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Abstract: Both operating current and ambient temperature have a great impact on heat generation
and the available residual capacity of the lithium ion battery. The thermal response of the lithium
ion battery is investigated under isothermal conditions. Six currents from 1 A to 6 A, with a 1 A
interval, are investigated in order to discuss the effect of current under 25 ◦C; four temperatures from
10 ◦C to 55 ◦C, with a 15 ◦C interval, are investigated to study the effect of temperature under the
current of 2 A. The heat generation rate increases with the current increasing during both the charge
and discharge stage, but the charge capacity remains independent of current, while the discharge
capacity decreases with increasing current. Heat generation decreases with increasing temperature in
both the charge and discharge stage, while charge capacity and discharge capacity increase. with the
temperature increasing from 10 ◦C to 55 ◦C. Heat generation of per charge/discharge capacity is also
discussed, and in most cases, the heat generation of per charge capacity during the constant voltage
charge stage is larger than that during the constant current charge stage. Heat generation increases at
the expense of available capacity, during the discharge stage.

Keywords: lithium ion battery safety; heat generation; available capacity; isothermal condition;
internal resistance

1. Introduction

The lithium ion battery is one kind of environmentally friendly electric power carrier,
which is widely used in daily life. It is also a good choice of power source for the elec-
tric vehicle (EV) and hybrid electrical vehicle (HEV), with its benefits of high theoretical
capacity and long life span. Many governments have listed a deadline for the ban of
fossil-fuel-powered vehicles, and this has led to a huge increase in EVs. However, limited
electric power capacity and safety issues impede the promotion of EV, which is related
to the lithium ion battery. As a power source with complicated internal electrochemical
reactions, the available residual capacity and heat generation of the lithium ion battery
is influenced by ambient temperature [1,2]. Under low temperature, the lithium ion bat-
tery shows a larger internal resistance and less available residual capacity, leading to the
shrinkage of the battery’s available voltage range, and strongly affecting the charge and
discharge acceptance [3–5]. At high temperature, the lithium ion battery suffers from age-
ing problems, which may further trigger safety risks [3,6,7]. Battery temperature depends
not only on the environment temperature, but also on internal heat generation during
operation [4,5]. Consequently, the heat generation of the lithium ion battery during the
charging and discharging process needs to be analyzed in detail, so as to guarantee the
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accuracy of battery temperature management, which is essential for improving lifespan
and maintaining safety [8]. Heat generation was directly related to current and working
temperature [8,9]. Bandhauer et al. [8] found that total heat generation is a strong function
of current, temperature, depth of discharge (DOD), and that the heat generation rate was
shown to increases with both increasing current and decreasing temperature. Du et al. [10]
found polarization heat production is the dominating factor of irreversible heat production,
which increases rapidly as the discharge rate increases. Reversible heat production domi-
nates at low-rates, and irreversible production dominates at a high-rate [11–13]. Irreversible
heat is related to over-potential, which is due to ohmic losses, charge transfer resistance,
and mass transfer limitations. Reversible heat is related to the entropic temperature coeffi-
cient. Temperature variation inside the battery leads to uneven temperature distribution,
which leads to inconsistent charge/discharge behavior within the battery and pack [14].
In their research, Zhang et al. [15] identified the safety temperature limits of Li-ion bat-
teries as −10 to 50 ◦C. Lu et al. [16] stated that Li-ion batteries are adversely affected
when the ambient temperature is outside the range of 0 to 60 ◦C. Choi et al. [17] claimed
that the ideal operating temperature of lithium ion batteries was between 20 and 30 ◦C.
Yan et al. [18,19] investigated the thermal performance of phase change material (PCM)
based battery management system (BMS) in dynamic cycling by using both experimen-
tal [18] and numerical [19] methods, and found that the phase change temperature of 45 ◦C
is the best for BMS. Common thermal issues related to lithium ion batteries include capacity
or power fade, self-discharge, thermal runaway, electrical inconsistency of the battery pack
and poor cold temperature performance [20].The battery performance was also significantly
affected by temperature variation within the battery module [21,22]. Battery capacity and
power capability will generally rapidly decline when repeatedly cycled or soaked at a
temperature higher than 50 ◦C [23–26]. The discharge specific capacity decreases linearly
with the discharge rate and operating temperature [9]. The way to keep uniformity of the
battery operating temperature is to increase heat dissipation, and decrease heat generation.

