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Abstract: The safety issue of lithium-ion batteries is a great challenge for the applications of EVs.
The internal short circuit (ISC) of lithium-ion batteries is regarded as one of the main reasons for
the lithium-ion batteries failure. However, the online ISC diagnosis algorithm for real vehicle data
remains highly imperfect at present. Based on the onboard data from the cloud battery management
system (BMS), this work proposes an ISC diagnosis algorithm for battery packs with high accuracy
and high robustness via voltage anomaly detection. The mean-difference model (MDM) is applied
to characterize large battery packs. A diagram of the adaptive integrated prediction algorithm
combining MDM and a bi-directional long short-term memory (Bi-LSTM) neural network is firstly
proposed to approach the voltage prediction of each cell. The diagnosis of an ISC is realized based
on the residual analysis between the predicted and the actual state. The experimental data in DST
conditions evaluate the proposed algorithm by comparing it with the solo equivalent circuit-based
prediction algorithm and the Bi-LSTM based prediction algorithm. Finally, through the practical
vehicle data from the cloud BMS, the diagnosis and pre-warn ability of the proposed algorithm for an
ISC and thermal runaway (TR) in batteries are verified. The ISC diagnosis algorithm that is proposed
in this paper can effectively identify the gradual ISC process in advance of it.

Keywords: lithium-ion batteries; the cloud battery management system (BMS); internal short circuit
(ISC); voltage prediction; thermal runaway (TR)

1. Introduction

The market sharing of electrical vehicles is rising rapidly in recent years in the world-
wide automobile market due to its performance superiorities such as energy conservation
and environmental friendliness [1,2]. However, the safety concerns of lithium-ion batteries
still exist [3,4]. The TR risk is the main reason for lithium-ion battery safety issues [5,6].
Annually, there are several uncontrollable fire accidents in EVs that are caused by battery
TR. An ISC is generally regarded as one of the main factors that trigger thermal abuse in
random use conditions. It is of vital importance to realize the online monitoring of the
micro internal short circuits of batteries for reducing vehicle fire accidents [7,8].

The TR process that is caused by ISCs is divided into three stages according to the
changes of the macro voltage, temperature, and the corresponding protection [9]. The
concepts were also reviewed in the work [10]. In actual working conditions, due to the lack
of thermocouples and the hysteresis of over-heat sensing, it is difficult to realize the accurate
monitoring and prewarning of thermal abuse. Many researchers confirm that the ISC occurs
when it is accompanied by different abuse conditions. Maleki et al. [11] investigated the
effects of an ISC based on the combination of thermal modeling and experimental methods.
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The results in the work showed that the batteries with a larger capacity and a higher charge
cut-off voltage and SOC have an increased risk of ISC. Gao et al. [12] proposed an ISC
diagnosis method using a mean-different equivalent circuit model on a series battery pack
model. Huang et al. [13] observed the in situ image of the ISC process after disassembly.
The work confirms that the internal micro short circuit increased when the voltage dropped
suddenly, while the ISC would aggravate the abnormal voltage dropping inversely and
lead to battery self-discharge. In previous studies, the ISC diagnosis of batteries pack
in real working conditions is hardly ever discussed. Due to the limitations of the online
applications, the ISC diagnosis of packs needs to meet the requirements of accuracy and
computational feasibility. In this work, the ISC diagnosis strategy is based on battery pack
modeling, which reduces the required calculation parameters significantly, while ensuring
accuracy. In addition, it is generally believed that the voltage of lithium-ion batteries has the
most intuitive macro performance of the ISC in the batteries. For practical vehicle data, the
voltage is the battery state with the lowest measurement cost and the highest measurement
accuracy, at present [14]. In the practical detection process, the slight sudden drop and
gradual drop of the voltage leading to an ISC are hard to monitor [15,16]. Therefore, it is
necessary to develop an adaptive ISC diagnosis algorithm based on the battery voltage.

