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Abstract: Lithium secondary batteries have been the most successful energy storage devices for nearly
30 years. Until now, graphite was the most mainstream anode material for lithium secondary batteries.
However, the lithium storage mechanism of the graphite anode limits the further improvement of the
specific capacity. The lithium metal anode, with the lowest electrochemical potential and extremely
high specific capacity, is considered to be the optimal anode material for next-generation lithium
batteries. However, the lifetime degradation and safety problems caused by dendrite growth have
seriously hindered its commercialization. Carbon materials have good electrical conductivity and
modifiability, and various carbon materials were designed and prepared for use in lithium metal
batteries. Here, we will start by analyzing the problems and challenges faced by lithium metal. Then,
the application progress and achievements of various carbon materials in lithium metal batteries are
summarized. Finally, the research suggestions are given, and the application feasibility of carbon
materials in metal lithium batteries is discussed.
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1. Introduction

The use of fossil fuels has made invaluable contributions to the development of
human society. However, problems such as resource depletion and environmental pollution
force human beings to develop new energy systems and adjust the energy structure [1].
New systems such as wind, hydro, solar, and fuel cells are expected to provide clean
and sustainable energy for human society. As an effective way to store and transfer
energy, electrochemical energy storage has gradually become an indispensable part of the
transformation of energy structure [2,3]. Since the advent of lithium-ion batteries in the
19th century, they have become an irreplaceable energy storage device in various fields [4,5].
With the unremitting efforts of researchers, the safety performance, specific energy, and
cycle life of lithium-ion batteries were greatly improved, but they are still far from meeting
the development needs of electric vehicles and portable electronic devices [6,7]. The human
pursuit of high specific energy, long life, and fast charging batteries has never stopped.
In the current commercial lithium secondary batteries, high nickel cathode materials can
provide a specific capacity of 220 mA h g−1 and an energy density of 800 W h kg−1 [8].
However, the intercalation cathode material is limited by the crystal volume and element
quality. Its specific energy is difficult to further improve. In this case, research to improve
the energy density of batteries has mainly focused on the anode side. Widely used graphite
materials have low specific capacity and energy density (specific capacity 372 mA h g−1,
energy density 300–400 W h kg−1). Lithium metal anodes with high specific capacity
(3860 mA h g−l or 2061 mA h cm−3) are considered to be the best choice for next-generation
lithium battery anodes [9–11]. In particular, Li-S and Li-O2 batteries assembled with
high specific energy cathodes such as S or O2 can provide specific energies as high as
650 W h kg−1 and 950 W h kg−1, respectively.
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Lithium metal anodes were extensively studied long before graphite anodes, but were
not effectively used until now. There are three main problems faced by Li metal anodes:
(1) The depositing/stripping of Li metal during cycling is accompanied by a huge change
in its volume, which leads to changes in the internal pressure and structure of the battery.
(2) The side reactions that occur continuously with the battery cycle consume the effective
components in the electrode and the electrolyte, resulting in a decrease in the coulombic
efficiency of the battery or even failure. (3) Lithium metal tends to grow dendrites in
liquid electrolytes. The formation of lithium dendrites has serious consequences: the
larger specific surface area leads to more reactions with the electrolyte; the fracture of
dendrites during cycling will cause part of the lithium metal to detach from the collector
and become “dead lithium”, resulting in a decrease in electrode capacity.; dendrites may
also penetrate the separator and contact the positive electrode to short-circuit the battery
and cause thermal runaway. The above problems have become the bottlenecks that limit
their commercialization [12,13]. Paul Albertus et al. [14] believe that the application of a
lithium battery needs to maintain an average Coulomb efficiency of 99.98% in 1000 cycles
to reach the commercial level, and the current lithium metal anode is still far from this goal.

After more than 40 years of continuous research and deepening understanding of
lithium metal electrodes, various strategies to control dendrite growth and improve the
efficiency of lithium metal electrodes were proposed. These strategies have made various
modifications and designs mainly from the perspectives of electrolytes, separators, SEIs,
current collectors, composite electrodes, and solid electrolytes.

Electrolyte regulation For the electrolyte development of the lithium metal battery,
the composition and structure of SEI are mainly regulated by changing the lithium salts
and additives in the electrolyte [15]. In recent years, high-concentration and localized
high-concentration electrolytes based on a solvated structure design have obtained lithium
metal batteries with high Coulombic efficiency by promoting the decomposition of anions
and reducing the reduction of free solvents [16–20]. However, expensive lithium salts and
diluents hinder its further application. In addition to forming SEI, the electrolyte can also
inhibit the growth of lithium dendrites by forming an electrostatic screen shielding layer
on the surface of the lithium metal electrode. Cs+, Rb+, and other cations can suppress the
formation of lithium dendrites by adsorbing on the surface of lithium metal to form an elec-
trostatic shielding layer, thereby enabling the uniform deposition of lithium metal [21,22].

Separator modification: In the design of the lithium metal battery separator, the main
purpose is to improve its Young’s modulus to suppress the growth of lithium dendrites and
to design the separator with uniform pores to obtain uniform lithium ion flux [23–26]. In
addition, immobilizing inorganic materials or organic groups on the separator can obtain
separators with specific functions, which can improve the safety and cycling stability of
lithium metal batteries [27,28]. Utilizing the pore structure of the separator can also assist
in adjusting the solvation structure of the electrolyte to obtain a functionalized separator
with a wide electrochemical stability window and a stable SEI structure [29].

Artificial SEI The composition and structure of the SEI film on the surface of Li metal
electrodes can be directly and effectively adjusted in situ by changing the composition
of the electrolyte [30]. Artificial SEI layers can also be constructed on Li metal surfaces
by ex situ methods [31,32]. Various organic polymers, inorganics, and organic–inorganic
composite SEIs can provide high mechanical properties to suppress dendrite growth, high
lithium ion conductivity to reduce polarization, and thus, improve the stability of lithium
metal electrodes during battery cycling [33–38].

