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Abstract: This paper introduces the use of a new low-computation cost algorithm combining neural
networks with the Nelder–Mead simplex method to monitor the variations of the parameters of
a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy
(EIS) corresponding to a series of battery aging experiments. These variations could be correlated
with variations in the battery state over time and, therefore, identify or predict battery degradation
patterns or failure modes. The authors have benchmarked four different Electrical Equivalent Circuit
(EEC) parameter identification algorithms: plain neural network mapping EIS raw data to EEC
parameters, Particle Swarm Optimization, Zview, and the proposed new one. In order to improve
the prediction accuracy of the neural network, a data augmentation method has been proposed to
improve the neural network training error. The proposed parameter identification algorithms have
been compared and validated through real data obtained from a six-month aging test experiment
carried out with a set of six commercial 80 Ah VLRA batteries under different cycling and temperature
operation conditions.

Keywords: lead-acid battery; electrochemical impedance spectroscopy (EIS); neural networks (NN);
electrical equivalent circuit (EEC); State of Charge (SOC); State of Health (SOH)

1. Introduction

Among the most common battery characterization methods, we find energy counting,
open circuit voltage, and electrochemical impedance spectroscopy. Techniques based on
open circuit voltage are, undoubtedly, a line of great interest and applicability for many
battery applications as reflected in multiple works [1–4] but require a long time to diagnose
or are, sometimes, not able to be used for practical reasons. Online monitoring of the
Electrochemical Impedance Spectroscopy (EIS) undoubtedly allows the adjustment and
improvement of the certainty of battery state estimation as several works point out [5–10].
This paper focuses on a method to online monitor the variations of parameters of a pre-
viously selected equivalent circuit calculated from EIS datasets corresponding to a series
of battery aging experiments in line with the research lines of Muraiu et al. [11] which
identifies correlations between State of Health (SOH) conditions and some parameters
of a given equivalent circuit best fitted for the battery under testing. Although the pro-
posed algorithms have been validated with VLRA batteries, they can also be used with
lithium-ion batteries, as suggested by several recent works [12–14] using this technique for
identification and diagnosis of battery degradation modes.

Experiments involving the characterization of a battery for a given case of use require
specific laboratory equipment and experienced personnel and may take several months.
Once the characterization process has been done, designing the optimum real-time battery
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monitoring system is a second challenge, where the use of EIS sensors at cell level facili-
tates the continuous monitoring of SOH of the battery [15,16]. It is at this point that the
development of algorithms based on innovative models related to artificial intelligence
allows for innovative battery health and capacity estimation models.

Among the various artificial intelligence and machine learning techniques, neural
networks have been extensively used in the development of both data-driven and empirical
models for battery diagnosis and prognosis, as reported by Lombardo et al. [17], where EIS
appears as a very promising technique for obtaining even more precise online estimation
models for aging and health prediction.

Indeed, EIS data are very powerful tools for identifying battery electrical equivalent
circuit models since they help in evaluating different battery states and in operando con-
ditions as demonstrated by Kwiecien et al. [18] and other researchers [19–22]. Usually,
the identification of the electrical equivalent circuit parameters to be extracted from EIS
requires human expertise complementary to aided support specific software such as Zview,
which offers impedance/gain phase graphing tools and guided circuit selection advice, as
seen in the study realized by Csomós et al. [23].

The selection of appropriate Electrical Equivalent Circuit (EEC) is fundamental to the
use of EIS-based SOH estimation methods, which must also take full account of the impact
of temperature and SOC on the models as also reported by Wang et al. [24].

In this paper, the authors have applied neural networks in parameter identification
due to their capability to create and match nonlinear relationships between inputs (EIS data)
and outputs (parameters of the equivalent circuit) as one of the benchmarked algorithms,
as in the case of Chun et al. [25]. Jiménez-Bermejo et al. have also used them to obtain a
more accurate battery SOC estimation for electric vehicles [26], and Yang et al. [27] have
used BP neural networks for the proper estimation of a battery SOH in electric vehicles,
in which they used a large amount of experimental data to feed the neural network (NN).
However, neural networks need extensive training data sets. Obtaining experimental
data for all battery-operating conditions is highly time-consuming, so the authors propose
training the neural network with an initial set of experimental EIS data plus a second
set of augmented synthetic data corresponding to variations of the experimental values
for the equivalent circuit model as a means of minimizing the neural network training
error. This data augmentation, however, must be generated in a very careful way since
EIS parameters are very dependent on each other. The authors propose an innovative data
generation method where the new data has the impact of reducing the learning error of the
neural network without affecting the final error of estimation of the equivalent electrical
circuit parameters.

Taking into account the need to start from experimental data to train the neural
networks, Capizzi et al. [28] have used recurrent NN to model the charge and discharge
voltage curves of lead acid batteries.

Another very interesting study based on neural networks is Young et al. [29], which
trains the networks with float voltage, specific gravity, and water addition electrolyte
level data as estimators of battery performance. On the other hand, Morita [30] proposed
estimating the SOC from observable data with a preprocess involving the calculation of
intermediate variables of an equivalent model, specifically with the polarization index,
which allowed a substantial improvement of the estimation accuracy.