The ISC diagnosis and warning strategies can be broadly divided into threshold-based,
model-based, and data-driven methods. The threshold-based methods realize the ISC warn-
ings based on the comparison of the monitoring variables and the corresponding thresholds,
which are the easiest to be implemented. However, it is difficult to achieve prewarning using
fixed thresholds in random working conditions. To extend the number of monitoring factors,
many researchers proposed entropy variables such as information entropy [17], modified
sample entropy [18], and Shannon entropy [19] to attain a real-time multi-fault diagnosis.
The model-based methods are more accurate in characterizing the behavior of battery packs,
while in actual dynamic conditions, it is challenging to accomplish its parameter identification.
Wang et al. [20] proposed a high-fidelity equivalent circuit model for an insulation fault
diagnosis. Schimid et al. [21] used an equivalent circuit model for a battery pack combined
with extra switches to realize the fault diagnosis and the isolation data. The data-driven
methods were applied widely in the fault detection area. Trained by rich sample data, the
neural network could realize complex state regressions and achieve model solving. There
being a lack of sample data with definite training labels considering the nonlinear properties
and the measurement noise are the limitations of the data-driven methods of ISC prewarning.
Li et al. [22] proposed an ISC warning framework combing the recurrent network and the
equivalent model to diagnose the abnormal voltage. Zhao et al. [23] combined the BP network
with big data statistical regulation to construct a fault detection model for the battery system.
However, most of the model-based methods were calibrated by experimental data. So, the
feasibility of these methods in real working conditions needs to be further improved. An
online ISC diagnosis and prewarning algorithm enabling its implementation on the cloud
BMS is of significance [24,25].

This work innovatively proposes an online pack ISC diagnosis method based on an
adaptive integrated prediction algorithm in the application scenario of random working
conditions. The core logic of ISC diagnosis in this work is evaluated by the residual analysis
between the predicted state and the real state of the packs. To achieve a high-precision state
prediction, a diagram of an adaptive integrated prediction algorithm combining equivalent
circuits and neural networks is, firstly, proposed. The ISC diagnosis operates online on
the battery cloud platform and the input and output are connected to the database and
visualized platform. The online data are from passenger cars using NMC batteries in
2021. Considering the feasibility of online monitoring and the effectiveness of the macro
variables, the voltage of the battery packs is chosen as the main analysis object to monitor
the abnormal self-discharge.

In this paper, the proposed algorithm firstly realizes the ISC detection of large battery
packs in real vehicles and is verified by the online cloud-side data. The determination of
the algorithm discriminant factors combines the equivalent circuit model of the battery
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pack, the cyclic neural network, and integrated learning. The concerns of the overfitting
and there being a low accuracy for the algorithm are resolved. The model of this method is
trained by a large volume of online data in real working conditions. The computational
logic of the state of cells in the battery packs is based on the MDM. The computing resource
requirement of this method is reduced greatly. The hard-to-detect slight drops and gradual
drops, leading to ISCs, are detected in the validation process, which proves the competent
performance of the proposed method in practical applications.

The rest of the paper is organized as follows. The model of the battery pack and
identification process are discussed in Section 2. The pack voltage prediction algorithm
and corresponding test are introduced in Section 3. Based on actual vehicle data from the
cloud platform, the proposed prediction framework is presented and validated in Section 4.
The conclusions and perspectives of this work are discussed in Section 5.

2. Battery Pack Modeling Based on the MDM

The modeling of battery packs plays an important role for the cell state estimation and
prediction. The MDM of battery packs was proposed in previous work [26]. The superiority
of the MDM is that it has a high accuracy with low requirements for computing resources.
The MDM can not only describe the mean state of the battery pack, but also focus on the
inconsistency of each cell, which makes it advantageous to be applied to the analysis of
a large battery pack. Gao et al. [27] evaluated four types of battery pack models. In the
work, the practicability of the MDM was proved, and MDM#2 was applied in the battery
fault identification test. In the MDMs, the battery pack is seen as an assembly of one CMM
(cell mean model) and several CDMs (cell different models). The physical meaning of
the CMM is the approximate average state of the whole pack, while the CDMs represent
the corresponding difference between the single cell state and the cells’ mean state. The
first-order Thevenin model is usually selected as the cell mean model. The CDMs are
mainly divided into four categories according to the difference in their consider deviation
quantities. The number of the considered deviation variables determines the accuracy,
robustness, and computational complexity of the MDMs.

