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Abstract: A novel energy storage mode based on the vehicle-to-grid (V2G) and vehicle-to-vehicle
(V2V) concept will be greatly researched and applied as a new green solution to energy and environ-
mental problems. However, the existing research on battery capacity decline in V2G applications has
mainly focused on modeling the battery capacity to investigate its decline during vehicle charging
and discharging, in order to reduce the battery capacity decline and evaluate its economics. A car-
following model with the acceleration generalized force coupled with external resistance is proposed
in the paper. A linear stability analysis was used to analyze the stability of the model. The stability
of the traffic flow was improved when the value of the resistance coefficient increases. Then, the
currents of different vehicles were also calculated according to the velocities. Moreover, the effect
of different physical characteristics of driving on the decline of distributed energy storage batteries
in the Internet of Vehicles (IoV) was investigated. The results suggest that in different road types
and road slopes, vehicles which are at the end of the platoon position have less battery capacity
degradation and better battery condition. It provides a reference for subsequent research related to
V2G energy storage in the context of vehicle networking.

Keywords: V2G; battery capacity decline; electric vehicle current; vehicle external resistance; electric
vehicles

1. Introduction

With the development of the global industry and economy, energy and environmental
issues have become one of the most important challenges of all countries in this century.
The increasing number of vehicles also means more energy consumption and pollutant
emission [1]. Therefore, the electrification of vehicles is accelerating as a green solution
to energy and environmental problems [2]. In recent years, experts have written many
research papers on the use of electric vehicle (EV) batteries in the grid [3]. In the early
stages of vehicle electrification, on-demand vehicle charging helped transfer peak loads
from the grid [4]. However, as the number of electric vehicles increased, they could be used
more efficiently by supplying power to the grid [5]. This kind of concept is called V2G
(vehicle-to-grid).

With the popularity of electric vehicles, energy storage modes based on the V2G
concept will increase rapidly. Thus, V2G has appeal for many scholars and experts. Martin
Hofmann et al. [6] proposed a bi-directional charging concept to investigate the technical
possibilities of using electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVS)
and showed that consumer-driven charging and discharging signals can be used for ef-
ficient integration into future V2G systems within the limits given by the vehicle battery
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management system. Mustafa İnci et al. [7] proposed that by providing vehicle to grid
(V2G) technology, it enables more efficient use of fuel cell (FC) vehicles to integrate trans-
portation and electricity networks. Henrik Lund et al. [8] modeled four types of fleets at
levels of wind penetration ranging from 0% to 100% based on the EnergyPlan model. It
was found that the inclusion of electric vehicles and V2G in the energy system can integrate
higher levels of wind power generation without generating excess electricity, resulting in
significant reductions in CO2 emissions. Udaya K. Madawala et al. [9] proposed a new
type of bi-directional IPT system that is particularly suitable for applications such as plug-
in electric vehicles (EVs) and vehicle networking (V2G) systems. Mithat C. Kisacikoglu
et al. [10] presented a single-phase vehicle-mounted bi-directional plug-in electric vehicle
(PEV) charger design scheme. Sayed Saeed Hosseini et al. [11] revealed different aspects of
V2G in the power system. This research analyzed V2G in terms of power system services
and power market applications. K. Nandha Kumar et al. [12] proposed a half-hourly V2G
capacity estimation algorithm using real-time electric vehicle scheduling. The algorithm is
implemented as part of a building energy management system (BEMS). I. Sami et al. [13]
proposed simulation models for V2G and G2V to describe the various parameters affecting
the grid interface network. Meanwhile, some researchers have considered the incorpora-
tion of V2G with microgrids. Cui et al. [14] applied V2G to a microgrid and constructed a
V2G system based on a parking lot. This research proposed a bi-directional AC/DC and
bi-directional DC/DC converter. Then they provided the coordination control strategy.
Shi et al. [15] proposed an effective strategy to improve the security and economy of micro-
grid systems. Paulo R.C. Mendes et al. [16] proposed an economic optimization algorithm
for a laboratory microgrid. The microgrid consists of a hybrid storage system consisting
of a battery pack and hydrogen storage, which has connections to the external grid and
electric vehicle charging station.