The authors propose an automatic way to identify all the parameters of an equivalent
circuit in a selected battery by taking a series of EIS data using a previously trained NN
whose output parameters are used as inputs to the simplex optimization algorithm.

The method is similar to that described by Lagarias et al. in [31], which generates the
final values of the equivalent circuit parameters. Once the NN is trained, an algorithm
with very low computational cost can be implemented, allowing for the design of systems
useful for monitoring the evolution of the equivalent circuit parameters associated with
the battery.
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In a previous work, the authors already reported a two-step parameter identification
algorithm [32] in order to monitor variations of the EEC parameters, whereas, in this
new work, the target is to make a more rigorous comparison with other known methods
while identifying new algorithms that offer low computational costs. Additionally, the
objective motivating this new hybrid approach is to find a new and more accurate automatic
identification of EEC parameters from raw EIS data. Although there are many works in
the literature that use NN to estimate SOC and SOH values, we have not found any work
similar to the approach of this paper where the NN is used as an estimator of the initial
values or input parameters to initialize a second algorithm, in this case the Nelder–Mead
simplex method.

The proposed hybrid algorithm, together with the augmentation data method, proves a
significant enhancement in the identification accuracy as compared to a plain NN mapping
EIS raw data and the EEC parameters algorithm, the Particle Swarm Optimization algorithm
or Zview.

The authors’ ultimate goal with the proposed method is to automatically online moni-
tor variations in the equivalent circuit parameters in operation with low-cost impedance
sensors that allow for the induction of variations in battery health status or failure modes
from the electrochemical interpretation of these values.

Although the validation of the proposed algorithm tests has been carried out with lead
batteries, the methodology is valid for other electrochemicals currently more in vogue such
as lithium where there are many works that rely on models based on the interpretation of
equivalent electrical circuits as shown in the work of Lidiya Komsiyska et al. [33].

The paper structure is as follows. Materials and methods, that is, the experimental
setup and the EEC selection are given in Section 2. Section 3 presents the algorithms
benchmarked with more details related to the neural network data augmentation algorithm,
the parameter identification process, and the validation and test of the selected neural
network. Section 4 offers a discussion of the results. Finally, in Section 5 some main
conclusions can be found, as well as possible directions of future developments.

2. Materials and Methods
2.1. Experimental Setup and Battery Testing Protocol

The data used for this work is based on a set of six 12 V 80 Ah high temperature
lead-acid batteries, aged for six months under different cycling and temperature opera-
tion conditions.

These batteries had improved performances at high temperatures, when compared
with standard lead-acid batteries. They included an anode composed of lead (Pb), while
the cathode consisted of a paste of lead oxide (PbO2). The electrodes were separated by
a porous separator impregnated with an electrolyte containing an aqueous acid solution
of H2SO4. Electrochemical data of the performed experiments were gathered by means of
Arbin potentiostat, and the EIS measurements were recorded by means of a Gamry 3000
battery tester.

The ageing was carried out at different temperatures and charge/discharge duty
cycles. From these accelerated ageing tests, parameters/signals of the electrochemical
system were extracted for later use with the benchmarked identification algorithms. The
testing protocol included the Constant-Current (CC) charge stage and the Constant-Voltage
(CV) charge stage up to 2.35 V/cell in each lead acid battery, while the discharge process
was carried out up to 1.8 V/cell. Periodic impedance measurements were performed at
different SOC levels (0%, 20%, 40%, 60%, 80%, and 100%). At each SOC level, 12 h of
relaxation was established before performing the impedance measurement, which was
performed under an excitation current of 50 mA and in a frequency range from 10 mHz to
10 kHz. In this way, impedance spectra were obtained at different states of charge in the
batteries at different aged conditions and from the same manufacturer.

Figure 1 shows four Nyquist plots selected from the EIS experimental data, namely
at 25 ◦C and 50 ◦C with SOC values of 100% and 20% for new and degraded cells. As
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an example, the axes of dispersion in temperature, SOC and SOH values are illustrated.
Although it is not the purpose of this work to identify in detail the causal relationships, the
figure and the parameter values clearly demonstrate that it is possible to identify variations
of the parameters for different operating states of the lead acid battery. It is from this point
onwards that it is proposed to identify an equivalent circuit model that can be fitted to the
different Nyquist pattern diagrams with the lowest mean error for all conditions tested.
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Figure 1. Sample Nyquist plots for a new and aged battery at different temperatures and SOC.