Current collector design Electrodeposition of lithium metal is closely related to its
current density, and a large specific surface area can effectively reduce the local current
density to inhibit dendrite growth [39]. Adding lithiophilic or nucleation-inducing sub-
stances to the current collector can also reduce the nucleation overpotential or uniform Li
metal deposition. Metals and carbon materials such as Cu and Ni with excellent electronic
conductivity are the two most common current collector materials [40–42]. In addition,
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carbon materials have the characteristics of light weight, high electronic conductivity, and
easy modification and are one of the excellent current collectors for lithium metal anodes.

Solid-state electrolytes: Solid-state electrolytes mainly include organic polymer elec-
trolytes, inorganic ceramic electrolytes, and organic–inorganic composite electrolytes [43–48].
Solid-state electrolytes are considered to be the technical direction with the most potential to
enable lithium metal batteries to be applied. Solid-state electrolytes are believed to provide
high modulus and migration numbers close to unity without causing lithium dendrite
growth. However, in the research of organic and inorganic solid electrolytes, it is found
that short circuit or thermal runaway caused by dendrite growth is still inevitable [49–51].

Various new materials and technologies were tried to solve the problems faced by
lithium metal batteries, but the commercialization of lithium metal electrodes is still full of
challenges. Compared to other materials, carbon materials have excellent electrical and
thermal conductivity. Their structural plasticity and easy modification allow them to be
designed in a variety of shapes and have specific functions. With the rise in materials
science and nanotechnology, carbon materials of different dimensions (0–3D) and different
scales (nano-millimeter) were developed and played a huge role in lithium metal batteries
(Figure 1). In lithium metal batteries, carbon materials are mainly used as current collectors
to disperse current and heat. In addition, carbon materials can also be used as additives
or artificial SEI to participate in lithium metal electrodes to inhibit dendrite growth and
improve battery life.
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This review will start from the inherent scientific issues of metallic lithium anodes
and introduce the problems and challenges of metallic lithium electrodes. Then, various
applications of carbon and its derivatives/composites in lithium metal batteries are sum-
marized. Finally, the research of carbon materials in lithium metal batteries is discussed
and suggestions for its development direction are provided.

2. Issues and Challenges of Lithium Metal Anodes
2.1. Nucleation of Lithium Metal

Lithium metal anodes undergo reversible plating and stripping during battery cy-
cling. In each charging process, lithium atoms go through a process from nucleation to
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growth. The nucleation state and growth pattern of Li metal have a huge effect on its
deposition/dendritic morphology.

The nucleation process of Li metal is controlled by the properties of the deposition
substrate, multiphysics, and SEI. Yan et al. [52] compared the nucleation process of lithium
metal on different metal substrates and found that there is an obvious overpotential when
lithium metal is deposited on the surface of a copper current collector, that is, the energy
used to overcome the heterogeneous nucleation (Figure 2a). In contrast, the deposition of
Li metal on the Au surface first forms a Li-Au alloy above 0 V, and then, there is almost no
nucleation overpotential during the deposition process below 0 V (Figure 2b). They also
verified the deposition process of lithium metal on more than ten current collectors and
proved that the properties of the current collector have a significant impact on the lithium
metal nucleation process (Figure 2c,d).
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Figure 2. Voltage distributions of galvanostatic Li deposition on copper (a) and gold (b) substrates
(EWE is the potential of the working electrode) (c) Voltage distributions of various materials with
a certain solubility in Li during Li deposition, (d) Displacement voltage distributions for various
materials with negligible solubility in Li [52].

In addition to the properties of the deposition substrate, the presence of various
physical fields can have an effect on the nucleation of lithium metal. Han et al. [39]
observed the nucleation state of Li metal on copper substrates at different temperatures
and current densities by SEM (Figure 3a). At low temperature and high current density, the
nucleation density of Li metal is higher and the particles are smaller. Further, Pei et al. [53]
combined the analysis of the homogeneous nucleation equation and the SEM experimental
results to conclude that the size of the lithium metal nuclei is inversely proportional to the
overpotential, and the nucleus number density is proportional to the third power of the
overpotential (Figure 3b–d).
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Figure 3. (a) Nucleation states of Li metal on copper substrates at different temperatures and current
densities [39]. (b) Schematic diagram of the relationship between critical Li core radius and areal
core density and Li deposition overpotential. (c) Experimental voltage distributions of Li deposition
on Cu at different current densities. (d) Schematic illustration of the size and density of Li nuclei
deposited on Cu at different overpotentials [53].

The use of lithium metal deposition materials with low nucleation overpotential and
effective current density is an important way to regulate lithium metal nucleation. Carbon
materials with high specific surface area and conductivity can effectively disperse the
current density and, thus, make lithium metal deposition more uniform. Compared with
metals such as Cu and Ni, carbon materials are lithiophilic. The lithiophilicity of carbon
materials can be enhanced after doping or chemical treatment. Lithiophilic deposition
substrates can induce more uniform nucleation and growth of lithium metals.

2.2. Growth of Dendrites and Formation of “Dead Lithium”

In terms of material properties, Li metal has a low surface energy and a high diffusion
barrier (calculated about 0.14 eV [54]). During deposition, lithium metal tends to form
a larger surface area to reach the lowest surface energy state. At the same time, lithium
atoms have high diffusion energy on the bulk surface, which makes it difficult for atoms
formed by lithium ions to obtain electrons to diffuse on the surface and form a uniform
and flat structure. The natural properties of lithium metal determine that it tends to grow
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one-dimensionally, that is, to grow into dendrites [55,56]. The growth of lithium dendrites
is mainly affected by factors such as electric field strength, lithium ion flux, current density,
temperature, and pressure [56]. The widely accepted space charge model can well explain
the growth of Li dendrites in the liquid electrolyte. Chazalviel et al. [57] believed that the
space charge layer in dilute solution led to the formation of dendrites. Specifically, at the
initial stage of deposition, lithium ions on the electrode surface gain electrons and become
atoms. However, the lithium ions in the convection region cannot reach the electrode
surface quickly due to the slow diffusion rate, and a concentration gradient of lithium ions
is formed on the electrode surface at this time. The existence of the concentration gradient
resulted in the formation of a space charge layer on the electrode surface. At this time, the
uneven surface of the electrode leads to uneven distribution of electrons at the interface.
Under the combined action of the electric field and ion field, lithium ions will preferentially
deposit at the protrusions (lithium metal nucleation sites or dendrite tip), a phenomenon
also known as the “tip effect”. This growth mode is quantified by Sand and summarized as
Sand’s Time formula to predict the critical condition for dendrite growth [58]:

τs = πD(
C0ezc

2J
)

2
(

µa + µc

µa
)

2
(1)

D =
µaDc + µcDa

µa + µc
(2)

where e is the electron charge, J is the effective electrode current density, zc is the number of
cationic charges, and C0 is the initial concentration of Li salt. µc and µa are the anion and
cation (Li+) mobilities, D is the bipolar diffusion coefficient, Dc and Da are the cation and
anion diffusion coefficients.