As a new energy storage mode, many experts have simulated and predicted the applications
and research related to V2G in order to evaluate its economics. Ulas BaranBaloglu et al. [17]
analyzed the economics of V2G from different aspects. The results show that the cost of
battery aging can be minimized in V2G systems through intelligent energy management
systems. Rebecca Gough et al. [18] evaluated the potential for electric vehicles to generate
revenue from energy supplied to commercial buildings. The results show that the net
revenue generation is highly dependent on the cost of battery decline associated with the
V2G cycle. Peng et al. [19] proposed an optimal scheduling strategy for V2G aggregators,
and maximize economic efficiency when the aggregator is involved in supplementary FM.
Willett Kempton et al. [20] documented a practical demonstration of V2G from real-time
frequency regulation on an electric vehicle. Sekyung Han et al. [21] proposed four possible
contract types between grid operators and V2G regulation providers, and developed a profit
function from APC and penalties to V2G aggregators. Sekyung Han et al. [22] estimated the
regulation revenue by analyzing the actual regulation signals and transactions to estimate
the transfer energy calculated in terms of contracted power capacity. The expected V2G
revenue is estimated and compared with the battery price to determine the economic
feasibility of V2G regulation. M. Sufyan et al. [23] researched the optimal coordination
of electric vehicles with V2G technology and performed a cost-benefit analysis. This
was followed by a real-time analysis of the degradation cost of the battery based on
the depth of discharge at each time interval. Simulation results show that operating
costs are significantly reduced when renewable energy is integrated into the distribution
grid. Y. Ota et al. [24] proposed an autonomous distributed vehicle-to-grid control scheme.
The scheme also considers the charging requirements for the next drive and the battery
condition during the vehicle-to-grid process. Liang et al. [25] investigated the problem of
optimal energy delivery in load-shedding services for V2G systems from the perspective
of vehicle owners and aggregators. Alexandros-Michail Koufakis et al. [26] proposed
an optimal electric vehicle (EV) charging scheduling scheme that includes vehicle-to-
grid (V2G) and vehicle-to-vehicle (V2V) energy delivery options. It is used to improve
energy utilization.
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In the research on analyzing economics of V2G applications, it can be found that the
loss of battery capacity is one of the important reasons for its economic impact. In order to
address the feasibility of V2G technology, Hussain W. et al. [27] identified the morphological
differences between MnS nanoparticles (NPs) and nanosheets (NSs), and this research is
also can be used in various new applications. Bahadur A. et al. [28] proposed a new type
of negative electrode material. Through constant current charge and discharge analysis
and research, it shows that this material has excellent reversible battery capacity, excellent
power capacity and high cycle stability, which is an important step in the development
and application of today’s energy storage devices. Kotub Uddin et al. [29] proposed a
comprehensive battery degradation model which considered all the established degradation
modes and was validated using six different operational use cycles, and later integrated the
model into a smart grid algorithm. Benedikt Lunz et al. [30] proposed the models for PHEVs
in distribution networks. That could compare the impact of different charging strategies for
cost. This research provides a comprehensive analysis of lithium-ion battery aging tests and
shows that high battery states of charge (SOCs) reduce battery lifetime, while battery cycling
at moderate SOCs has only a small effect on aging. It can be seen that a proper charging
strategy can significantly increase the battery lifetime while reducing the charging cost.
Mina Jafari et al. [31] proposed a linear model for the co-optimal planning and operation of
distributed energy resources and transportation systems in an interconnected system and
analyzed the interactions of such interconnected systems. This research also developed
a degradation model based on the design of an optimization formulation to increase the
battery life of electric vehicles. Shubham Bhoir et al. [32] proposed a battery model based
on experiments performed on Li-ion batteries to estimate the battery decline. Yutaka
Ota et al. [33] proposed an autonomous distributed V2G control scheme. A typical two-
zone model is used to interconnect the grid model and an automotive lithium-ion battery
model to simulate the load frequency of grid. Zhou et al. [34] analyzed the mathematical
correlation between charge–discharge, ambient temperature, depth of discharge (DoD) and
degradation of electric vehicle batteries. Justin D.K. Bishop et al. [35] found that battery
degradation is most dependent on energy throughput for both EV and PHEV powertrains,
but is most sensitive to charging regime (for EVs) and battery capacity (for PHEVs). Battery
degradation for both powertrains is most sensitive to the depth of discharge of individual
vehicle batteries when auxiliary services are provided. Li et al. [36] proposed a novel
active battery anti-aging V2G scheduling method. Ali Ahmadian et al. [37] proposed a
stochastic approach for smart charging of PEVs. Moreover, a comprehensive model on
the effect of charging or discharging strategies on the degradation of the vehicle battery
pack is included. Kannan Thirugnanam et al. [38] proposed a circuit-based battery and
capacity degradation model for electric vehicles (EVs) in V2G. Andreas Thingvad et al. [39]
proposed a battery capacity test method in order to analyze the long-term impact of V2G
services on EV batteries.