Figure 1 shows the four categories of MDMs according to the number of unknown
variables. Among the four kinds of CDMs, CDM#4 is considered to be the most accurate
model due to it having the largest number of considering variables, but the computational
complexity of the model has exceeded that of the first-order Thevenin model. Considering
the difference in cell capacity, the identification of the CDM #3 model often depends on an
accurate SOC-OCV relationship calibration and SOC estimation, which makes it difficult to
be applied in the actual working conditions of large battery packs. CDM#1 and CDM#2 are
most widely used ones at present. Compared with CDM#1, CDM#2 has more application
significance for cell ISC detection considering the difference in the ohmic internal resistance
of the battery’s aging.

In this work, CDM#2 is chosen as the model of the cell difference due to it having a
high accuracy and low requirement in terms of the computational effort. The polarization
parameters Rp and Cp are simplified in MDM#2, which improves the robustness of the
model in real working conditions. Modeled by MDM#2, the unknown parameters in the
battery pack were reduced by almost 2/3, especially in the battery pack with more than
100 cells. The state functions of MDM#2 are shown in Table 1. In the process of model
identification, the relationships between the SOC, OCV, and the temperature, and the
SOCmean, ∆SOC, and ∆OCV are the main part of the model observation equation. Figures 2
and 3 show the SOC–Temperature–OCV three-dimensional schematic of the NMC batteries
and SOCmean–∆SOC–∆OCV three-dimensional schematic of the CDM#2, respectively.
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Table 1. State equations of MDM#2 model [12].

State Equations
.

UP,m = − 1
RP,mCP,m

UP,m + 1
CP,m

I
UT,m = UOCV,m −UP,m − RO,m I

where UT,m represents the mean terminal voltage
of the battery pack, RP,m and CP,m are the

polarization internal resistance and polarization
capacitance, respectively, UP,m is the polarization

voltage, R0,m represents the ohm internal
resistance, and I is the instantaneous current.

UOCV,m represents the OCV.
∆UT,i = ∆UOCV,i(∆SOCi)− ∆R0,i I

where ∆UT,i, ∆UOCV,i, ∆SOCi, and ∆R0,i
represent difference of corresponding parameters
between the cell i and mean battery model and I

is the instantaneous current.
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In Figure 2, OCV is set as a function of SOC and the temperature, where SOC and
temperature are two independent variables. Considering the influence of SOC and the
temperature on OCV, they will improve the accuracy of the model to a certain extent.
Compared with the single OCV–SOC curve, the accuracy of the model is improved due
to the additional consideration of the temperature variables. Mapping the relationship
between Figures 2 and 3 can be discussed as follows. In Figure 2, the red line is the
OCV–SOC curve when the temperature is −20 ◦C. According to the relative position of the
two points (−20, M, N) and (−20, mi, ni) in Figure 3, we can obtain that mi −M = ∆SOC
and ni − N = ∆OCV. Considering the actual physical meaning of SOC, we can obtain that
the known constraints are ∆SOC + M ≤ 1 and ∆SOC + M ≥ 0, and the corresponding
domain of function is [0, B− A]. In the application scenario, for the battery packs with good
consistency, the ∆SOC value tends to be close to 0, and the ∆OCV/∆SOC is approximate
to the derivative of OCV to SOC. Since the temperature is relatively independent of SOC,
the influence of the temperature can be ignored.