2.2. Battery Characterization and EEC Selection

The EIS extracted from the tests were analyzed in order to specify an EEC model. This
step let the authors extract the parameters of the model that must be identified. Figure 2a
illustrates the equivalent circuit model proposed by the authors for all of the experiments
in this article. Constant phase elements were employed to determine this EEC, in order
to adjust the experimental data. An electrode’s non-ideal capacitive behaviors were taken
into account; therefore, a constant phase element (CPE) was used. This CPE is a capacitor
whose α parameter represents the leakage. This element becomes a pure capacitor when α
is equal to 1 [24]. A CPE element was selected instead of a Warburg one since the latter, at
lower frequencies, does not support the fitting of impedance spectra for lower SOC levels
(0% SOC). The independent variables such as ohmic resistance, R2, R3, CPE1-T, CPE1-P,
CPE2-T, CPE2-P, and their variations were manually extracted by Zview software from the
adjustment (Figure 2b).
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Figure 2. (a) Equivalent proposed EEC circuit model and (b) Adjustment of the EIS of the 12 V block
at the 100% state of charge (SOC) using Zview software.

Table 1 shows the EEC parameters values (R1, R2, R3, CPE1-T, CPE1-P, CPE2-T, and
CPE2-P) fitted to the selected EEC (see Figure 2b) using the Zview software. Figure 2b
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presents both the EIS experimental data selected from the Gamry instrument (black line)
and the EEC fitting (green line). These reference parameters are taken into account to
generate the augmented data.

Table 1. Parameters extracted from the EIS using manual adjustments in the Zview software.

SoH R1 CPE1-T CPE1-P R2 CPE2-T CPE2-P R3

100% 0.0027176 7.17 0.85729 0.0092174 87.18 0.65421 -
80% 0.0027953 9.21 0.77865 0.0039696 184.13 0.61221 0.21606
60% 0.0031349 11.21 0.75909 0.0021683 218.80 0.56847 0.08871
40% 0.0033452 18.01 0.62091 0.0020905 229.50 0.50060 0.066692
20% 0.0039584 14.92 0.65745 0.0020599 199.40 0.38122 0.12304
0% 0.0046775 10.12 0.70804 0.0025044 152.20 0.29418 -

According to the proposed equivalent electric circuit for the adjustment of the experi-
mental data, the following equations must be applied to develop the EIS augmented data
to train the neuronal network, taking into account the R1, R2, R3, CPE1-T, CPE1-P, CPE2-T,
and CPE2-P parameters. Equations (1) and (2) show the fundamental significance of the
parameters i and ω.

i =
√
−1 (1)

w = 2·π· f (2)

Equations (3)–(7) show the significance of the different parameters in the expression
of impedance adjustment.

Zcpe1 =
1

cpet1· (i·w)cpep1
(3)

Zcpe2 =
1

cpet2· (i·w)cpep2
(4)

Zcpe1R2 =
Zcpe1· R2

Zcpe1 + R2
(5)

Zcpe2R3 =
Zcpe2· R3

Zcpe2 + R3
(6)

Zbattery = R1 + L1·i·w + Zcpe1R2 + Zcpe2R3 (7)

3. Design Methodology

In this section, we briefly present the three identification algorithms benchmarked ver-
sus the NN with Nelder–Mead algorithm that is described with more detail in Section 3.4.

The more important highlight is the combination of both methods: neural networks for
the first identification step and the fine identification step with simplex method for faster
convergence. The authors have suggested making the first identification step with neural
networks and not with PSO or other swarm optimization algorithms because swarm opti-
mization algorithms must make many trial and errors until they reach a good identification
parameter set before the second identification step. The neural network makes this process
during training; therefore, the neural network makes the first identification process with
trained knowledge and obtains results immediately. On the contrary, swarm optimization
algorithms make the first identification process without any trained knowledge because
they always start with random parameter sets.

When a weights-based identification algorithm identifies circuit parameters, the pa-
rameter related to the biggest weights frequency samples are better identified than other
parameters. In some cases, this approach could be good if it is clear which parameter is the
most relevant for a given application. In this case, the algorithm gives the same importance
to all frequencies, in order to identify all the parameters based on the whole frequency
range in order to identify whole parameters with the same importance.
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3.1. Zview Algorithm

A human expert assisted by Zview software uses the least-squares fit method in which
the human expert supplies the initial value of the identified circuit parameters. Zview
algorithms provide different options in order to apply a least-square error method to reduce
the cost function given in Equation (8). The maximum optimization iterations number is
set to 100. The cost function proposed in Equation (8) takes into account the module of
error between the measured experimental EIS and the model’s theoretical EIS. This error
has complex values for different frequencies. In this study, the cost evaluates the error’s
squared modules. Thus, the cost function has a real value.

J =
1

2·Nsamples
·

u=Nsamples

∑
i=1

∣∣∣∣|Zbatterytheo(
→

Pwi)− Zbatteryexp(
→
wi)|

∣∣∣∣2 (8)

3.2. Neural Network Algorithm

In this case, the authors have trained a NN to map the EIS data (inputs: the EIS
impedance values at 121 different frequencies, from 0.01 Hz to 10 kHz) to the EEC param-
eters (outputs: R1, R2, R3, CPE1-T, CPE1-P, CPE2-T, and CPE2-P). The artificial neural
network takes the experimental EIS measures for different frequencies and then returns the
EEC parameters of the equivalent circuit. Therefore, the artificial neural network needs a
set of EIS spectrum as training patterns, as well as its corresponding EIS equivalent circuits’
parameters. In order to calculate the electrical equipment parameters from a measured
electrochemical impedance spectroscopy, the authors propose a feed-forward neural net-
work fed by augmented data generated from a small amount of manually adjusted EIS
experimental data. This NN consists of a series of layers, with the first one being the input
layer (mapped to the EIS data) and the last one being the output layer (mapped to the
EEC parameters). We proposed training one neural network for each parameter, i.e., seven
networks corresponding to the seven parameters of the selected equivalent circuit.