To sum up, existing research on battery capacity decline under V2G applications in
the context of the IoV has mainly focused on modeling for battery analysis. This research
analyzes the battery capacity decline during vehicle charging and discharging, to reduce
the cost of battery decline. However, in actual applications, the driving situation of electric
vehicles is complex, dynamic and variable. Factors such as driving situation and position
will affect the vehicle’s driving. However, few researchers have considered the relationship
of battery capacity degradation with the different driving situations and vehicle positions.
Moreover, for the battery decline, multiple aging mechanisms with different tempera-
ture dependencies lead to different optimal operating temperatures for different battery
lifetimes, affecting the rapid heating strategy of battery packs at low temperatures [40].
Additionally, after the battery capacity declines, the interface between the electrode and
electrolyte will change, and the active material will also change, accompanied by the oxi-
dation of lithium metal oxides, which in turn will indirectly affect the fast-charge thermal
runaway electrochemical reaction [41]. Thus, it is necessary to estimate the prediction
and evaluation of the decline characteristics of different batteries in networked distributed
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energy storage systems. In the process of car-following, different situations and different
platoon positions will affect the movement of vehicles. It means that in different driving
situations and external resistance, the dynamic behavior of the vehicle will change. The
dynamic behavior of the vehicle will influence its current situation as well as the battery
capacity decline. Therefore, it is important to incorporate the external resistance to the
vehicle movement. Based on the IoV, this paper proposes a car-following model with the
acceleration generalized force coupled with external resistance to analyze the velocities of
vehicles when the vehicles are in different situations and different platoon positions. More-
over, the current variations of different vehicles were calculated and analyzed based on the
velocity data through the electric vehicle simulation model. After that, this paper evaluates
the decline of battery capacity of different vehicles based on the current variations. The
results show that under the normal consideration of the external resistance of the vehicle,
the vehicle which in the end of the platoon position is driving at a stable speed, the battery
current is small, the battery capacity of the vehicle drops a small amount, and the battery
condition is good [42]. The communication protocol of V2X for vehicles can take LTEV,
5G and other methods to achieve the V2V and V2G. Then, the information of batteries
in electric vehicles can be accessed in real time by the electric grid as well as vehicles. It
provides a reference for research about V2G energy storage.

The main contributions of this research are as follows. (1) This paper proposes a car-
following model with the acceleration generalized force coupled with external resistance.
The dynamic characteristics of a car depend on the driving force and the external resistance.
The model conforms to Newton’s second law and can reflect the dynamic physical processes
of the following more accurately from the principle. This model takes into account the
driver’s psychological motivation and driving dynamic characteristics. (2) In this research,
a battery capacity decline model is established to investigate the characteristics of vehicle
velocity, current and battery capacity in a vehicle platoon under different driving situations
and different time and space. It also analyzes the degree of battery capacity decline in
different situations and vehicles. This research has practical implications for the precise
management of distributed energy storage that is considering decline.

