions.
Simulations are plotted by using lines. Measurements are plotted with markers (the legend for these
points is in Figure 2).

6. Discussion

In this section some application examples allow to illustrate the model behaviour particularities.
The first example is composed of four different use profiles with the same amount of charge throughput
and current rates (Figure 6). The first profile consists in a daily discharge of 20% SoC at C/2 followed
by a 2 h rest and a full charge at C/2 (Figure 6a). In this use profile battery is at 100% SoC most of
time: 21.2 h per day (blue line). The second profile consists in repeating once a week (on Monday)
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seven times the following pattern: 20% SoC discharge at C/2, 2 hour rest, full charge at C/2 and 42
min rest. The battery is left at 100% SoC the rest of the week (red line). Rest times have been adjusted
to make SoC levels (minimum, maximum and average) equal in profiles 1 and 2: the only difference is
the distribution of charges and discharges within a week. The third and fourth profiles (yellow and
violet lines respectively) are complementary two the preceding ones but the battery is kept at 80% SoC
when it is not used. As for profiles 1 and 2, SoC levels of profile 3 are equal than those of profile 4.

The simulation results for one week (7 days) are illustrated by Figure 6b,c showing respectively
QF,rev and QF. As a consequence of ODE system formed by Equations (18)–(20), QF,rev is first produced
from Q. Then, QF,rev is consumed: a part of QF,rev is reversibly transformed to Q and the other part is
irreversibly lost (QF).

During each charge QF,rev grows to about 0.016 p.u. Inversely, during each discharge, QF,rev
decreases rapidly and reaches the constraint value of 0 p.u. (Equation (25), non negativity of mass).
During rest times, after each charge (discharge), QF,rev will decrease (increase) to converge to a value
depending of the SoC level: Qeq

F,rev(SoC). In other words, each use phase (charge or discharge) makes
the cell move from an equilibrium (QF,rev 6= Qeq

F,rev); when the battery is at rest, a new equilibrium
is found between QF,rev generation and consumption and it converges to a value depending of SoC
(QF,rev ' Qeq

F,rev(SoC)). In Figure 6b we can see that Qeq
F,rev is about 0.0025 p.u. for 100 % SoC (blue and

red lines, during long rest periods), while it is about 0.0015 p.u. for 80% SoC (yellow and violet lines,
during long rest periods).

The evolution of QF is shown in Figure 6c. As we can see, after each charge there is an acceleration
of QF and inversely, after each discharge, QF evolution decelerates. This behaviour is explained
by Equation (20): QF is proportional to the integral of QF,rev. The same pattern will be repeated
during ten weeks as we can see in Figure 6d.

An important consequence of this model appears by comparing QF of profiles 1 and 2 (Figure 6d,
blue and red lines respectively). Each Monday, profile 2 makes the battery degrade faster than profile 1.
This is because profile 2 contains seven partial cycles on Monday, while profile 1 represents only one.
From Tuesday to Sunday, degradation rate is lower in profile 2 than in profile 1. After several weeks,
it clearly appears that, despite of similar SoC levels, current rates and charge throughputs, profile 2
induces a lower average degradation rate than profile 1. Similarly, when comparing profiles 3 and 4,
degradation is faster on Mondays for profile 3 respect to profile 4, but it is slower from Tuesday
to Sunday. In a different way than for profiles 1 and 2, average degradation rates are similar in
profiles 3 and 4 after a whole number of weeks (same cycle number): the acceleration that occurs
every Monday on profile 3 is compensated by the deceleration of the rest of the week. As a conclusion,
the degradation produced by combination of cycling and calendar periods can be different depending
of the time distribution of charges and discharges (as for profile 2 respect to profile 1) or not
(as for profile 3 respect to profile 4). The proposed model is able to reproduce a such particular
behaviour inspired by experimental results, what could not be easily modelled by other approaches
described in Section 2.

Other factors such as ∆SoC range, mean SoC or current rate and may influence QF. To explore how
these factors can affect QF, other profiles were simulated (Table 4). From profiles in example 1, twelve
supplementary profiles were generated by changing SoCmax, SoCmin or current rate. Profiles 5 to 8
are designed to test the influence of ∆SoC range: SoCmin is fixed to 0.6, then the weekly
charge throughput is 2.8 p.u.

With profiles 9 to 12 we can test the influence of current rate by comparing the results from these
profiles to those of profiles 1 to 4. Finally, profiles 13 to 16 are identical to profiles 1 to 4 but moving
SoC levels (max, min, avg) 0.2 p.u. to the bottom. Rest times where adjusted to make average SoC
(SoCavg) correspond to 0.98, 0.82, 0.78 or 0.62, that is, SoCmax − 0.02 or SoCmin + 0.02.