In this research, the effects of operating current and ambient temperatures on heat
generation, and available residual capacity, are studied. Several currents are taken to study
the effect of current on the battery’s performance, and heat generation under isothermal
condition of 25 ◦C, and several temperatures are taken to study the effect of temperature
on the battery’s performance and heat generation, with its working current of 2 A. The
relationship between battery performance and heat generation is also discussed to find the
mechanism of heat generation and available residual capacity.

The temperature difference between internal core and surface of the battery is directly
proportional to the heat release rate, which causes a recording of heat generation lower
than the real value, because of heat loss absorbed by the battery itself. Therefore, the
lithium ion power battery used in EV needs a reliable, thermal management system, which
maintains all batteries with minimum temperature differences. Temperature monitoring
and uniformity of the battery module are very important for the safety and long running
capacity. A battery management system (BMS) is added to manage the battery, which
includes temperature, SOC, and SOH, etc. Study of heat generation and the available
capacity under different conditions is of great significance for the design of BMS.

2. Results and Discussion

The heat generation rate, available capacity, operating current, working voltage, and
ambient temperature were recorded by an isothermal battery calorimeter (IBC, THT Inc.,
Bletchley, UK) and a charge/discharge cycler, respectively. Figure 1 shows two cases
with a 1 A and 5 A operating current under 25 ◦C ambient temperature, while the heat
generation rate is not monotonous during both discharge and charge stage of the 1 A case.
The maximum value of the heat generation rate during the charge stage occurs at the end
of the constant current (CC) charge of the 5 A case, while the maximum heat generation
rate occurs during the middle stage of CC charge, in the 1 A case. The maximum heat
generation rate during the discharge stage occurs at the end of discharge, which is found in
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both 1 A and 5 A cases. The result means that the internal mechanism of heat generation
is different under high current and low current. In all tests, a voltage drop is found at
the beginning of discharge, and a voltage regen is found at the end of discharge. Both
voltage drop and voltage regen are related to the internal resistance; voltage drop is also
called over-potential.
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Figure 1. The functions of heat generation rate, operating current, and voltage changing with time,
increasing under 25 ◦C.

The operating current is zero during the rest period after the discharge stage, but the
heat generation rate remains at a high value, as experimental results shown. The released
heat during the rest period is the absorbed heat stored in the battery. The absorbed heat
would totally release during the rest period; the same phenomenon is also observed in
another author’s paper [3,27], a phenomenon which is called residual heat generation.
Equation (1) shows that the heat generation rate can be divided into four terms: for the
first term, heat generation increases linearly with the square of current; for the second
term, heat generation increase linearly as the current; and for the third and fourth terms,
heat generation shows little relationship with operating currents. The irreversible heat
generation rate is a function of current squared, whereas reversible heat generation rate is a
linear function of current [28], as shown in Equation (2). The increasing operating current
causes a corresponding increase in the proportion of irreversible heat generation. The third
and fourth terms of Equation (1) can be neglected when the first and second term is large
enough. The low value of irreversible and reversible heat makes the chemical and mixing
heat non-negligible; this may be the reason why the heat generation rate curve of the 1 A
and 2 A cases are complicated.

2.1. Effects of Current on Thermal Response

Six different currents, from 1 A to 6 A, with a 1 A interval, are used to test the
effect of current on thermal response, during both the charge and discharge stage. The
isothermal temperature is 25 ◦C, which keeps the surface temperature of the tested battery
at 25 ± 0.1 ◦C level.

Figure 2a shows the heat generation rates of six different charge currents at 25 ◦C as a
function of state of charge (SOC) during the charge stage. The maximum heat generation
rates during the charge stage are 0.131 W, 0.392 W, 0.878 W, 1.311 W, 2.154 W, and 2.669 W,
for 1 A, 2 A, 3 A, 4 A, 5 A, and 6 A cases, respectively. The heat generation rates can be
divided into two stages of 5 A and 6 A cases, when the curve has a peak, while the heat
generation rates show a plateau during the middle of charge at the 3 A and 4 A cases. The
heat generation rates during 1 A and 2 A cases are more complicated, with several peaks in
the middle of the charge stage. Figure 2b shows the measured heat generation rates of the
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battery for six tested discharge currents at 25 ◦C, as a function of DOD (varying from 0 to 1)
during the discharge stage. The maximum heat generation rates during the discharge stage
are 0.342 W, 0.682 W, 1.216 W, 1.573 W, 2.586 W, and 3.005 W, for 1 A, 2 A, 3 A, 4 A, 5 A, and
6 A cases, respectively. The heat generation rate increases as the DOD increasing for the
5 A and 6 A cases, while a plateau is found during the middle discharge stage of the 3 A
and 4 A cases; it was found that the heat generation rates in the 1 A and 2 A cases were
complicated with several peaks.
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Figure 2. Effect of operating current on the heat generation rate during the charge and discharge
stage of a NCM battery, at isothermal ambient temperature of 25 ◦C.