3. Voltage Prediction Framework

In this work, a large battery pack with the configuration of 86S4P is modeled based on
the MDM model. In the process of voltage prediction, in order to enhance the accuracy and
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robustness of the prediction, the whole algorithm structure is based on the MDM equivalent
circuit model to predict the mean and deviation state and modify the CMM prediction
results by combining the vehicle state data. The input of the adaptive prediction algorithm
is the vehicle state data including the speed, temperature, and mileage; the battery state
data include the voltage, temperature, and current. A neural network model on voltage
prediction is designed based on the onboard data. Via the AdaBoost algorithm, the ECM–
RLS prediction results were fused with the results of the neural network to improve the
robustness and accuracy of the overall estimation. The schematic diagram of the adaptive
integrated prediction algorithm is shown in Figure 4.
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3.1. Voltage Prediction via Bi-LSTM on CMM

The mean prediction for the CMM model using the Bi-LSTM network is proposed in
this work. The input of the network is made up of the vehicle and battery data, and the
predicted voltages form the output. The structure and the dataset of the proposed BI-LSTM
network are discussed as follows.

3.1.1. Schematic of BI-LSTM

Functionally, the memory cell of the BI-LSTM network can not only achieve long-term
memory, but also avoid the gradient disappearance and explosion problem. The input
information of every memory cell is comprised of the current moment input xt, the cell
state, and the hidden state ht−1 in t− 1 moment, and the current moment cell state ht and
hidden state ht form the output. The timely prediction of the LSTM is deduced by the
coupling of the forget gate, input gate, and output gate in every memory cell [28]. The main
computing process is shown as follows, where the weight matrix is W = [W f Wt Wo]

T ,

the bias matrix is b = [b f bt bo]
T . σ represents the sigmoid activation function and xt

represents the timely input [29].

Forget gate layer : ft = σ(W f · [ht−1, xt] + b f ) (1)

Input gate layer : it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)

Output gate layer : ot = σ(WO · [ht−1, xt] + bo) (4)

ht = ot · tanh(Ct) (5)
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Based on the above equations, the input and the hidden signal are corrected to produce
the coupling output, which leads to high relativity between the output and the time memory.
The parameters of the battery pack changed gradually as the capacity and performance
decreased, which made the current status of the batteries available to be predicted by the
online data with either a forward or backward time series [30]. In this section, the Bi-LSTM
was chosen as the core of the constructed neural network, and an additional regression
network was added to ensure its robustness. Compared with the traditional LSTM, Bi-LSTM
can achieve more timely learning efficiency rates based on the bidirectional network training
via the even numbers of the LSTM layers. The odd and even layers implement the forward
and reversed training and coding, respectively. The deducing process is shown as follows.

Forward deducing process:

→
it = σg

(→
Wixt +

→
Ri
→

ht−1 +
→
bi

)
→
ft = σg

( →
W f xt +

→
R f

→
ht−1 +

→
b f

)
→
ot = σg

( →
Woxt +

→
Ro

→
ht−1 +

→
bo

)
→
ct =

→
ft �

→
ct−1 +

→
it � tanh

( →
Wext +

→
Re
→

ht−1 +
→
be

)
→
ht =

→
ot � tanh

(→
ct

)
(6)

Backward deducing process:

←
it = σg

(←
Wixt +

←
Ri
←

ht−1 +
←
bi

)
←
f t = σg

( ←
W f xt +

←
R f

←
ht−1 +

←
b f

)
←
ot = σg

( ←
Woxt +

←
Ro

←
ht−1 +

←
bo

)
←
ct =

←
f t �

←
ct−1 +

←
it � tanh

( ←
Wext +

←
Re
←

ht−1 +
←
be

)
←
ht =

←
ot � tanh

(←
ct

)
(7)

The output of the network can be deduced as y∗t = Wr(
→
ht �

←
ht) + br. The schematic

diagram of the network is shown in Figure 5. The loss function of the whole network
including the Bi-LSTM and regression network is the optimization of the mean squared
error, which can be shown as follows.

loss = 0.5∑t
i=1 (y

∗
i − xi)

2 (8)

where y∗i represents the predicted signal and xi means the input signals [31].
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3.1.2. Discussion on Input Dataset for Neutral Network