It can be seen that reducing the current density can increase the onset time of lithium
dendrite growth so as to achieve the effect of inhibiting the growth of dendrites. Yoon et al. [59]
analyzed the relationship between the current density and deposition capacity of lithium
metal and the growth of lithium dendrites and showed that with the increase in current
density, the critical discharge required to form dendrites first increased and then decreased.
In addition to current density, compressive stress is also an important factor controlling
dendrite growth. Monroe and Newman predicted that shear moduli over 109 Pa could
inhibit dendrite growth [60]. Temperature can affect the growth process and morphol-
ogy of dendrites through the diffusion and surface reaction of Li ions. The study by
Hitoshi Ota et al. [61] found that dendrite growth is more serious at a lower temperature.

In different electrolyte systems, dendrites appear with different morphologies, indicat-
ing that the morphology of lithium dendrites is also controlled by the electrolyte and the
SEI derived from the electrolyte. The presence of defects induces Li metal deposition on
current collectors or SEIs at defects, dislocations, grain boundaries, and even contaminants.
Under the combined action of many influencing factors, lithium dendrites can appear as
needle-like, mossy-like or tree-like. The growth of dendrites mainly leads to three adverse
consequences: penetrating the separator and contacting the positive electrode, resulting
in a short circuit or even thermal runaway of the battery; the larger specific surface area
aggravates the reaction between the electrode and the electrolyte, which consumes the
electrolyte in the battery; lithium dendrites form “dead lithium” after fracture, resulting in
the loss of lithium inventory.

“Dead lithium” formed after lithium dendrites break cannot continue to participate
in the electrochemical process because they are separated from the current collector. The
loss of active material will lead to the decrease in battery capacity, and the large amount
of “dead lithium” wrapped by SEI on the electrode surface will also hinder the mass
transfer process and cause the increase in polarization. The composition of SEI and “dead
lithium” in pulverized lithium anodes can be quantitatively analyzed by titrimetric gas
chromatography [62] and nuclear magnetic resonance spectroscopy [63]. This study found
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that the “dead lithium” that loses activity due to detachment from the current collector is
an important factor leading to battery capacity decay.

In this case, the growth of lithium dendrites can be inhibited by reducing the effective
current density. Carbon materials with high specific surface areas can disperse the current
density, thereby reducing the local current density to obtain a dendrite-free lithium metal
anode. At the same time, carbon materials with good mechanical strength as artificial SEI
can also inhibit the growth of lithium dendrite.

2.3. Solid Electrolyte Interphase of Lithium Metal Anode

The solid electrolyte interphase (SEI) is a passivation interface layer formed by chemi-
cal and electrochemical reactions on the surface of the negative electrode. Similar to the
solid-state electrolyte, the SEI acts to conduct lithium ions and block further reactions
between the active material and the electrolyte. Lithium metal and the electrolyte will
form an SEI film through a chemical reaction at the moment of contact. This is because the
electrochemical window of general organic electrolytes is about 1–4.7 V (relative to Li metal
potential), and the electrode potential of Li metal is lower than the reduction potential of
electrolytes [64,65]. Goodenough et al. [2] explained this phenomenon using the molecular
orbital theory. As shown, the thermodynamic stability of the electrolyte is determined by
its lowest unoccupied orbital (LUMO) and highest occupied orbital (HOMO) (Figure 4).
When the electrochemical potential of the electrode is higher than the LUMO or lower
than the HOMO, the contact between the electrode and the electrolyte will no longer be a
thermodynamically stable state. At this time, the electrode will react with the electrolyte to
form SEI. The presence of SEI complies with the electrochemical potentials of the electrode
and electrolyte so that no further reactions can take place.

Batteries 2022, 8, x FOR PEER REVIEW 7 of 26 
 

“Dead lithium” formed after lithium dendrites break cannot continue to participate 
in the electrochemical process because they are separated from the current collector. The 
loss of active material will lead to the decrease in battery capacity, and the large amount 
of “dead lithium” wrapped by SEI on the electrode surface will also hinder the mass trans-
fer process and cause the increase in polarization. The composition of SEI and “dead lith-
ium” in pulverized lithium anodes can be quantitatively analyzed by titrimetric gas chro-
matography [62] and nuclear magnetic resonance spectroscopy [63]. This study found that 
the “dead lithium” that loses activity due to detachment from the current collector is an 
important factor leading to battery capacity decay. 

In this case, the growth of lithium dendrites can be inhibited by reducing the effective 
current density. Carbon materials with high specific surface areas can disperse the current 
density, thereby reducing the local current density to obtain a dendrite-free lithium metal 
anode. At the same time, carbon materials with good mechanical strength as artificial SEI 
can also inhibit the growth of lithium dendrite. 