Figure 3 shows heat generations during the charge stage of CC, CV, and the total
charge stage changing as the charge currents increase; the contribution of heat generation
during the CV stage is shown. Heat generation is calculated by using the heat generation
rate integral over time. Heat generation during the CV charge stage is linear, increasing
from 0.075 kJ to 3.12 kJ as the charge current increases. The total heat generation during the
charge stage increases as the current increases from 1 A to 5 A, while heat generation in the
6 A case is lower than heat generation in the 5 A case. The charge time for 6 A is less than
that of the 5 A case, which dilutes the effect of current on the heat generation rate. Figure 4
also shows that the contribution of heat generation during the CV charge stage increases as
the charge current increases. The contribution of heat generation during the CV stage is
more than 50% during the 6 A case.
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Figure 3. Effect of operating current on heat generation during the charge stage.
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Figure 4. Effect of operating current on heat generation during the discharge stage.

Both total heat generation and residual heat generation increase as discharge current,
and the contribution of residual heat generation is just 5~6% under the 1 A and 2 A cases,
while the value increases to 20% during the 6 A case. This means that as current increases,
the heat absorbed by the battery itself is also increasing, which would take more than 1/5
of the total heat generation. The absorbed heat would make a large temperature gradient
during battery operation, which causes inhomogeneity and safety problems.

Figure 5 shows the relationship between the charge capacity and charge current during
CC, CV, and the total charge stage, respectively. The charge capacities for the six cases are
4.77, 4.41, 4.15, 3.47, 3.46, and 2.78 Ah during the CC charge stage, and 0.34, 0.57, 1.02, 1.41,
1.71. and 2.02 Ah during the CV charge stage, which means that charge capacity during
the CC charge stage decreases as current increases, while the charge capacity during the
CV charge stage has an opposite tendency. Total charge capacities are 5.11, 4.98, 5.17, 4.88,
5.17, and 4.80 Ah during the total charge stage, which operates independently of the charge
currents, as all the cases have the same cutoff current of 40 mA. During the 6 A case, the
contribution of charge capacity during the CV stage takes more than 40%, which means the
CV stage plays an important role in charge capacity during large current charge cases.
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The discharge capacities are 5.18, 4.98, 4.94, 4.81, 4.76, and 4.66 Ah for the six current
cases, respectively (Figure 6). The discharge capacity is 103.6% during the 1 A case, and
discharge capacity retains only 93.2% during the 6 A case. The discharge capacity decreases
as the discharge capacity increases, which is caused by internal resistance. As the current
increases, the initial voltage drop increases, making the available voltage range narrow,
and causing less discharge capacity. Heat generation increases as the discharge current
increases, which means more energy power transferring into thermal energy during large
current cases.
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Figure 6. Effect of operating current on discharge capacity.

2.2. Effects of Temperature on Thermal Response

Figure 7a shows the heat generation rates of four temperatures under operating current
of 2 A, as a function of SOC during the charge stage. The heat generation rate of the 10 ◦C
case is different from the other three cases, and the heat generation rate curve has only
one peak at 10 ◦C, while other curves have more than two peaks and two valleys. The
maximum heat generation rates during the charge stage are 0.415 W, 0.403 W, 0.375 W, and
0.367 W, for 10 ◦C, 25 ◦C, 40 ◦C, and 55 ◦C cases, respectively. Figure 7b shows the heat
generation rates as a function of DOD during the discharge stage. The heat generation
rate curve is not monotonously increasing as the DOD increases; this phenomenon is more
significant under 25 ◦C, 40 ◦C, and 55 ◦C cases, in which the valley between DOD from
0.5 to 0.8 is obvious. As the temperature increases, the valley is more significant. In 10 ◦C
cases, the valley is negligible. The maximum heat generation rates during the discharge
stage are 0.811 W, 0.0.681 W, 0.564 W, and 0.525 W, for 10 ◦C, 25 ◦C, 40 ◦C, and 55 ◦C cases,
respectively. This phenomenon shows that the mechanism of heat generation at the 10 ◦C
case is different from 25 ◦C, 40 ◦C, and 55 ◦C cases.