3.3. PSO Algorithm

The third algorithm is based on the Particle Swarm Optimization (PSO) algorithm, and
the authors have applied its standard version [23]. We used the following: constant inertia
weights set to 0.1, max exploration coefficient ϕ1 set to 0.1, max exploitation coefficient ϕ2
set to 0.1, the number of particles set to 5, and the time integration constant set to 1. The
algorithm’s maximum number of iterations is 500. In order to have a good convergence time,
the authors have limited the number of particles to 5 because the search space dimension
(the number of identified parameters: R1, R2, R3, CPE1-T, CPE1-P, CPE2-T, and CPE2-P)
is large.

3.4. Neural Network with Nelder-Mead Algorithm

Finally, a neural network combined with the Nelder–Mead Simplex [31] method is
suggested. There are several algorithms that minimize the square values of a cost function.
Actually, scientific programming languages like Matlab or Python (through module like
scipy) apply different alternatives. On the one hand, Matlab applies the Nelder–Mead
optimization algorithm. On the other hand, Python-Scipy applies different algorithms (for
example, dogleg and the Region reflective algorithm or Levenberg–Marquand algorithm).
All these algorithms achieve good results when initial values are near the global optimal
point. Unfortunately, the authors needed an algorithm that automatically matches the EIS
experimental spectrum without initial values for the EIS equivalent circuit’s parameters.
The authors have chosen the Nelder–Mead algorithm because it is widely applied in
optimization problems like system parameter identification. The Nelder–Mead algorithm
has been set with standard values (reflection coefficient: $ = 1, expansion coefficient: χ = 2,
contraction coefficient: γ = 1⁄2, and shrinkage coefficient: σ = 1/2), with 1600 as the maximum
iterations number, with 10−4 tolerance for cost function value and 10−4 tolerance for
optimization variable (in this case, the tolerance of each identified circuit parameter). The
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method of generating the augmented data and the training process of the neural networks
that generate the initialization values of the Nelder–Mead algorithm is detailed hereafter.

3.4.1. Experiment-Based Data Augmentation

Figure 3 identifies the main phases of the overall NN generation process, and Figure 4
further details the flowchart used for the data augmentation.
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Using the experimental data obtained during the aging process, Nyquist diagrams
were auto-generated from EIS, obtaining complementary augmented data via the following
algorithmic random data-generation process. Given a log file of the experimental values
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corresponding to 20%, 40%, 60%, 80%, and 100% of the SOC battery status and using its
minimum and maximum values for each parameter (R1, R2, R3, CPE1-T, CPE1-P, CPE2-
T, and CPE2-P), a random value was generated per parameter. Therefore, the authors
automatically generate several pseudorandom values. In order to guarantee that the
augmented data do not negatively affect the estimation error of the proposed algorithm,
only values between the maximum and minimum limits of the real spectra of the tests have
been used, and, on the other hand, in the final validation of the algorithms, the networks
that generate the lowest errors have been selected with the validation data against real
spectra obtained from the characterization tests, which has shown that the augmented data
have a positive impact on minimizing the training error of the neural networks, but not on
the final error.

These values are generated via human expert guided identification parameter values.
The minimum and maximum values are chosen following these estimated parameter values.
The main objective is to augment the training data with a possible parameter value set. In
order to assure that the augmented data is possible, the authors compared the EIS spectra
that generates this parameter set with the experimental data.

With these generated parameters, the EIS was calculated and compared with its
experimental counterpart, measuring the Mean Square Error (MSE). If it was not superior
to a selected value (50% in this case), the circuit was accepted and the Nyquist diagram
was plotted; otherwise, another round of parameters was randomly generated, until the
MSE became acceptable. The MSE error (J) was calculated as shown below in Equation (8):

The process illustrated in Figure 5 was repeated as many times as required until the
target samples met the acceptance MSE value. Every circuit with an acceptable MSE was
saved for the next part of the process, which is training the neural network.
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3.4.2. Training, Validation and Testing of the Neural Network Trained with
Augmented Data

In order to evaluate the training of the seven neural networks (to identify each of the
seven Nelder–Mead simplex parameters needed to calculate the EIS: R1, R2, R3, CPE1-T,
CPE1-P, CPE2-T, and CPE2-P) using the augmented data generated from the experimental
data, multiple neural networks were trained with different running conditions, namely by
modifying the number of neurons and epochs.
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Out of the complete set of experimental and augmented data set (20,036 equivalent
circuits), 70% was used for neural network training, 15% was used for neural network
validation and the remaining 15% for testing of the neural network.