The rest of this paper is organized as follows. In the “Vehicle model” section, a car-
following model with the acceleration generalized force coupled with external resistance,
and its linear stability is analyzed. After that, the velocities of the vehicles at different
positions in the platoon following movement are calculated and analyzed for four different
case parameters. In the “Operating Current simulation” section, based on the velocities data
of different vehicles, the currents of the vehicles are calculated and analyzed by the electric
vehicle simulation model. In the “Vehicle Battery Capacity Decline Analysis” section, the
battery capacity decline of the vehicle at various positions under different driving situations
is researched. Some conclusions are summarized in the “Conclusions” section. Figure 1
shows the main research methods of this paper.
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2. Vehicle Model
2.1. The Car-Following Model Considering the Influence of External Resistance

During the car-following process, the motion of a fuel or electric vehicle is the result
of the combined effect of traction and resistance on the vehicles.

Traction force is mainly provided by the vehicle’s powertrain, which is related to
the vehicle powertrain condition and the vehicle’s mass [43]. The resistance in vehicle
movement is mainly divided into rolling resistance (Ft), air resistance (Fw), grade resistance
(Fi) and acceleration resistance (Fj). Among them, besides the vehicle’s mass, windward
area, air resistance coefficient, wheel inertia and transmission ratio and other vehicles’
own influences, the external factors affecting the vehicle driving resistance are mainly
related to the road conditions and road slope. Based on the balance of these forces, this
paper proposes a car-following model with the acceleration generalized force coupled with
external resistance. This model can calculate the velocities of vehicles in different driving
situations and different platoon positions.

The car-following model considering the influence of external resistance is shown in
Equation (1):

dvn(t)
dt

·m = a[V(∆xn(t))− vn(t)] ·m + u ·
(

Ft + Fw + Fi + Fj
)

(1)

where vn(t) is the velocity of the nth vehicle at moment t, ∆xn(t) is the headway of the i-th
vehicle at moment t, a is the driver reaction time constant a = 0.8 s−1, u is the resistance
coefficient of the vehicle, m is the vehicle mass and V(·) represents the generalized force
function. This is defined as shown in Equation (2):

V(∆xn(t)) = V1 + V2tanh(C1∆xn(t)− C2) (2)

where V1, V2, C1 and C2 are four parameters, the specific relevant parameters are defined
as follows.

V1 = 6.75 (m/s), V2 = 7.91 (m/s), C1 = 0.13 m−1, C2 = 1.57

By expanding Equations (1) and (2), (3) and (4) are obtained as follows:

dvn(t)
dt

·m = a[V(∆xn(t))− vn(t)] ·m + u
(

mg · f cosθ +
1
2

Cd Aρvn
2(t) + mg sin θ + δm

dvn(t)
dt

)
(3)

dvn(t)
dt

=
a

1− uδ
[V(∆xn(t))− vn(t)] +

a
1− uδ

(
g f cos θ +

Cd Aρvn
2(t)

2m
+ g sin θ

)
(4)

where a is the driver’s reaction time constant, u is the resistance coefficient of the vehicle, m
is the vehicle mass m = 1300 kg, δ is the rotating mass conversion factor of the vehicle
δ = 1.2, g is the acceleration of gravity g = 9.8 m/s2, f is the rolling resistance coefficient,
Cd is the air resistance coefficient Cd = 0.3, A is the windward area A = 1.7 m2, ρ is the
air density ρ = 1.2258 N∆s2∆m−4 and θ is the angle between the road surface and the
horizontal plane.

By adjusting the parameter u in the model, it could represent the magnitude of the
effect of external resistances on the motion of the vehicle. The road surface situation is
reflected as the value of the parameter f in the model, and the rolling resistance coefficient
of the vehicles varies for different road conditions. The coefficient θ in the model can
represent the different slope magnitude of the road surface.

2.2. Linear Stability Analysis

This paper uses linear stability analysis to evaluate the stability performance of the
model which is shown in Equation (1). Moreover, it is assumed that the traffic flow is
always stable, all vehicles are uniformly distributed, and the headway time distance is h
(uniform), which corresponds to the optimal velocity V(h).
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Rewriting the car-following model (Equation (1)) into Equation (5):

d2xn(t)
dt2 = a[V(∆xn(t))−

dxn(t)
dt

] +
u
m

(
Ff + F2 ·

(
dxn(t)

dt

)2

+ Fi + δm
d2xn(t)

dt2

)
(5)

where F2 = 1
2 (Cd Aρ).