2.3. Solid Electrolyte Interphase of Lithium Metal Anode 
The solid electrolyte interphase (SEI) is a passivation interface layer formed by chem-

ical and electrochemical reactions on the surface of the negative electrode. Similar to the 
solid-state electrolyte, the SEI acts to conduct lithium ions and block further reactions be-
tween the active material and the electrolyte. Lithium metal and the electrolyte will form 
an SEI film through a chemical reaction at the moment of contact. This is because the elec-
trochemical window of general organic electrolytes is about 1–4.7 V (relative to Li metal 
potential), and the electrode potential of Li metal is lower than the reduction potential of 
electrolytes [64,65]. Goodenough et al. [2] explained this phenomenon using the molecular 
orbital theory. As shown, the thermodynamic stability of the electrolyte is determined by 
its lowest unoccupied orbital (LUMO) and highest occupied orbital (HOMO) (Figure 4). 
When the electrochemical potential of the electrode is higher than the LUMO or lower 
than the HOMO, the contact between the electrode and the electrolyte will no longer be a 
thermodynamically stable state. At this time, the electrode will react with the electrolyte 
to form SEI. The presence of SEI complies with the electrochemical potentials of the elec-
trode and electrolyte so that no further reactions can take place. 

 
Figure 4. Schematic diagram of open circuit energy in liquid electrolytes. ΦA and ΦC are the anode 
and cathode working potentials, respectively. Eg is the electrolyte thermodynamic stability window. 
μA > LUMO and/or μC < HOMO indicate that the SEI layer needs to be formed to reach a kinetically 
stable state [2]. 

Figure 4. Schematic diagram of open circuit energy in liquid electrolytes. ΦA and ΦC are the anode
and cathode working potentials, respectively. Eg is the electrolyte thermodynamic stability window.
µA > LUMO and/or µC < HOMO indicate that the SEI layer needs to be formed to reach a kinetically
stable state [2].

The native SEI formed by chemical reaction is often not enough to maintain stability
during the electrochemical process, so the lithium metal electrode will also reduce the
electrolyte through an electrochemical reaction to form SEI. During the electrochemical
process, not only the new electrolyte is reduced to increase and thicken the SEI but the
structure and composition of the original SEI also change. In addition, continuous cracking
and regeneration of SEI also occurs due to the volume change and non-uniformity of
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plating/stripping of Li metal. As shown in Figure 5, Cohen et al. [66] believed that during
the deposition of lithium metal, the growth of lithium dendrites would also break the
SEI, and the fresh lithium metal would continue to react with the electrolyte to form the
SEI. When the lithium metal is peeled off, the brittle SEI film will rupture to expose the
fresh lithium metal. At this time, the exposed lithium metal will continue to react with the
electrolyte to form a new SEI.
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and dissolution, with dendrite formation and heterogeneous Li dissolution accompanied by surface
film destruction and repair [66].

The ideal SEI is believed to have high insulating properties, high lithium selectivity,
and ionic conductivity; to be as thin as possible; with high strength and resistance to
expansion and contraction stresses; to be insoluble in electrolytes; over a wide range of
operating temperatures, and with stability under potential [67]. The active material and
electrolyte components consumed to form the SEI lead to a decrease in battery capacity
and even failure. The formation and evolution of SEI are affected by many factors, such
as electrolyte composition, current collector material, temperature, electrolyte salt concen-
tration, reduction current rate, side reactions, impurities, and uneven current distribution.
The low thickness, complex structure, heterogeneous composition, and dynamic properties
(spatial and temporal variations of morphology and composition) of SEI pose challenges to
a comprehensive understanding of SEI [30].

With the development and innovation of characterization techniques, people’s under-
standing of the structure and composition of SEI is constantly changing. Since SEI is an
insoluble substance formed by the in situ reaction of lithium metal with the electrolyte,
its chemical composition is dependent on the formulation of the electrolyte (salt anion,
solvent, additives, concentration, and solvation structure). In addition, factors such as
current density, cut-off voltage, capacity utilization, temperature, and pressure also have
certain effects on the composition of SEI [30]. In the classic carbonate electrolyte with
LiPF6 as lithium salt, SEI is mainly composed of organic alkyl lithium carbonate (ROCO2Li,
(ROCO2Li)2), inorganic lithium salts (LiF, Li2CO3, Li2O), and a small amount of fluorophos-
phate (LiPOxFy)) [68–70]. There are three main models for the structure of SEI: the bilayer
model [71], the mosaic model [72], and the mosaic pudding model [30,73] (Figure 6). Aur-
bach’s analysis based on Raman, FTIR and XPS found that the SEI is a mixture of various
organic and inorganic substances, and that the inorganic-rich inner layer (in contact with
Li) and the organic-rich outer layer (in contact with the electrolyte) constitute the two-layer
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structure of the SEI. The mosaic model believes that the SEI on the surface of lithium metal
is composed of different lithium salts with mosaic-like morphology and stacking, and its
inner layer is inorganic components, and the outer layer is mainly organic components.
In recent years, based on the application of cryo-transmission electron microscopy, more
researchers believe that the structure of SEI occurs when some single crystals of inorganic
lithium salts are dispersed in an amorphous structure, and the first-principles density
functional theory calculations and experiments have proven that amorphous regions and
grain boundaries are the main routes for lithium ion transport [74].
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The regulation of the electrolyte directly affects the composition and structure of the
anodes’ SEI and is one of the simplest and most effective ways to improve the SEI. The
design and use of an artificial SEI can compensate for the shortcomings of natural SEI and
obtain a stable interface structure and dendrite-free lithium metal anode.

3. Recent Progress
3.1. Electrolyte Additives

The Fermi level of Li metal is lower than most common organic electrolytes, which
leads to the inevitable reduction in Li salt and solvent molecules on the anode surface to
form a solid electrolyte interphase (SEI). As an important component of the electrolyte, the
use of additives can improve the various properties of anodes by forming SEI, changing
the solvated structure, or changing the electric double layer structure [75–78].

Different from general electrolyte additives, carbon materials have electronic conduc-
tivity and can promote lithium metal nucleation when used as additives. Cheng et al. [79]
used octadecylamine-treated nanodiamonds as additives in lithium metal batteries. Nan-
odiamonds with low diffusion barriers provide nucleation sites for Li metal, inducing the
uniform deposition of Li metal. The nanodiamond-decorated electrolyte enables stable
cycling of Li|Li symmetric cells at 2.0 mA cm−2 and 1.0 mA cm−2 for 150 h and 200 h,
respectively. A Coulombic efficiency of 96% was obtained in Li|Cu cells. The addition
of surfactants is bound to affect the battery. Hu et al. [80] added graphene quantum
dots into the electrolyte to continuously control the growth morphology of lithium metal.
Graphene quantum dots with a smaller size can be uniformly dispersed in the electrolyte
without modification.