All trained networks were one-hidden-layer neural networks. The selection of a single
intermediate layer was decided on the basis of initial trials where networks were trained
with more intermediate layers and where it was observed that no better results or accuracies
were obtained and that training times were much longer and, in some cases, convergence
in the training process was not achieved. In order to select the number of neurons in
the networks, the authors performed different trials. The authors selected the best NN
architecture. The results obtained in this process are explained in Section 4. The hidden
layer neurons’ activation function is a sigmoid one. The number of maximum epochs and
the maximum validation fail number are set in order to achieve good validation results.
Notice that the full set of real and augmented data were only used to train the intermediate
NN estimators of the initialization values of the Nelder process, but the 36 real data was
finally use for the benchmark of the compared algorithms.

4. Results and Discussion

The process of training and selection of the best performing neural network and the
comparison of the algorithms is presented in this section.

4.1. Neural Network Training and Validation

For the first experiment, a neural network of 10 neurons was trained during 100 epochs.
The results are illustrated in Figures 6–9. In Figure 6, the average error is acceptably close
to zero. The error in Figures 6–9 represents mean square error made on circuits parameters,
during the artificial neural network’s training. These mean square error values are plotted
in a histogram. The mean square error of the loss training function is calculated over the
number of parameters of the circuit. Moreover, the training algorithm averages the mean
square error over the number of training patterns. Then, no validation errors are perceived
in the training state graph. Furthermore, high R correlation coefficient values are achieved
on all of the examined datasets at 0.999. Finally, no outliers are found. Therefore, the model
explains all data without making any extreme error. Hence, the variance in errors is very
low. The training algorithm stopped at the maximum of 100 epochs.
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Figure 6. Error Histogram 10 neurons after 100 epochs.

In the second experiment, the maximum number of epochs was set to 200, maintaining
10 neurons, to assess whether the error reduced its medium value, a circumstance that is
fulfilled. The main change seen in this case, compared to the previous one, is the error
histogram, as the average error is now even closer to zero than before (Figure 7). This value
results from the increment in the epoch quantity, as the network has more cycles to train.
The remaining plots show very little change, so they are not included in the paper.
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Figure 7. Error histogram with 10 neurons and 200 epochs.

It is clear that, the more layers an artificial network has, the easier fitting the data
becomes; however, complex neural networks equal more overfitting problems. In addition,
adding more neurons per layer usually makes it easier to understand the different features
that a neural network learns, in comparison with increasing the amount of layers the
network has. In our proposal, there is only one hidden layer, which learns a specific
input pattern. This property makes the neural network more interpretable. Moreover, the
universal approximation theorem states that any square function integrable in a domain,
can be approximated as well as needed with only one width hidden layer [34].

Thus, in the third experiment, the number of neurons was reduced to 5 while the
maximum epochs or iterations was maintained at 100 in order to appropriately compare
the results with those obtained in the first experiment. In Figure 8, we can clearly observe
that the average error increases, indicating slightly worse but still acceptable results from
the training.
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For the fourth and last experiment, the neuron quantity was increased up to 20 and
the epoch number was maintained at 100 to assess whether the pattern identified in earlier
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experiments was repeated in these/later ones. As expected, by increasing the number of
neurons, the error was reduced (Figure 9).
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Figure 9. Error histogram with 20 neurons and 100 epochs.

Table 2 summarizes the results corresponding to the four experiments. The proposed
neural networks show a low error interval in all cases when compared with one another,
suggesting that the estimated results are precise. The peak values are reached with the
20-neuron network at 100 epochs being slightly better than the results reached with the
10-neuron network at 200 epochs. In Table 2, the authors summarize the different train-
ing experiments performed. The conclusion reached is that the optimum case is one in
which the resulting layers with 10 neurons and 200 epoch shows a sigmoid activation
function. Storing the connection weights in smaller networks is less resource intensive
and, furthermore, can be implemented in hardware more efficiently. In fact, each iteration
of the training of a smaller network takes less time and memory compared with bigger
networks. Therefore, as the 10-neuron network achieves acceptable results, the other cases
have been discarded.

Table 2. Neural network analysis with different conditions. MSE loss function is calculated with the
test dataset.

Neurons Epochs Min Error Max Error Gradient MSE Loss Function

10 100 −0.00021 0.000904 1.4505 × 10−4 1.2121 × 10−6

10 200 −0.0003 0.000383 5.8395 × 10−4 3.3363 × 10−7

5 100 −0.00122 0.001006 9.2107 × 10−6 1.9786 × 10−6

20 100 −0.00076 0.000177 3.7085 × 10−4 8.3897 × 10−7

4.2. Algorithm’s Performance Comparison

The four algorithms of Section 3 have been tested with the 36 EIS experiments corre-
sponding to 0%, 20%, 40%, 60%, 80%, and 100% of SOC at different-aged states during the
six months of tests. The 36 EIS experiments come from the 6 different SOC values analyzed
at 6 different experiment tests (1 per month). In all these experiments, authors compared
the algorithm with the real experimental EIS results.

Figure 10 shows a sample set of experiments compared with the four algorithms
as Nyquist plots. The equivalent circuit parameter values obtained with the proposed
Neural + Optimization (black line) better match the desired real-time experimental data
than those obtained with the other methods.
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Figure 10. Final results and comparison with the experimental data.