The position of the vehicle in the traffic flow is shown in Equation (6):

xn(t) = x0
n(t) + yn(t) (6)

where x0
n(t) is the position of the vehicle in the steady-state traffic flow, as expressed in

Equation (7). yn(t) is a small deviation value of the steady-state traffic flow x0
n(t), as

expressed in Equation (8).
x0

n(t) = hn + V(h) ∗ t (7)

yn(t) = e(ikn+zt) (8)

Substituting Equation (7) into Equation (6) and the result is shown in Equation (9),

∆xn(t) = xn+1(t)− xn(t) = h + ∆yn(t) (9)

and ∆yn(t) is shown in Equation (10).

∆yn(t) = yn+1(t)− yn(t) = e(ikn+zt)
(

eik − 1
)

(10)

Substituting Equation (6) into Equation (5) and the result is shown in Equation (11).

d2(yn(t))
dt2 = aV′(h) · ∆yn(t)− a

d(yn(t))
dt

+
u
m

(
Ff + F2 ·

(
V(h) +

d(yn(t))
dt

)2

+ Fi + δm
d2(yn(t))

dt2

)
(11)

By substituting Equations (8) and (10) into Equation (11), Equation (12) is obtained.

z2 =
aV′(h)

(
eik − 1

)
− az + 2 u

m F2V(h)z

1− uδ
(12)

Let Z be expressed as the Equation (13).

z = z1(ik) + z2(ik)
2 (13)

eiak is shown in Equation (14).

eik = 1 + ik +
1
2
(ik)2 (14)

Substituting Equations (13) and (14) into Equation (12), the result is shown in Equation (15).

(
z1(ik) + z2(ik)

2
)2

=
aV′(h)

(
1 + ik + 1

2 (ik)
2 − 1

)
− a
(

z1(ik) + z2(ik)
2
)
+ 2 u

m F2V(h)
(

z1(ik) + z2(ik)
2
)

1− uδ
(15)

Calculating Equation (15) yields the first-order as well as second-order term coefficients
Z1 and Z2 for iak, the result is shown in Equations (16) and (17).

z1 =
aV′(h)

a− 2 u
m F2V(h)

(16)

z2 =
1
2 aV′(h)− (1− uδ)z1

2

a− 2 u
m F2V(h)

(17)
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Let Z2 = 0, then it will produce Equation (18).

1
2

a2 + a
(
−2

u
m

F2V(h)−V′(h) + V′(h)uδ
)
+ 2

u2

m2 F2
2 V(h)2 = 0 (18)

By calculating Equation (18) and setting different values of the vehicle resistance
coefficient u, such as u = 0 and u = 1, the (h, a) diagram of the car-following model
considering the influence of external resistance is obtained as Figure 2.
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Figure 2 shows the phase space (h, a) of the car-following model with the acceleration
generalized force coupled with external resistance. From the figure, it can be obtained that
as the vehicle resistance coefficient u rises, the position of the stability curve will rise and
the corresponding stability region will expand. It means that the stability of the traffic flow
improves as the value of the drag coefficient u increases.

2.3. Vehicle Velocities in Four Different Driving Situations

In this paper, according to the various resistance of the vehicles in driving, a car-
following model with the acceleration generalized force coupled with external resistance is
proposed. In the model (Equation (1)), the dynamic behavior of the vehicle depends mainly
on the external resistance. The value of the resistance coefficient u, can indicate the degree
to which external resistance is taken into account in the movement of the vehicle. From
Equation (1) as well as Figure 2, it can be obtained that the lower the value of the coefficient
u, the less external resistance is taken into account in the movement of the vehicle.

Additionally, the values of each of the resistance parameters can reflect the external
resistance in different situations. Different road surface types (e.g., concrete road in good
condition, mud road) have different rolling resistance parameters, so the model adjusts the
rolling resistance parameter f , to represent different road surface types. The model reflects
different pavement slopes by changing the parameter θ of the slope angle.