3.2. Separator Modification

In lithium batteries, the separator mainly functions to separate the electrodes and
allow the electrolyte to pass through. It is a simple and valuable direction to improve
lithium metal battery performance by modifying separators. Coating carbon materials
on the separator surface is a simple and effective strategy. Carbon materials with higher
mechanical strength has an inhibitory effect on dendrite growth. In addition, the porous
carbon material with high specific surface area can control the lithium ions passing through
the separator to be uniformly redistributed and, thus, deposit uniformly on the electrode
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surface. For example, Xu et al. [81] used carbon nanosheet coatings with cubic cavities to
suppress dendrite growth (Figure 7a,b). Connected cubic carbon channels enable stable
Li metal battery cycling by modulating Li deposition behavior. Li|Li symmetric cells
cycled for over 2600 h at 6 mA cm−2 and 2 mA h cm−2, while Li|Cu cells achieved an
average Coulombic efficiency of 98.5% at 2 mA cm−2 and 2 mA h cm−2. Li et al. [82]
coated a thin layer of ultra-strong diamond-like carbon (DLC) on the negative side of the
polypropylene (PP) separator (Figure 7c). The coating not only has a high modulus t to
inhibit the growth of lithium dendrites but also undergoes in situ chemical lithiation with
lithium metal in the battery, transforming into an excellent three-dimensional lithium ion
conductor to redistribute lithium ion flux. The dual role of the DLC/PP separator enables
the Li|Li symmetric cell to achieve stable cycling for over 4500 h at a current density of
3 mA cm−2. Wang et al. [83] coated carbon fibers on the surface of separators for lithium
metal batteries. The presence of carbon fibers improves the spatial electric field on the Li
metal electrode surface and effectively suppresses the tip effect during dendrite growth.
This study also provides new insights into the mechanism of action of carbon materials to
modify the separator.

There are a large number of functional groups on the surface of carbon nanomate-
rials such as graphene oxide, and chemical reactions can be used to modify or modify
these functional groups to obtain materials with specific functions. Li et al. [25] coated
polyacrylamide-grafted graphene oxide nanosheets (GO-g-PAM) on one side of a commer-
cial PP separator (Figure 7d). The robust GO backbone improves the mechanical strength,
and the brush-like PAM chains on the graphene oxide surface contain a large number
of polar groups such as C=O, N-H, etc., which provide functions for the efficient adhe-
sion and uniform distribution of Li ions at the molecular level. Furthermore, the gaps
between the stacked 2D molecular brushes provide a fast pathway for electrolyte diffusion.
Liu et al. [84] coated the surface of the separator with functionalized nanocarbons modified
with lithium p-benzenesulfonate groups and stabilized the deposition of lithium metal
by inducing the opposite growth of lithium dendrites from the current collector and the
separator (Figure 7e). In Li|LFP coin cells, this method can achieve long-term stable cycling
(800 cycles with 80% initial capacity retention and 97% Coulombic efficiency).

3.3. Artificial SEI

The native SEI on the surface of Li metal electrodes is often difficult to adapt to the
huge volume changes and electrochemical reactions of the electrodes during cycling. An
artificial SEI used in situ and ex situ was designed to obtain a more stable interface structure.
Carbon materials have good mechanical strength and good chemical/electrochemical
stability. Carbon materials with different structures and their composites are designed as
an artificial SEI to stabilize the electrode–electrolyte interface.

Cui et al. [37] used a monolayer of interconnected amorphous hollow carbon nanospheres
as an artificial SEI layer to cover the Li metal surface (Figure 8a,b). The highly insulating
top surface of the hollow carbon nanospheres promotes the deposition of metallic Li under
the carbon nanospheres. The carbon layer as SEI can easily adapt to the volume change of
Li metal during cycling. The Li|Cu half-cell assembled with ether electrolyte maintained a
Coulombic efficiency of 99% for 150 cycles at a current density of 1 mA cm−2 and an areal
capacity of 1 mA h cm−2.

Graphene has excellent mechanical properties. The presence of defects and functional
groups gives it excellent processability properties. Graphene and its derivatives or compos-
ites have received extensive attention as strategies for artificial SEI-stabilized lithium metal
anodes [85–87]. Zhou et al. [88] covered the Li metal surface with several layers of parallel
aligned graphene (Figure 8c). Flexible graphene films can adapt to the volume change of
lithium metal during cycling. The Li|Li symmetric cell with this artificial SEI can operate
for 1000 h at a current density of 5 mA cm−2 and a deposition capacity of 2.5 mA h cm−2.
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Benefiting from the simple preparation process and good modification properties of
graphene, a graphene artificial SEI combined with three-dimensional current collectors
can provide higher Coulombic efficiency for lithium metal batteries. Xie et al. [89] grew
graphene on the surface of nickel foam by chemical vapor deposition(CVD), and lithium
metal was uniformly deposited between the nickel foam and graphene (Figure 8d). The
graphene-based artificial SEI layer can inhibit the growth of dendrites and improve the
cycling stability of the battery. On this basis, Wang et al. [35] composited graphene ox-
ide and P(SF-DOL) to form an artificial SEI layer. The addition of polymers with Li-ion
conductivity provides the artificial SEI with flexibility and Li-ion conductivity (Figure 8e).
Combined with the three-dimensional copper foam current collector, the lithium metal bat-
tery protected by this artificial SEI maintains an average Coulombic efficiency of 99.1% over
300 cycles at a current density of 4.0 mA h cm−2 and a deposition capacity of 2.0 mA cm−2

(Figure 8f). In addition, graphene can also be composited with Prussian blue [90], LiF [91],
etc. as artificial SEI layers to obtain dendrite-free Li metal batteries.