The heat generation rate curve increases during the CC charge stage and CC discharge
stage at 10 ◦C, while the heat generation rate curve is more complicated during the other
three cases. This phenomenon is caused by the internal resistance. Internal resistance (IR)
was affected by both temperature and SOC. At a low temperature case, the effect of SOC
on IR is negligible, and the effect of SOC on IR is significant at normal temperatures (25 ◦C,
40 ◦C, and 55 ◦C). This causes different heat generation rate curves during the CC charge
and CC discharge stage.
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Figure 7. Effect of temperature on the heat generation rate during the charge and discharge stage of a
NCM battery, under the same charge and discharge current of 2 A.

Figure 8 shows that the total heat generation decreases as the ambient temperature
increases, during both the charge and discharge stage. Heat generation during both charge
and discharge stages decreases as temperature increases, which shows the opposite effect
of Equation (2). The entropic heat increases as temperature increases, which is not same as
the other results. The internal resistance is also changing, as is the temperature, because of
the battery’s chemical characteristics.
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Figure 9a shows the relationship between the charge capacity and ambient temperature
during CC, CV, and the total charge stage, respectively. The charge capacity for different
ambient temperatures are 3.91, 4.21, 4.50, and 4.64 Ah, during the CC charge stage, and
0.61, 0.57, 0.47, and 0.46 Ah, during the CV charge stage. The results show that the charge
capacity during the CC charge stage increases as ambient temperature increases, while the
charge capacity during the CV charge stage decreases as ambient temperature increases.
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The total charge capacities are 4.52, 4.78, 4.97, and 5.10 Ah, for 10, 25, 40, and 55 ◦C,
respectively. This result means that the storage of electric power increases with ambient
temperature increasing from 10 ◦C to 55 ◦C. As the temperature increases, the contribution
of the CC charge capacity increases from 86.5% to 91.0%, which means the CC charge stage
becomes more effective during high temperatures. Figure 9b shows the heat generation
during the charge stage of CC, CV, and the total charge stage changing as the ambient
temperature increases. The heat generations are 2.488, 2.453, 2.425, and 2.342 kJ, during
the CC charge stage, and 0.455, 0.447, 0.447, and 0.357 kJ, during the CV charge stage, with
the charge current of 2 A for 10 ◦C, 25 ◦C, 40 ◦C, and 55 ◦C, respectively. As temperature
increases, the contribution of heat generation during the CC charge stage increases from
84.5% to 86.8%. The total heat generations during the charge stage are 2.944, 2.900, 2.872,
and 2.699 kJ, for 10 ◦C, 25 ◦C, 40 ◦C, and 55 ◦C. Heat generation during the charge stage
decreases as the ambient temperature increases, under the operating current of 2 A.
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Figure 9. Effect of ambient temperature on the battery during the charge stage.

Figure 10 shows the relationship between charge capacities and ambient temperature
during the discharge stage. The total discharge capacity increases as temperature increases,
while heat generation decreases. Residual heat takes about 7~12% of the total heat under
2 A cases, with the temperature under 10 ◦C to 55 ◦C. The results show the effect of
temperature on available capacity is important, while the effect of temperature on heat
generation is less than the effect of current.

2.3. Relationship between Heat Generation and Capacity Variation

During the charge stage, heat generation and capacity are all from an external source,
while during discharge stage heat generation and available capacity are all from battery’s
stored energy. The available capacity and heat generation during the discharge stage were
shown as follows.