Due to the fact that the macro performance of the lithium-ion batteries could be
concerned with the multi-field coupling reactions, it should be considered that the inputs of
the predicting model need to contain both the batteries attenuation data over time and the
time-series data of the batteries and vehicles [32]. In this work, the data sources that contain
the battery data and vehicle data could be obtained from the online cloud platform for the
EVs. Specifically, the data for the batteries contains the pack voltage, pack current, pack
SOC, isolation impedance value, pack temperature, cell voltage, and battery charge status.
The vehicle data includes the mileage, speed, the status of gear, acceleration pedal, etc. The
inputs of the network contain the mean temperature value, vehicle velocity, mileage, total
voltage value, current value, CMM voltage value, and value of pack SOC. The training data
are intercepted from the history data of normal, used vehicles. Moreover, the sampling
interval of the chosen data is 30 s, which could sufficiently prove the robustness and
feasibility of the proposed algorithm.

3.2. Cell Voltage Prediction Based on the MDM

Compared with the data-driven algorithm, the superiority of the equivalent circuit
model for prediction could limit the sudden change of the predicting results, and the
predicted results are more explicable. The unknown parameters R0, RP, CP, and ∆R0 in
MDM#2 need to be identified using the real-time voltage and current. The modeling process
includes the identification and parameter updating of CMM and CDM#2, in turn. Before
the parameter identification of the algorithm can take place, it is necessary to discretize
the MDM#2 model and deduce the model into the form of yi = Φiθi. The main derivation
process of CMM could be calculated as follows:

β1 = exp(−∆t/τ)
β2 = −R0

β3 = exp(−∆t/τ)R0 − (1− exp(−∆t/τ))RP,m

(9)


R0,m = −β2

RP,m = (β1β2 + β3)/(β1 − 1)
CP,m = (1− β1)∆t/((β1β2 + β3) ln(β1))

(10)


yi = ET,i

φi = [ET,i Ii Ii−1]

θi = [β1 β2 β3]
T

(11)



Batteries 2022, 8, 224 9 of 16

where ∆t represents the sampling interval, τ = RPCP, and ET = UT −UOCV . The deriva-
tion process of the CDM#2 model is similar, and the derivation result could be described
as follows: 

yi = ET,i
φi = [ET,i Ii Ii−1]

θi = [β1 β2 β3]
T

(12)

In this section, RLS with a forgetting factor is used as the identification algorithm. RLS
shows high robustness and stability for online parameter identification. The RLS algorithm
with a forgetting factor is used to enhance the tracking ability of the latest state [27]. The
MDM status prediction via RLS is based on the posterior estimation of every step and the
correction of it by the timely current input. Table 2 shows the process of the parameter
identification covering the algorithm initialization and the iteration process of the proposed
model. Additionally, accurate measurements of the voltage, current, and temperature are
significantly important for the parameter identification of the model. Online data cleaning
is an essential procedure to ensure the convergence of the identification results. In our
work, the raw data are cleaned by threshold filtering and Gaussian filtering on both the
cloud platform and the local server.

Table 2. MDM Model parameter identification and prediction.

(1) Identification process of CMM:

(i) Initialization: φm,θm,Km,Pm, λ, ∆φk, ∆θk, ∆Kk, ∆Pk for i = 1, 2, 3 · · ·

(ii) Calculate and measure the mean voltage: UT,m,i =
n
∑

k=1
UT,k,i/n

(iii) Calculate the mean cell gain matrix: Km,i =
(

Pm,i−1φT
m,i

)
/
(

λ + φT
m,iPi−1φm,i

)
(iv) Calculate the mean cell error covariance matrix: Pm,i =

(
Pm,i−1 − Km,iφ

T
m,iPm,i−1

)
/λ

(v) Update mean cell parameter matrix: θm,i = θm,i−1 + Km,i

(
ET,m,i − φT

m,i−1θm,i−1

)
(vi) Update estimated voltage: ym,i = φm,iθm,i
(vii) Update estimated voltage: ym,i = φm,i+1θm,i