Vehicle driving situation 1 is the standard situation. Situation 1 is expressed as: the
road type is good asphalt or concrete pavement (rolling resistance coefficient f = 0.015),
horizontal road surface (angle θ = 0

◦
), and the degree of resistance consideration is normal

(driving resistance coefficient u = 0.6).
Vehicle driving situation 2 is expressed as: the road type is good asphalt or concrete

road (rolling resistance coefficient f = 0.015), the road is upslope (angle θ = 15
◦
), and the

degree of resistance consideration is normal (driving resistance coefficient u = 0.6).
Vehicle driving situation 3 is expressed as: the type of road surface is muddy dirt road

(rolling resistance coefficient f = 0.15), horizontal road surface (angle θ = 0
◦
), and the

degree of resistance consideration is normal (driving resistance coefficient u = 0.6).
Vehicle driving situation 4 is expressed as: the road type is good asphalt or concrete

pavement (rolling resistance coefficient f = 0.015), horizontal road surface (angle θ = 0
◦
),

and the degree of resistance consideration is less (driving resistance coefficient u = 0.1).
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First, this paper defines the initial state of the vehicle platoon. The initial velocity of
all vehicles is 0 m/s. The distance between the first vehicle in the platoon to the signal light
(end point) is 1500 m. The headway between the rest of vehicles in the platoon is 8 m. The
vehicles are driving on a straight road. Then, by adjusting the parameters f , θ and u in
the car-following model, velocities of vehicles at different positions are calculated in four
different situations. The vehicle velocities for situations 1–4 are shown in Figures 3–6.
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According to the vehicle dynamics model (Equation (1)), the maximum velocity of
the vehicle is related to the headway and the external driving situations, different road
situations and external resistance coefficients, which will affect the velocity fluctuation and
maximum velocity situation of the vehicle platoon.

The vehicle needs to slow down until stopped before keeping a stable driving velocity
to the end. Thus, the vehicle at the head of the platoon will be the first to slow down, and at
this time, the headway of the vehicle at the end of the platoon will not immediately reduce,
so the velocity of the vehicles at the end of the platoon does not reduce immediately. It
takes some time from when the vehicle at the head of the platoon slows down until the
vehicles at the end start to slow down. Thus, combined with the simulation results, the end
of the platoon vehicles will start slowing down later than the head vehicles.

Figure 3 shows the velocities of the vehicle platoon in driving situation 1. It shows
that the vehicles at the front of the platoon position increase their velocities to the stable
velocity in a short time. On the contrary, the vehicles at the rear of the platoon will increase
their velocities to a lower starting velocity at 3.02 m/s. The closer to the end of the vehicle
platoon, the longer it will be driven at this lower starting velocity. Then, the velocity of
the vehicle will be increased to the stable velocity at 9.46 m/s. After that, the vehicles at
the front of the platoon begin to slow down at 156 s and reduce their velocities rapidly to
0 m/s. The slowdown time of the vehicles at the rear of the platoon is gradually delayed.
The vehicle at the end of the platoon begins to slow down at 168 s. Furthermore, the
deceleration process of the vehicles at the rear of the platoon is smoother.

Figure 4 shows the velocities of the vehicle platoon in driving situation 2. Different
from driving situation 1, the vehicles in driving situation 2 have higher velocities. The
starting velocity of the vehicles at the rear of the platoon is 4.96 m/s, and the stable velocity
is 10.68 m/s. Furthermore, the moment when the vehicles begin to slow down is much
earlier, the vehicles at the front of the platoon position begin to slow down at is 138 s, and
the vehicle at the end of the platoon begins to slow down at 150 s.

Figure 5 shows the velocities of the vehicle platoon in driving situation 3. The starting
and stable velocities of vehicles in situation 3 are between situation 1 and situation 2. The
starting velocity of the vehicles at the rear of the platoon is 4.01 m/s, and the stable velocity
is 10.1 m/s. Furthermore, the moments when the vehicles begin to slow down are also
between situation 1 and 2. The vehicles at the front of the platoon position begin to slow
down at 146 s, and the vehicle at the end of the platoon begins to slow down at 156 s.

Figure 6 shows the velocities of the vehicle platoon in driving situation 4. These
vehicles have higher velocity fluctuations before they enter the stable velocity. The closer
to the end of the vehicle platoon, the higher the velocity fluctuation. Moreover, the stable
velocity of the whole vehicle platoon is essentially the same as that of the situation 1.