In Figure 11, the authors show the Bode diagram of a sample set of experiments with
the four algorithms with Bode diagrams. The best results are achieved through combined
identification between the artificial neural network and the Nelder–Mead algorithm. The
high frequency behavior is not important for the authors’ objective because this inductive
parameter does not give any information about State of Health.
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Figure 11. Bode diagrams of final results and comparison with the experimental data.

The complete results corresponding to 36 experimental EIS datasets (that is included
in the Supplementary Material) are somehow consistent with the ones reported in Figure 10.
As it can be seen in Figure 12 the results corresponding to the hybrid neural network +
Nelder–Mead Simplex method algorithm data series are the best for all 36 experiments.
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Average error corresponding to the estimation of the EEC parameters of the four
benchmarked methods for the 36 EIS experimental dataset is compared in Table 3.

Table 3. Average error of the four benchmarked methods for the 36 EIS experimental dataset.

Benchmarked Method Average Error

MeanErrorNeural 6.29%

MeanErrorZview 2.01%

MeanErrorNeuralOpt 0.49%

MeanErrorPso 5.92%

5. Conclusions

The initial objective motivating this work sought to find a new and more accurate
automatic identification procedure of EEC parameters from raw EIS data in order to
implement monitoring variations of the earlier-mentioned EEC parameters.

The authors have benchmarked four different EEC parameter identification algo-
rithms: Zview, neural network mapping EIS raw data to EEC parameters, Particle Swarm
Optimization, and a new one using a neural network combined with the Nelder–Mead
Simplex method.

We verified that the proposed augmentation data method used to train the neural
network together with the Nelder–Mead simplex model has proven to be the best, perform-
ing, on average, 0.49% error for a given set of experimental EIS data and for a previously
selected equivalent circuit. As compared to previous works of the authors where PSO was
used with the same idea to initialize the Nelder–Mead, the authors believe that the neural
networks offer lower computations cost for the final online implementation.

The method proposed in this work affords the advantage that offers a direct application
of the suggested algorithm in subsequent monitoring of the equivalent circuit parameters’
evolution over the lifespan of the battery. Thus, the new hybrid model provides a valuable
tool to automatically supervise the battery’s state of health at any time.

The complementary experimental data provided in the annexed file (Supplemen-
tary_Materials.zip) presents the results of the overall data sets corresponding to the six
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months of aging tests with a wide range of battery degradation and SOC conditions. Each
experiment has been labelled where each corresponding plot is coded with the number
of the month and the level of SOC. The 36 experiments correspond to six monthly data
recording and six level of SOC per month, resulting in 36 battery conditions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/batteries8110238/s1.

Author Contributions: Conceptualization, E.Z.; data curation, J.O. and J.G.-O.; formal analysis,
J.M.d.I., E.Z. and J.M.L.-G.; funding acquisition, J.O.; investigation, J.O., J.M.d.I. and J.G.-O.; method-
ology, R.F.; project administration, R.F.; resources, J.O. and R.F.; software, J.M.d.I., E.Z. and J.G.-O.;
supervision, E.Z. and J.M.L.-G.; validation, J.M.L.-G.; visualization, J.M.d.I.; writing—original draft,
J.O.; writing—review and editing, J.M.L.-G. All authors have read and agreed to the published
version of the manuscript.

Funding: Special thanks should also be expressed to the Torres Quevedo (PTQ) 2019 Aid from the
State Research Agency, within the framework of the State Program for the Promotion of Talent and
its Employability in R + D + i, Ref. PTQ2019-010787/AEI/10.13039/501100011033.

Acknowledgments: The authors express their gratitude to CIC energiGUNE for the facilities and to
the Bcare innovation team for their technical and scientific contributions to this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bose, C.S.C.; Laman, F.C. Battery state of health estimation through coup de fouet. In Proceedings of the INTELEC. Twenty-

Second International Telecommunications Energy Conference (Cat. No.00CH37131), Phoenix, AZ, USA, 10–14 September 2000;
pp. 597–601. [CrossRef]

2. Ng, K.-S.; Moo, C.-S.; Chen, Y.-P.; Hsieh, Y.-C. State-of-Charge Estimation for Lead-Acid Batteries Based on Dynamic Open-Circuit
Voltage. In Proceedings of the 2008 IEEE 2nd International Power and Energy Conference, Johor Bahru, Malaysia, 1–3 December
2008; p. 5. [CrossRef]

3. Li, A.; Pelissier, S.; Venet, P.; Gyan, P. Fast Characterization Method for Modeling Battery Relaxation Voltage. Batteries 2016, 2, 7.
[CrossRef]

4. Olarte, J.; de Ilarduya, J.M.; Zulueta, E.; Ferret, R.; Kurt, E.; Lopez-Guede, J.M. Estimating State of Charge and State of Health of
Vented NiCd Batteries with Evolution of Electrochemical Parameters. JOM 2021, 73, 4085–4090. [CrossRef]