(2) Identification process of CDM#2:

(i) Voltage update: UT,k,i = UT,k,i−1

(ii) Calculate gain matrix: ∆Kk,i =
(

∆Pk,i−1∆φT
k,i

)
/
(

λ + ∆φT
k,i∆Pk,i−1∆φk,i

)
(iii) Calculate error covariance matrix: ∆Pk,i =

(
∆Pk,i−1 − ∆Kk,i∆φT

k,i∆Pk,i−1

)
/λ

(iv) Update parameter matrix: ∆θk,i = ∆θk,i−1 + ∆Kk,i

(
∆ET,k,i − ∆φT

k,i−1∆θk,i−1

)
(v) Update estimated voltage: ∆yk,i = ∆φk,i+1∆θk,i
(vi) Update estimated voltage: ∆ypre

k,i+1 = ∆φk,i+1∆θk,i

3.3. Cell Voltage Prediction Correction Via Adaboost Solver

The Adaboost regression method is a kind of algorithm that can achieve information
integration through data training and weight optimization [33]. The inputs of the Adaboost
solver are the CMM predicted status by Bi-LSTM and the MDM predicted status by RLS.
The calculating process of the Adaboost algorithm is shown as follows. In the iteration
process of the algorithm training, the maximum error of classifiers of the training data
can be deduced as Et = max|yi − ht(xi)|, i = 1, 2, . . . , m, where the ht(xi) represents the
predicted result of the sample xi, and yi is the target value of xi. The square error is
chosen as the relative error of ht(xi) in (12), and the error ratio of the classifiers can be
calculated in (13).

eti =
(yi − ht(xi))

2

E2
t

, i = 1, 2, . . . , m (13)
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et =
m

∑
i=1

Distt(xi)eti (14)

The weight of classifiers and the data samples are updated by (15) and (16), respectively.

Zt =
m

∑
i=1

Distt(xi)w
1−eti
t (15)

wt =
et

1− et
(16)

Distt+1(xi) =
Distt(xi)

Zt
w1−eti

t (17)

The strong regressor of this algorithm in every step is updated by (17).

H(x) =
m

∑
i=1

ln
(

1
wt

)
f (x) (18)

3.4. Prediction Results Based on DST Conditions

The conventional prediction methods for the battery’s state prediction are the model-based
prediction methods and the data-driven prediction methods. In this subsection, the proposed
algorithm is compared with the solo equivalent circuit model (ECM) based a prediction algo-
rithm and the Bi-LSTM based prediction algorithm. In order to prove the accuracy optimization,
we chose a series battery pack with 14 cells as the tested pack in DST conditions to simulate
the actual working process of a large battery pack. In Figure 6, the voltage prediction results of
the CMM and cells are shown. Figure 6a shows the CMM voltage prediction results, and the
corresponding errors are shown in Figure 6b. The prediction results of Bi-LSTM and ECM-RLS
both show high accuracy with an error that is limited at around 2%, and the adaptive integrated
prediction algorithm (abbreviated as AIP in the figure) results show the highest accuracy with an
error that is below 0.450%. The cell voltage prediction results and errors are shown in Figure 6c,d.
It can be seen that the voltage prediction error for every cell could be maintained below 1.5% in
the DST conditions, which meets the application requirement.
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4. Results and Discussions
4.1. Data Sources

In this study, we use the actual vehicle data from the cloud platform to prove the
accuracy of the proposed algorithm and the ISC detection performance of specific burning
vehicles. The test data that were obtained from the actual vehicles were from ones that were
driven in China, and the NMC battery pack of each vehicle contains 344 cells arranged
in the configuration of 86S4P. Since four cells in parallel were equipped with one voltage
sensor, every four cells in parallel were assumed to be a cell module in this paper. The
data of five vehicles were mainly selected, including the data of three vehicles in normal
operation and two vehicles that were reported as faulty vehicles, which was confirmed
by a maintenance check. The data were collected by the sensor system of the vehicle BMS
and uploaded at sampling intervals of 30s. The upload process of actual data was not
continuous and only occurred when the vehicle BMS was online. We deployed a data
cleaning process that was related to the quality of the online data, and its format during the
signal deficiency was preprocessing. The time periods of the generation of the intercepted
data was mainly conducted in 2021. In the following work, the start time of the intercepting
data was recorded as “0” time, and the data were spliced at intervals of 30s.