In Figure 7 a selection of these results are shown. To explore how ∆SoC range influences QF,
we can compare profiles 1 and 2 to profiles 5 and 6 respectively. QF after 10 weeks under profile 5
was 26.51% of initial capacity compared to 19.62% under profile 1, that is, degradation rate was 35%
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faster with ∆SoC equal to 0.4 p.u. When comparing the weekly profiles (profile 6 versus profile 2),
the relative increase of the degradation rate was 39%. The influence of current rate is negligible, the
difference between QF under profiles 9 to 12 compared respectively to profiles 1 to 4 is lower than 1%.
Finally, as shown by the results of simulations made with profiles 13 to 16, the influence of SoC level is
very important, with degradation rates 15 to 40% slower than those of profiles 1 to 4.

These simulation results, which need to be validated by experiments, show that battery use
management can have a significant influence on ageing. This model allows the evaluation of complex
use scenarios, such as a fleet of vehicles: in some situations, it may be beneficial to use a vehicle
intensively one day a week rather than using it regularly every day.
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Figure 6. Simulation results for cycling profiles between SoC 100 and 80% with current rates C/2.
All profiles have the same weekly charge throughput: 1.4 p.u., that is, seven times 0.2 p.u. Profiles 1 and
2 have the same average SoC (98%) as profiles 3 and 4 (82%).
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Table 4. Simulation results for different use profiles. Underlined values are showing the differences
between each four profile group (profiles 5 to 8, 9 to 12 and 13 to 16) respect to the original
profiles (1 to 4).

Weekly QF
Profile SoCmax SoCmin SoCavg I Charge after Comments

Number Throughput 70 Days

p.u. p.u. p.u. C p.u. %

1

1 0.8
0.98

0.5 1.4

19.62 daily SOC100-80, rest 100
2 16.89 monday SOC100-80x7, rest 100

3 0.82 12.03 daily SOC80-100, rest 80
4 12.08 monday SOC80-100x7, rest 80

5

1 0.6
0.98

0.5 2.8

26.51 daily SOC100-60, rest 100
6 23.44 monday SOC100-60x7, rest 100

7 0.62 11.31 daily SOC60-100, rest 60
8 11.35 monday SOC60-100x7, rest 60

9

1 0.8
0.98

0.2 1.4

19.36 daily SOC100-80 (I = C/5), rest 100
10 16.54 monday SOC100-80x7 (I = C/5), rest 100

11 0.82 11.64 daily SOC80-100 (I = C/5), rest 80
12 11.71 monday SOC80-100x7 (I = C/5), rest 80

13

0.8 0.6
0.78

0.5 1.4

13.18 daily SOC80-60, rest 80
14 10.25 monday SOC80-60x7, rest 80

15 0.62 10.17 daily SOC60-80, rest 60
16 10.12 monday SOC60-80x7, rest 60
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Figure 7. Simulation results for different SoC levels and current rates.
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7. Conclusions

Battery ageing in electric vehicles is composed of calendar and cycling ageing. When cycling
is performed at low current rates, typical cycling ageing mechanisms such as lithium plating or
particle cracking can be neglected compared to the main calendar ageing mechanism in graphite
based lithium-ion batteries: SEI growth. However, it has been found that cycling can influence
subsequent calendar ageing. The combination between cycling and calendar ageing has a very non
linear behaviour.

In this work we have modelled the capacity fade of NMC/C cells subjected to combined calendar
and cycling ageing. The accelerated ageing test campaign was designed to investigate battery ageing
at SoC levels and current profiles representative of electric vehicle’s use.

The model identification consisted in two steps. In the first one, a calendar ageing model based on
the Eyring law is proposed and a parameter identification is performed on calendar ageing experiment
results. In the second step, cycling ageing experimental results are combined to the firstly identified
calendar ageing model to obtain the combined ageing model parameters.

The proposed combined ageing model lies on the formulation of a two-step reaction rate. With the
analogy between reaction rate equations and capacity fade, this ageing model is simple but effective:
based on only two differential equations and seven parameters, it can reproduce the capacity evolution
of lithium-ion cells subjected to cycling profiles similar to those found in electric vehicle applications.
Moreover, the strong non-linearity of the cycling-calendar combination on ageing can be simulated
with this model whereas it cannot be explained with models based on weighted Ah or event-oriented
modelling approaches.

The obtained model opens the perspective of a wide range of applications, for example: battery
use assessment, optimal electric vehicle charge scheduling or plug-in hybrid electric vehicle energy
management strategy design.

Further work will consist in expand the domain of study. Especially, it will be important to study
the combination of cycling and calendar ageing at DoD levels different than 20%, at SoC levels below
50% and at colder temperatures: this would allow to estimate other model parameters as, for instance,
the activation energy (Ea).

Other studies could consist in thermal cycling, which may cause different ageing mechanisms to
coexist, particularly lithium plating and SEI growth. The succession of ageing mechanisms of different
nature may lead to multiple interactions between mechanisms. Analysing such interactions will be
helpful to better understand battery degradation in real operation conditions.
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SoC State of Charge
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