5. Calborean, A.; Bruj, O.; Murariu, T.; Morari, C. Resonance frequency analysis of lead-acid cells: An EIS approach to predict the
state-of-health. J. Energy Storage 2020, 27, 101143. [CrossRef]

6. Badeda, J.; Kwiecien, M.; Schulte, D.; Sauer, D. Battery State Estimation for Lead-Acid Batteries under Float Charge Conditions by
Impedance: Benchmark of Common Detection Methods. Appl. Sci. 2018, 8, 1308. [CrossRef]

7. Pascoe, P.E.; Anbuky, A.H. Standby Power System VRLA Battery Reserve Life Estimation Scheme. IEEE Trans. Energy Convers.
2005, 20, 887–895. [CrossRef]

8. Gopikanth, M.L.; Sathyanarayana, S. Impedance parameters and the state-of-charge. II. Lead-acid battery. J. Appl. Electrochem.
1979, 9, 369–379. [CrossRef]

9. Huet, F. A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries.
J. Power Sources 1998, 70, 59–69. [CrossRef]

10. Lukács, Z.; Kristóf, T. A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy. Electrochim.
Acta 2020, 363, 137199. [CrossRef]

11. Murariu, T.; Morari, C. Time-dependent analysis of the state-of-health for lead-acid batteries: An EIS study. J. Energy Storage 2019,
21, 87–93. [CrossRef]

12. Harting, N.; Wolff, N.; Krewer, U. Identification of Lithium Plating in Lithium-Ion Batteries Using Nonlinear Frequency Response
Analysis (NFRA). Electrochim. Acta 2018, 281, 378–385. [CrossRef]

13. Kim, W.; Jang, D.; Kim, H.J. Understanding Electronic and Li-Ion Transport of LiNi0.5Co0.2Mn0.3O2 Electrodes Affected by
Porosity and Electrolytes Using Electrochemical Impedance Spectroscopy. J. Power Sources 2021, 510, 230338. [CrossRef]

14. Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A Comparison between Electrochemical
Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify
the Effects of Degradation Modes within Battery Management Systems. J. Power Sources 2017, 360, 301–318. [CrossRef]

15. Wang, X.; Wei, X.; Dai, H. Estimation of state of health of lithium-ion batteries based on charge transfer resistance considering
different temperature and state of charge. J. Energy Storage 2019, 21, 618–631. [CrossRef]

16. Olarte, J.; de Ilarduya, J.M.; Zulueta, E.; Ferret, R.; Fernández-Gámiz, U.; Lopez-Guede, J.M. A Battery Management System with
EIS Monitoring of Life Expectancy for Lead–Acid Batteries. Electronics 2021, 10, 1228. [CrossRef]

https://www.mdpi.com/article/10.3390/batteries8110238/s1
http://doi.org/10.1109/INTLEC.2000.884309
http://doi.org/10.1109/PECON.2008.4762614
http://doi.org/10.3390/batteries2020007
http://doi.org/10.1007/s11837-021-04943-0
http://doi.org/10.1016/j.est.2019.101143
http://doi.org/10.3390/app8081308
http://doi.org/10.1109/TEC.2005.853749
http://doi.org/10.1007/BF01112492
http://doi.org/10.1016/S0378-7753(97)02665-7
http://doi.org/10.1016/j.electacta.2020.137199
http://doi.org/10.1016/j.est.2018.11.011
http://doi.org/10.1016/j.electacta.2018.05.139
http://doi.org/10.1016/j.jpowsour.2021.230338
http://doi.org/10.1016/j.jpowsour.2017.03.042
http://doi.org/10.1016/j.est.2018.11.020
http://doi.org/10.3390/electronics10111228


Batteries 2022, 8, 238 15 of 15

17. Lombardo, T.; Duquesnoy, M.; El-Bouysidy, H.; Årén, F.; Gallo-Bueno, A.; Jørgensen, P.B.; Bhowmik, A.; Demortière, A.; Ayerbe,
E.; Alcaide, F.; et al. Artificial Intelligence Applied to Battery Research: Hype or Reality? Chem. Rev. 2022, 122, 10899–10960.
[CrossRef]

18. Kwiecien, M.; Badeda, J.; Huck, M.; Komut, K.; Duman, D.; Sauer, D. Determination of SoH of Lead-Acid Batteries by Electro-
chemical Impedance Spectroscopy. Appl. Sci. 2018, 8, 873. [CrossRef]

19. Densmore, A.; Hanif, M. Determining Battery SoC Using Electrochemical Impedance Spectroscopy and the Extreme Learning
Machine. In Proceedings of the 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, Taiwan, 1–4
November 2015.