4.2. Diagnosis Results on Real Vehicle Data

The adaptive integrated prediction algorithm combining Bi-LSTM and ECM-RLS is
proposed in the above sections. In this section, we present the actual vehicle data from
the cloud platform to prove the accuracy of the proposed algorithm and the ISC detection
performance of specific burning vehicles. According to the previous work [10], there are
many cases of ISCs, including ISCs that are due to extreme operating conditions such as
a puncture and micro ISC due to lithium precipitation. For extreme cases of ISCs, the
algorithm can achieve the advance monitoring of them in seconds and minutes. For the
micro ISCs, the algorithm can achieve the advance detection of them in hours. In addition,
the appearance of the ISC is different for different battery qualities and battery systems. As
notes in this section, as for the NMC packs, the algorithm achieved prewarning more than
10 h in advance of the ISC occurring.

The proposed algorithm was tested by the data from three different normal vehicles in
order to determine the practicability and accuracy of it under random working conditions.
The chosen vehicles are three random taxis, which ensures the generalizability of the
tested data. The intercepted data of the three vehicles were from different temperature
domains, which can fully test the generality of the proposed method in different seasons
and countries at different latitudes.



Batteries 2022, 8, 224 12 of 16

In this section, we use the actual vehicle data from the cloud platform to prove
the accuracy of the proposed algorithm and the ISC detection performance of specific
burning vehicles. The proposed algorithm was tested by the data from three different
normal vehicles in order to check out the practicability and accuracy of it under random
working conditions.

Figure 7a–c show the prediction results for the three normal vehicles at the temperature
ranges of −5~10 ◦C, 10~20 ◦C, and 20~30 ◦C, respectively. In Figure 7, the data of no. 1
vehicle were intercepted at the temperature range of−5~10 ◦C from 5 January 2021 00:00:00
to 12 January 2021 18:00:00. The data of no. 2 vehicle were intercepted at the temperature
range of 10~20 ◦C from 1 March 2021 00:00:00 to 7 March 2021 12:30:00. The data of no. 3
vehicle were intercepted at the temperature range of 20~30 ◦C from 15 April 2021 19:00:00 to
22 April 2021 09:00:00. In Figure 7a, compared with those of the no. 2 and the no. 3 vehicles,
the battery consistency of the no. 1 vehicle is poorer. In addition, due to the temperature
difference, the factors such as the driver’s driving behavior, the load on electrical appliances,
and the brake energy recovery have a subtle difference in their degree of influence on the
voltage. The prediction results show that at different ambient temperatures and consistency
levels, the voltage prediction error was limited at 3%. In Figure 7b,c, the prediction error
on real voltage is also limited at 3%, and it was even lower when the battery pack attained
high consistency, which attains the accuracy requirement.
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range of 20~30 ◦C.
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The no. 4 vehicle was identified as the defective sample, and the data were intercepted
10 h before the corrective maintenance was performed. The time range of the data in
Figure 8 is from 15 February 2021 00:00:00 to 4 March 2021 16:44:40. The predicted and
the real values of the voltage are shown in Figure 8. The dotted lines in Figure 8 of the
predicted error are the thresholds of the three-stage alarm. Based on the analysis of the
prediction error, the thresholds of the three fault levels were set, respectively. The primary
alarm was used to distinguish between a normal car and a car with the potential for ISC.
When this threshold is exceeded, the vehicle needs to be monitored in an engineering
facility to analyze the cause. The vehicles that exceed this threshold may also be defined
by other factors such as poor inconsistency. The follow-up monitoring of these vehicles is
required. Triggering the secondary alarm means that the vehicle has a higher risk of an ISC
occurring. This threshold will narrow the range of the vehicles with primary alarms, and
such vehicles can be prioritized in an engineering monitoring facility due to the manpower
and resource constraints. Triggering the tertiary alarm means there is a high probability
that the battery has suffered an ISC, and these vehicles need to be recalled for service.
Following the experts’ experience, the primary alarm error is at 1.62% (the green dotted
lines), the secondary alarm error is at 2.46% (the yellow dotted lines), and the tertiary
alarm error is at 3.25% (the red dotted lines). As for the no. 4 vehicle, there is a trend of
intermittent fault increase before it corrective maintenance was performed. In Figure 8, the
cell prediction error triggered the tertiary alarm especially in the high discharge depth stage
several times. In the discharge range at a low SOC, the prediction error of the no. 59 cell
module is frequently at a very high level, which was far higher than that of other cells in
the pack. These faulty cells (the no. 59 cell module) were proved to have incurred an ISC
due to impurity that existed during the corrective maintenance.
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The no. 5 vehicle as chosen as the TR sample, and the data were intercepted 10 h
before the steep increase in temperature and the pack valve ejection. The time range of the
data in Figure 9 is from 1 April 2021 00:06:00 to 31 April 2021 16:18:00. In Figure 9, there
was some sudden abnormal increase in the predicted error in the voltage prediction during
the last three discharge cycles. The voltage prediction faulty severity triggered the primary
and secondary alarms several times. Finally, at the 8500–9800 sampling time range (from
26 April 2021 14:20:00 to 31 April 2021 16:18:00), the tertiary alarm was triggered at two
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periods. Compared with the no. 4 vehicle, the prediction error of the no. 5 one shows a
gradually increasing trend, which reveals the deterioration process of the ISC in the battery.
The diagnosis of the deterioration process can effectively realize the early warning of TR.
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5. Conclusions