3.4. Current Collector Design
3.4.1. Lithium Metal Anode Using Carbon Material as Current Collector

As an important component of lithium batteries, current collectors not only play the
role of transferring electrons between active materials and external circuits but also diffuse
the heat generated inside the battery [92]. Meanwhile, the 3D current collector design
can not only tolerate the huge volume change of Li metal during cycling but also achieve
uniform Li deposition by reducing the current density. The properties of current collectors
play an important role in the nucleation and deposition morphology of Li metal. Compared
with metal materials, carbon materials have the advantages of low specific gravity and
high abundance, as well as excellent electronic conductivity and lithiophilicity [93]. Thanks
to their good plasticity and modifiability, various scales and various functionalized carbon
materials were designed as current collectors for lithium metal batteries [94–98]. The large
specific surface area can effectively reduce the local current density. At the same time, the
lithiophilicity of carbon materials can be improved through surface modification to induce
the uniform deposition of lithium metal. According to the morphological characteristics
of the carbon material monomer, it can be divided into several categories from 0D to 3D.
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Among them, 0D carbon materials mainly include carbon spheres, carbon nanoparticles,
carbon quantum dots, etc.; 1D carbon materials mainly include carbon nanotubes, carbon
nanowires, carbon fibers, etc.; 2D materials mainly include graphene, carbon nanosheets,
etc.; 3D materials mainly include porous carbon, aerogel, and three-dimensional structures
built from various carbon materials. Studies using carbon of different dimensions as current
collectors are summarized and listed in Table 1.
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Table 1. Performance of lithium metal batteries using carbon materials as current collectors.

Current Collector Half Cell Performance
(Cycle Number/h, CE)

Operating Conditions
(Current Density/mA·cm−2,
Areal Capacity/mA h·cm−2)

Reference

0D

Au@hollow carbon sphere 300, 98% 0.5, 1 [52]

S-doped carbon nanospheres 220, −97.5 % 0.5, 1 [99]

Nitrogen-doped hollow porous carbon spheres 270, 98.5% 1, 1 [100]

hollow carbon spheres modified with evenly
dispersed Ni2P nanoparticles 400, 98.4% 1, 1 [101]

1D

graphitic carbon tubes 350, 99.3% 0.5, 1 [102]

hollow carbon fiber 350, 99.5% 0.5, 2 [103]

Lotus-root-like Ni–Co hollow prisms@carbon fibers 250, 98% 3, 1 [104]

Li/carbon nanotube hybrid 150, 95% 1, 0.5 [105]

hollow carbon fiber 350, 99.5 0.5, 2 [106]

oxygen-rich carbon nanotube 200, 99% 2, 1 [107]
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Table 1. Cont.

2D

layered reduced graphene oxide - - [108]

oxygen-codoped vertical carbon nanosheet arrays 325, 98% 0.5, 1 [109]

S-doped graphene 180, 98.23% 1, 0.5 [110]

3D fluorine-doped graphene 150, 98% 2, 1 [111]

3D

Nitrogen-doped amorphous Zn–carbon
multichannel fibers decorated with carbon cages 800, 98% 1, 1 [112]

Au nanoparticles@graphene hybrid aerogel 175, 91.2% 1, 1 [113]

Carbon nanofiber-stabilized graphene aerogel film 100, 98.5% 3, 1 [114]

Although different morphologies of carbon materials can be used as current collectors
for lithium metal electrodes, in order to obtain large specific surface area and porosity, most
strategies are to design materials into 3D structures. The 3D carbon structure provides a
larger specific surface area to reduce local current density, higher porosity, and mechanical
strength to accommodate the volume change in Li metal during deposition and exfoliation.
Infusion of molten lithium metal into 3D current collectors is the most common method,
but this also requires the current collector itself to have a certain lithiophilicity [115].
Lin et al. [108] obtained graphene oxide films with good lithiophilicity through Li-assisted
reduction vacuum filtration and then injected molten lithium into the uniform nano-gap
of the graphene films (Figure 9a). The layered graphene can not only adapt to the huge
volume change of Li metal but also stabilize the deposition and interface structure of Li
metal. The mass fraction of graphene in the electrode is only 7%, which ensures the high
specific capacity of the electrode.

In addition to the simple use of carbon materials to build 3D conductive frameworks,
the modification of carbon materials and their surfaces can obtain current collector materials
with special functions. Modification methods mainly include: doping, deposition, and
chemical group modification.

Doping is a common means of modifying carbon materials. Elements such as N, O,
and S can be doped into carbon materials to improve their lithiophilicity. Zhang et al. [116]
designed a N, S co-doped ordered mesoporous carbon nanospheres as a deposition sub-
strate for Li metal electrodes. The experimental and computational results show that the
synergistic effect of N/S double doping enhances the surface electronegativity of the carbon
spheres and lowers the nucleation energy barrier of Li-Au on the surface of the carbon
spheres, enabling uniform nucleation in the initial stage, thereby inducing branch-free
crystalline Li deposition. At the same time, N and S elements also help to form a more
stable SEI layer, which prolongs the cycle life (400 h) of lithium metal symmetric batteries
at high current density (20 mA h cm−2).

In addition to doping, loading lithiophilic metal materials on the surface of carbon
materials can induce nucleation and reduce overpotential [117,118]. Li et al. [119] and
Tian et al. [120] coated the carbon cloth with Au and Ag layers, respectively, and then
placed the metal-coated side away from the separator when assembling the battery. Lithium
metal preferentially nucleates and grows at the metal coating during deposition. At the
same time, the upper part of the porous skeleton of the carbon cloth also provides enough
space to buffer the volume expansion of metallic lithium.