Figure 11 shows heat generation of per available capacity changing as discharge
current. The heat generation of per available capacity during the CV stage is larger than
that during the CC stage. The heat generation of per available capacity is 0.3 kJ/Ah during
the 1 A charge case, which increases to 1.2 kJ/Ah during the 6 A charge case. The result
shows that the quick charge is not safe because of a large amount of heat generation, which
needs to find a new material in order to decrease the internal resistance to solve the heat
generation problem. The heat generation of per available capacity is 0.332 kJ/Ah during
the 1 A discharge case, which increases to 1.605 kJ/Ah during the 6 A discharge case. The
large current charge and discharge current makes heat generation approximately linear in
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growth, and increases the internal temperature gradient during battery operation, which
may accelerate battery ageing.
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Figure 10. Effect of ambient temperature on the battery during the discharge stage.
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Figure 11. Heat generation of per available capacity change as operating currents increase under an
isothermal environment of 25 ◦C.

Figure 12 shows heat generation for per capacity changing as ambient temperatures in-
crease under the operating current of 2 A. Heat generation of per available capacity during
the CV stage is also larger than that during the CC stage. Heat generation for per charge ca-
pacity during both the charge stage and discharge stage decreases as temperature increases.
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Figure 12. Heat generation for per capacity changing as ambient temperatures increase under the
operating current of 2 A.

The results show that the heat generation increases with both increasing rate and
decreasing temperature for NCM batteries, which is similar to LFP batteries [8], while
the discharge capacity was shown to increase with both increasing rate and decreasing
temperature for NCM batteries, which is different to LFP batteries, where the discharge
capacity decreases linearly as cell operating temperature [9]. The discharge capacity is
related to the voltage drop, which is caused by internal resistance, while heat generation is
also related to internal resistance.

2.4. Internal Resistance

Internal resistance (IR) is a key factor influencing heat generation and available ca-
pacity, under different cases. IR is linearly related to voltage drop under the discharge
stage. The voltage drop increases as operating currents increase, which makes the available
voltage range narrow and causes less discharge capacity under high operating current.

Figure 13 shows the direct current resistance (DCR) measured by HPPC. The IR in-
creases as the SOC decreases during the discharge stage, which creates more heat generation
and less available discharge capacity.
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Figure 14a shows that the IR under 100% SOC decreases from 60.6 mΩ under 25 ◦C
to 49.6 mΩ under 55 ◦C, which causes the available broad voltage range under high
temperature, causing less heat generation and more available capacity. Figure 14b shows
the IR impedance under three different ambient temperatures. The results show that the IR
decreases as temperature increases from 25 ◦C to 55 ◦C, as the charge transfer impedance
and diffusion impedance are lower under high temperature.
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3. Materials and Methods
3.1. Experimental

The Commercial 26,650 battery (Infor Battery Inc., Shenzhen China) of 5 Ah was
used to study the effect of temperature and current on heat generation during different
isothermal conditions. The cathode and anode materials are nickel-cobalt-manganese-oxide
(NCM) and graphite, respectively. The available voltage range of the tested battery was
from 2.75 V to 4.2 V, and the applicable temperature ranges from −20 ◦C to 55 ◦C, due to
the specification of battery. The isothermal environmental was provided by the Isothermal
Battery Calorimeter (IBC, THT Inc., Bletchley, UK), which could be used for in situ mea-
surement of the heat generation rate of the battery during the charge or discharge stage,
from −10 ◦C to 80 ◦C. Effects of both current and temperature on the battery characteristic
were taken into account. Four experiments, with temperatures from 10 ◦C to 55 ◦C, with
a 15 ◦C interval, were considered to study the effect of temperature on available capacity
and heat generation of the lithium ion battery. Six operating currents, from 1 A to 6 A,
with a 1 A interval, were used to study the effect of current on available capacity and heat
generation under an isothermal ambient temperature of 25 ◦C. Prior to the experimental
measurements, two charge and discharge cycles with 0.2 C (1 A) were performed on the
tested batteries using a charge-discharge cycler (Neware Inc., Shenzhen China) under
25 ◦C, and the batteries were discharged to 0% SOC before testing. The charge stage was a
constant current I with the cutoff voltage of 4.2 V, and a constant voltage 4.2 V with the
cutoff current of 40 mA (CC-CV charge). The discharge stage was a constant current I with
the cutoff voltage of 2.75 V (CC discharge). To analyze the mechanism of temperature on
heat generation and available capacity, tests of internal resistance were added. A fully
charged fresh cell was used to study the effect of temperature on direct-current resistance
(DCR) by using the Hybrid Pulse Power Characteristic (HPPC) method. The battery was
heated in an oven from 25 ◦C to 55 ◦C, with the internal resistance recorded every 5 min. A
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fully charged fresh cell was used to study the alternating-current (AC) impedance, which
was put into the oven. The AC-impedance was recorded at three temperatures of 25 ◦C,
40 ◦C, and 55 ◦C.