In this work, the online ISC detection algorithm of the battery pack is proposed based
on the online data from the cloud BMS. The modeling, state prediction, and ISC detection
of the large battery packs in real vehicles were conducted. The MDM model was adopted
for the modeling of large battery packs, in which the cell differences between the battery’s
internal impedance and SOC were taken into account in the deviation model. Compared
with the traditional first-order equivalent circuit model, the identified parameters of the
used model were reduced by 1/3, which at the same time significantly reduced the calcu-
lation difficulty and improved the robustness of the overall parameter identification. In
the process of the MDM voltage prediction, the CMM voltage prediction network archi-
tecture was built based on the Bi-LSTM neural network. The input data of our proposed
neural network contain the vehicle data collected by the cloud BMS, making up the lack of
vehicle information in the previous battery equivalent circuit model. Finally, the AdaBoost
algorithm was used to fuse the results of the neural network and the ECM-RLS prediction.
The problems of instability of a single neural network and the low accuracy of ECM-RLS
prediction are both solved. The final predicted voltage of each cell was obtained based on
the corrected average state and the deviation state of the voltage prediction.

The final verification data of this work include the data of real vehicles and packs from
the cloud BMS. The algorithm accuracy was verified by the data of three normal vehicles in
different temperature ranges, and the three-level error threshold was determined according
to the prediction error of the normal vehicles and expert experience. Finally, as it was tested
by the data with a known ISC problem, the ISC judgment of the vehicles was realized. The
algorithm was able to perform prewarning 10 h before the battery failure occurrence and
TR in the test data. In actual working conditions, a battery failure is random and influenced
by many factors. The ISC detection algorithm that is proposed in this paper can effectively
identify the gradual ISC process in advance of it.
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At present, battery management technology based on big data and cloud computing
is booming. This research work can be used as a battery safety detection algorithm on the
cloud-to-end collaboration framework, contributing to the online monitoring of electric
vehicle battery safety. The battery ISC detection algorithm based on the voltage prediction
that is proposed in this work will be continuously upgraded in the following application
process. With an excellent decision-making ability, our algorithm will be more adaptive for
different battery systems in future work.
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