There are a large number of active functional groups on the surface of carbon materials
such as graphene oxide and carbon nanotubes. Using these active sites to design chemical
reactions can obtain carbon materials with specific functions. For example, Gao et al. [121]
introduced benzenesulfonyl fluoride molecules on the surface of reduced graphene oxide
aerogels (Figure 9b). During the metal deposition process, the labile molecules not only gen-
erate metal-coordinated benzenesulfonate anions to guide homogeneous metal deposition
but also introduce lithium fluoride into the SEI to improve the SEI composition on the Li
surface. High-efficiency lithium deposition with low nucleation overpotential is achieved
at a current density of 6.0 mA cm−2. Niu et al. [106] designed a lithium anode structure



Batteries 2022, 8, 246 14 of 24

based on an amine-functionalized mesoporous carbon fiber framework (Figure 9c). The
introduction of amine groups enhanced the wettability of carbon fibers to lithium metal,
which enabled the smooth deposition of lithium metal on the surface of carbon fibers.
The full cell assembled with this anode can maintain stable cycling for 200 cycles at a low
N/P ratio (< 2).
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It is worth noting that either excess Li metal or excessively heavy current collectors
will weaken or even offset the advantages of Li metal’s high specific energy. Therefore,
the design of thin and light and lithium-lean/lithium-free anodes has practical application
value. The design of the 3D current collector is one of the most widely used and promising
solutions for carbon materials in lithium metal batteries.

3.4.2. Graphite–Lithium Metal Composite Electrode

In recent years, a graphite-lithium metal composite electrode was proposed to simulta-
neously obtain the intercalation capacity of the graphite anode and the conversion capacity
of the lithium metal by depositing a certain amount of lithium metal on the graphite
electrode [122]. The use of 3D porous graphite hosts is expected to alleviate the volume
expansion and dendrite growth problems of Li metal. Compared with the general lithium
metal anodes using metal or carbon materials as current collectors, LiC6 formed by graphite
intercalation is considered to have good lithiophilicity [123]. Lithium metal can obtain
lower nucleation overpotential on the surface of LiC6, resulting in more uniform deposition.
In addition, the current collector material occupies more mass and volume in the electrode,
which weakens the advantage of the high specific volume of the metal lithium electrode.
The use of graphitized carbon materials with lithium intercalation ability combined with
lithium metal is expected to break the capacity limitation of graphite anodes and provide
electrodes with higher effective capacity. It is worth noting that ordinary lithium metal
batteries often use an excess of lithium metal as the negative electrode, thereby ignoring
the volume/mass ratio of the negative electrode in the battery. The lithium-free design
of the composite anode is expected to improve the specific capacity of the full cell. From
a practical point of consideration, the graphite–lithium metal composite electrode uses
a commercial graphite anode as the lithium deposition substrate without changing the
existing production process. Graphite has the advantages of high abundance and low cost,
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and the use of graphite as the deposition substrate of lithium metal has high application
feasibility. The design of the composite electrode is actually a compromise between the
advantages and disadvantages of graphite and lithium metal. The specific capacity of
graphite is improved while maintaining the stability and safety.

Although graphite-lithium metal composite anodes have many advantages compared
with graphite anodes or lithium metal anodes, they also face many difficulties and chal-
lenges. Graphite was intensively researched and widely used as a mature lithium-ion
battery anode. After Li metal is deposited on the graphite surface, the excess Li coating
quickly fails in common carbonate-based electrolytes, resulting in a rapid decrease in
battery capacity [124].

Graphitized carbon materials with various structures and functions have begun to
be used as active substrates for lithium metal. These graphitic materials mainly function
as 3D current collectors in electrodes [125]. A composite electrode with a higher capacity
was obtained by depositing lithium metal into the voids of artificial graphite by Cui et al.
(Figure 10a) [126]. Wan et al. [125] deposited Li metal on a 3D framework wrapped by
graphitized carbon spheres, and the full cell assembled with LiFePO4 achieved a lifespan of
1000 cycles using an anode with 5% Li pre-deposited by electrochemistry. Zuo et al. [127]
reported that the graphitized carbon fiber electrode can be used as a multifunctional 3D
current collector to enhance the lithium storage capacity. Intercalation and electrode-
position reactions can provide areal capacities up to 8 mA h cm−2 without significant
dendrite formation.
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However, the research on graphite–lithium metal electrodes often ignores the capacity
contribution of graphite itself, which also makes the volume-specific energy advantage
of composite anodes not effectively utilized. In recent years, Dahn et al. [122] proposed
the concept of lithium ion–lithium metal composite batteries. They believe that the use
of graphite–lithium metal composite anode can increase the volume energy density of
the anode from 530 W h L−1 to 890 W h L−1 (Figure 10b). However, the composite
anode used by Dahn mainly deposits lithium on the surface of graphite to form a double-
layer structure, and no further studies on the distribution of lithium were carried out.
Zhang et al. [128] explored the boundary values for Li plating on graphite (Figure 10c–e).
Combined with thermal monitoring, SEM, TOF-SIMS, and other characterizations, the
properties of graphite–lithium metal electrodes with different lithium contents were tested.
Their results show that the electrode surface has the most uniform lithium distribution
when depositing lithium metal with a graphite capacity of 25%. Of course, the boundary
value is affected by many conditions such as temperature, magnification, porosity, etc., and
more work is needed to verify.

From a material point of view, reducing the particle size of graphite is considered
to be more effective to obtain a more stable structure and a larger specific surface area
(Figure 10f) [129]. The study of Chen et al. [124] showed that the capacity attenuation of
graphite–lithium metal composite anodes mainly comes from the accumulation of dead
lithium and the decrease in graphite capacity. The results of in situ X-ray microtomography
analysis also confirmed this statement [130]: the main reason for the decrease in capacity
after lithium deposition from graphite is that the graphite under the lithium metal layer is
affected by mass transfer and cannot achieve the effective intercalation of lithium ions.

The focus of graphite–lithium metal composite anode research is on the construction of
stable SEI and the maintenance of battery capacity. In order to construct a more robust SEI,
Wu et al. [131] obtained a graphite–lithium metal composite anode with a longer cycle life
by coating PVDF on the surface of the graphite electrode. By changing the carbon matrix or
electrolyte, a uniform and stable in situ SEI can be effectively constructed. Wang et al. [132]
fluorinated the edge of mesocarbon microspheres to obtain an LiF-rich stabilized SEI.
Benefiting from the extensive research on lithium metal anodes in recent years, electrolyte
systems suitable for lithium metal anodes were also used in graphite–lithium metal anodes.
Lithium salts such as LiBF2(C2O4)- LiBF4 [122], LiFSI [124,133] were used in composite
electrodes and obtained more stable SEI and higher Coulombic efficiency. Zhang et al. [128]
used a localized highly concentrated electrolyte to promote more uniform Li deposition,
and the full cell matching NCM532 achieved a capacity retention of 80.2% after 500 cycles.