20. Kiel, M.; Sauer, D.U.; Turpin, P.; Naveed, M.; Favre, E. Validation of single frequency Z measurement for standby battery
state of health determination. In Proceedings of the INTELEC 2008—2008 IEEE 30th International Telecommunications Energy
Conference, San Diego, CA, USA, 14 September 2008; pp. 1–7. [CrossRef]

21. Raijmakers, L.H.J.; Danilov, D.L.; van Lammeren, J.P.M.; Lammers, M.J.G.; Notten, P.H.L. Sensorless battery temperature
measurements based on electrochemical impedance spectroscopy. J. Power Sources 2014, 247, 539–544. [CrossRef]

22. Karden, E.; Buller, S.; de Doncker, R.W. A method for measurement and interpretation of impedance spectra for industrial
batteries. J. Power Sources 2000, 85, 72–78. [CrossRef]

23. Csomós, B.; Fodor, D. Identification of the material properties of an 18650 Li-ion battery for improving the electrochemical model
used in cell testing. Hung. J. Ind. Chem. 2020, 48, 33–41. [CrossRef]

24. Wang, X.; Wei, X.; Zhu, J.; Dai, H.; Zheng, Y.; Xu, X.; Chen, Q. A review of modeling, acquisition, and application of lithium-ion
battery impedance for onboard battery management. eTransportation 2021, 7, 100093. [CrossRef]

25. Chun, H.; Kim, J.; Han, S. Parameter identification of an electrochemical lithium-ion battery model with convolutional neural
network. IFAC-PapersOnLine 2019, 52, 129–134. [CrossRef]

26. Jiménez-Bermejo, D.; Fraile-Ardanuy, J.; Castaño-Solis, S.; Merino, J.; Álvaro-Hermana, R. Using Dynamic Neural Networks for
Battery State of Charge Estimation in Electric Vehicles. Procedia Comput. Sci. 2018, 130, 533–540. [CrossRef]

27. Yang, D.; Wang, Y.; Pan, R.; Chen, R.; Chen, Z. A Neural Network Based State-of-Health Estimation of Lithium-ion Battery in
Electric Vehicles. Energy Procedia 2017, 105, 2059–2064. [CrossRef]

28. Capizzi, G.; Bonanno, F.; Tina, G.M. Recurrent Neural Network-Based Modeling and Simulation of Lead-Acid Batteries Charge-
Discharge. IEEE Trans. Energy Convers. 2011, 26, 435–443. [CrossRef]

29. Young, R.E.; Li, X.; Perone, S.P. Prediction of individual cell performance in a long-string lead/acid peak-shaving battery:
Application of artificial neural networks. J. Power Sources 1996, 62, 121–134. [CrossRef]

30. Morita, Y.; Yamamoto, S.; Lee, S.H.; Mizuno, N. On-line detection of state-of-charge in lead acid battery using both neural network
and on-line identification. In Proceedings of the Iecon 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris,
France, 6–10 November 2006; Volume 1–11, pp. 3379–3384.

31. Lagarias, J.C.; Reeds, J.A.; Wright, M.H.; Wright, P.E. Convergence Properties of the Nelder—Mead Simplex Method in Low
Dimensions. SIAM J. Optim. 1998, 9, 112–147. [CrossRef]

32. Olarte, J.; de Ilarduya, J.M.; Zulueta, E.; Ferret, R.; Fernández-Gámiz, U.; Lopez-Guede, J.M. Automatic Identification Algorithm
of Equivalent Electrochemical Circuit Based on Electroscopic Impedance Data for a Lead Acid Battery. Electronics 2021, 10, 1353.
[CrossRef]

33. Komsiyska, L.; Buchberger, T.; Diehl, S.; Ehrensberger, M.; Hanzl, C.; Hartmann, C.; Hölzle, M.; Kleiner, J.; Lewerenz, M.; Liebhart,
B.; et al. Critical Review of Intelligent Battery Systems: Challenges, Implementation, and Potential for Electric Vehicles. Energies
2021, 14, 5989. [CrossRef]

34. Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [CrossRef]

http://doi.org/10.1021/acs.chemrev.1c00108
http://doi.org/10.3390/app8060873
http://doi.org/10.1109/INTLEC.2008.4664020
http://doi.org/10.1016/j.jpowsour.2013.09.005
http://doi.org/10.1016/S0378-7753(99)00385-7
http://doi.org/10.33927/hjic-2020-06
http://doi.org/10.1016/j.etran.2020.100093
http://doi.org/10.1016/j.ifacol.2019.08.167
http://doi.org/10.1016/j.procs.2018.04.077
http://doi.org/10.1016/j.egypro.2017.03.583
http://doi.org/10.1109/TEC.2010.2095015
http://doi.org/10.1016/S0378-7753(96)02423-8
http://doi.org/10.1137/S1052623496303470
http://doi.org/10.3390/electronics10111353
http://doi.org/10.3390/en14185989
http://doi.org/10.1016/0893-6080(91)90009-T

	Introduction 
	Materials and Methods 
	Experimental Setup and Battery Testing Protocol 
	Battery Characterization and EEC Selection 

	Design Methodology 
	Zview Algorithm 
	Neural Network Algorithm 
	PSO Algorithm 
	Neural Network with Nelder-Mead Algorithm 
	Experiment-Based Data Augmentation 
	Training, Validation and Testing of the Neural Network Trained with Augmented Data 


	Results and Discussion 
	Neural Network Training and Validation 
	Algorithm’s Performance Comparison 

	Conclusions 
	References