3.2. Theoretical Analysis of Heat Generation

Electric energy turns into chemical energy stored in the battery during charge, and the
stored chemical energy turns into electric energy during discharge for providing power.
Heat generation is inevitable during both the charge and discharge stage. Heat generation
can be divided into four parts, and it can be written by:

.
Q = I(V − U) + IT

∂U
∂T

− ∑i ∆Havg
i ri −

∫
∑j

(
H j − Havg

j

)∂cj

∂t
dv (1)

The first term, on right side, is the heat generated from resistive dissipation, which is
called irreversible heat, and always positive. The second term is the entropic heat, which is
reversible heat, and remains exothermic during discharge and endothermic during charge.
The third term represents the heat produced, or consumed, by any chemical reaction. The
last term accounts for the heat of mixing [29]. The reversible heat source term is of the
same order of magnitude as the irreversible term [30]. Compared to the first and second
terms, the third and last terms can be neglected under normal operating, and the following
simplified expression of the heat generation rate is given as follows [8,29].

.
Q = I(V − U)− IT

∂U
∂T

(2)

V − Uavg = IR (3)

where I means operating current, and it is positive during discharge and negative during
charge, U means the open voltage, V means the operating voltage, T represents ambient
temperature, and ∂U

∂T represents voltage temperature coefficient. The over-potential of the
battery is crucial to the internal heat generation during charge and discharge, which is
showed in Equation (3), and can be showed as the multiplication of operating current I
and internal resistance R. The internal resistance is the overall resistance of the battery,
including joule resistance, polarizable resistance, and contact resistance. The equation of
heat generation rate can be simplified as Equation (4). If both internal resistance and voltage
temperature coefficient were assumed as a function of temperature, the heat generation rate
is a quadratic function of the current under isothermal condition. The effect of temperature
on heat generation is more complicated, because both internal resistance and the voltage
temperature coefficient were changed as temperature changed.

.
Q = I2R − IT

∂U
∂T

(4)

Greater increase in direct current (DC) resistance after 50 ◦C storage is mainly caused
by an increase in the solution resistance, and degradation of the electrolyte [31]. In addition
to ohmic loss, the loss due to surface kinetics becomes important at a low temperature
regime [30]. Resistance due to both surface phenomena and concentration limitation are
also significant in a high rate regime [32].

As Equation (3) shows, the over-potential will increase as the operating current in-
creases. The voltage temperature coefficient is shown in the reversible term of heat genera-
tion. Forgez et al. [29] found the voltage temperature coefficient is negative up to SOC 35%,
and becomes positive for higher SOC values with the positive electrode of LiFePO4 (LFP).
Doris et al. [33] concluded that cell potential increases for LFP and decreases for LiCoO2
(LCO), with an increase in temperature.
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4. Conclusions

This work reveals the relationship between the operating current and ambient temper-
ature on the heat generation and available capacity of the Commercial 26,650 cylinder cell.
The heat generation rate under isothermal condition changes as a function of temperature
and operating current. Heat generation increases during both the charge and discharge
stage as the operating current increases under the same temperature, which would increase
linearly as square of the operating current, because of resistive dissipation. Heat generation
increases as the operating temperature decreases under same current, because the higher
temperature makes lower internal resistance. Available capacity is a function of tempera-
ture and operating current. The discharge capacity increases as the operating temperature
increases from 10 ◦C to 55 ◦C, and decreases as the operating current increasing from 1 A
to 6 A, as the available voltage range is related to internal resistance and current. Total
energy during the discharge stage, of both discharge capacity and heat generation, are all
translated from the electric power stored in batteries, which makes the discharge capacity
and heat generation have an opposite effect as the current or temperature changes. During
the charge stage, both heat generation and charge capacity come from the external power
source, and the relationship between heat generation and charge capacity is not strong.
However, the variation of internal resistance may be the reason why heat generation and
available capacity changes with the temperature. In addition, heat generation is closely
related to the safety of the lithium ion battery; therefore, the quantitative relationship
between heat generation and discharge capacity, as well as the aging mechanism of the
battery under high temperature, will be investigated in our next work.
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