3.5. Carbon Materials in Solid-State Batteries

In lithium metal solid-state batteries, especially inorganic ceramic solid-state batteries,
the solid–solid contact between the electrolyte and the two electrodes is poor, and some elec-
trolyte materials have poor compatibility and affinity with lithium metal. In order to obtain
a stable structure, the use of carbon materials as interface layers or current collectors can
improve the interface stability and affinity of lithium metal anodes with solid electrolytes.
Feng et al. [134] obtained a pure air-stable surface on Li6.75La3Zr1.75Ta0.25O12 (LLZTO) by
thermal decomposition vapor deposition (TVD) (Figure 11a). Benefiting from the amor-
phous structure of low graphitized carbon (LGC), instantaneous lithiation is achieved,
and the impedance of the Li/LLZTO interface is reduced to 9 Ω cm−2. Chen et al. [135]
carbonized a mixture of phenolic resin and polyvinyl butyral on the surface of LLZTO to
obtain a porous hard carbon layer (Figure 11b). The multi-layered pore structure of the
hard carbon layer provides capillary force and large specific surface area, which, coupled
with the chemical reactivity of the carbon material with Li, facilitates the penetration of
molten Li with the garnet electrolyte. The Li/LLZTO interface exhibits a low interfacial
resistance of 4.7 Ω cm−2 and a higher critical current density at 40 ◦C. Lee et al. [136] mixed
silver and carbon nanoparticles to make anodes, and during the deposition and exfoliation
of Li metal, the silver and carbon nanoparticles moved away from the electrolyte and closer
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to the electrolyte, respectively (Figure 11c). The gradient electrode structure provides both
nucleation sites and interfacial protection layers for Li metal deposition. The pouch cells
assembled with silver pyroxene Li6PS5Cl exhibited high energy density (900 W h l−1) and
superior cycle life (1000 cycles, Coulombic efficiency 99.8%).
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all-solid-state Li metal battery [138].

In addition, graphite–lithium metal composite electrodes can also be designed using
the lithiophilic properties of graphite in solid-state batteries. Duan et al. [137] cast a mixed
slurry of lithium metal and graphite into a pole piece and applied it in an LLZO electrolyte
battery (Figure 11d). The graphite–lithium metal composite electrode can effectively
improve the affinity with the solid electrolyte and reduce the interfacial impedance.

Integrating graphite directly into solid-state electrolytes can utilize the interstitial
spaces between graphite and ceramic particles to store lithium metal. Furthermore,
the lithium-free negative electrode design can also obtain high specific energy batter-
ies. Ping Liu et al. [138] mixed graphite into the sulfide solid electrolyte, and the resulting
composite anode could effectively alleviate the infiltration of lithium metal in the lattice
gap and prevent short circuits (Figure 11e). The critical current density of the electrode
increases and the interface resistance decreases.

The main problem in organic polymer electrolytes is their low electrical conductivity.
Adding fillers can effectively reduce the crystallinity of the electrolyte and improve the
conductivity. Materials such as graphene [139,140] and carbon quantum dots [141] as fillers
added to polymer electrolytes can simultaneously improve the mechanical properties and
electrical conductivity of the electrolytes.
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4. Summary and Outlook

Compared with other materials, carbon materials are unique in the field of energy
storage due to their low cost, controllable microstructure, tunable electrical conductivity,
and modifiable surface structure. Diverse carbon materials have played a huge role in
lithium metal batteries. Lithium metal batteries using carbon materials as current collectors
can effectively reduce the current density and disperse heat. For the modified carbon
material, it will also have the effect of regulating the nucleation and growth of lithium
metal. In particular, graphitized carbon materials can be used as a deposition substrate to
effectively improve the coulombic efficiency of the anode. The use of carbon materials as
additives or artificial SEI in lithium metal batteries can achieve the role of stabilizing the
interface layer. In solid-state batteries, carbon materials as interface layers can improve
the wettability of lithium metal and electrolyte and increase the ultimate exchange cur-
rent density. We summarize the application and research of carbon materials in lithium
metal batteries in recent years. These works explore the possibilities of carbon materials
from various angles. Combined with our reflections on current research, we make some
empirical recommendations:

1. When introducing carbon materials into the design of lithium metal batteries, the neg-
ative effects of carbon materials, such as chemical/electrochemical stability, structural
stability, etc., should be considered at the same time.

2. When designing carbon-based three-dimensional current collectors, the effects of
porosity and specific surface area should be considered at the same time. The size of
porosity directly affects the mass transfer process of lithium ions: too large porosity
will weaken the advantages brought by the 3D structure, while too small porosity
will affect the mass transfer process of lithium ions in it. A large specific surface area
can achieve more uniform deposition by dispersing the local current density, but at
the same time, it will also increase the SEI film area and reduce the first effect and
Coulomb efficiency of the battery.

3. The lithium metal foil used in the laboratory test is generally thick. The excessive
lithium metal and electrolyte greatly prolong the failure time of the battery. When con-
ducting battery tests, the experimental conditions should be scientifically controlled
in order to truly reflect the role of materials in the battery.

4. Pay attention to the overall specific capacity of the battery. Excess lithium metal will
reduce the actual specific capacity of the battery. The use of carbon materials can
improve the cycle stability and battery life of lithium metal batteries to a certain extent.
However, the mass and volume of carbon materials themselves are often overlooked.
Controlling the lithium–carbon ratio is particularly important to ensure the specific
capacity of the battery.

5. The experiment is established on the basis of the full cell, and its feasibility is verified
with a pouch cell or a cylindrical cell.

With the advancement of materials science and the development of nanotechnology,
carbon materials are increasingly incorporated into various battery systems and are success-
fully applied. With the unremitting efforts of mankind, carbon materials will also provide
a strong boost to the development of lithium metal batteries.
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