3. Operating Current Simulation

After calculating the velocities based on the car-following model proposed in 2.1,
the vehicle current is calculated by an EV simulation model. Then we obtain the current
variation of vehicles at different positions in four situations. The current is shown in
Figures 7–10.

Figures 7–10 show the current variation of the vehicles at different positions in the
driving situations 1–4 for the vehicle platoon. From Figures 7–10, it can be seen that the
region where the current appears to fluctuate has a high consistency with the region where
the velocities of the vehicles begin to fluctuate. It means that as the vehicle accelerates and
decelerates, the current of the vehicle will change.

During the acceleration, the vehicles that have a higher number position in the platoon
will have longer and smaller current fluctuations. As can be obtained from Figure 10, the
more dramatic the degree of vehicle velocity change, the higher the magnitude of its current
fluctuation. During the deceleration of the vehicle platoon, the closer to the front of the
platoon, the higher the amplitude and magnitude of the current fluctuations.
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middle position in the platoon is higher and unstable. The current of the vehicles at the
end of the platoon is smaller and more stable.

4. Vehicle Battery Capacity Decline Analysis
4.1. Battery Capacity Decline Model

This paper proposes a battery capacity decline model which is based on the simplified
electrochemical model [44] to analyze the battery capacity decline of electric vehicles [45].

Battery capacity decline is a complex process [46], which includes many different
phenomena and conditions that vary with the chemistry properties of the battery [47].
Although there are many side reactions during this process, the side reactions can still be
considered as a whole.

The lumped battery capacity decline rate is defined as the sum of all parasitic side-
reaction currents that cause the battery capacity to decline [48]. According to the mathemat-
ical characteristics of the parasitic currents, a linear decline term is extended to consider
various nonlinear effects in Equation (19).

∂Qloss
∂t = Iloss = flinear fE fI fT faged

=
Qcell,0
τloss

fE fI fT faged
(19)

where Qcell,0 is the initial battery capacity, τloss is a decline time constant, fE, fI, fT and faged
are decline factors corresponding to battery voltage, battery current, temperature and
decline history, respectively.

High SOC values accelerate battery capacity decline, resulting from the high cell
voltage generated by high SOC values. The parasitic side current is triggered by the battery
voltage, which corresponds to an oxidation reaction at the positive terminal or a reduction
reaction at the negative terminal. That is defined in Equation (20):

fE = exp

αF
(

Ecell −
∫ 1

0 EOCV(soc, T)∂soc− Eoffect

)
RT

 (20)

where F is Faraday’s constant, R and T are gas constant and temperature. The transfer
coefficient α and offset potential Eoffect reflect the functional relationship between the
parasitic reactions and the deviation of battery cell voltage from the average of open
circuit voltage EOVC(soc, T). When ignoring the concentration overpotential and the ohmic
overpotential, the battery cell voltage is as shown in Equation (21).

Ecell = EOCV(soc, T) + ηact (21)

where ηact is the activation overpotential.
A current dependence linear relation between the capacity fade and the number of

full cycles is defined in Equation (22).

fI =

(
1 + H

τloss|Icell|
2Qcell,0

)
(22)

where H expresses the cycling induced capacity loss, and Icell is the load current. A
temperature dependence term is defined using an Arrhenius expression according to
Equation (23).

fT = exp
(
−Ea

R

(
1
T
− 1

Tref

))
(23)
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where Ea and T ref are activation energy and reference temperature. The decline rate
slows down due to products formed by the parasitic reactions, which is calculated by
Equation (24).

faged =
1

1 + (G− 1) Qloss
Qcell,0

(24)

where G is a constant to be determined.
The applied current Icell satisfies the following Equation (25).

Icell = J0 I1C

(
exp

(
ηactF
2RT

)
− exp

(
−ηactF

2RT

))
(25)

where J0 is the dimensionless charge exchange current, and I1C is the electric current at
1C rate.

To improve the calculation speed for real-time estimation, the prediction of decline
rate ∂Qloss

∂t is executed by training the numerical calculation results of the equations with
a neural network (NN) structure (Equations (19)–(25)), which has three hidden layers
with 14 neurons in each layer, with hyperbolic tangent activation functions, as shown in
Equation (26).

∂Qloss
∂t

= NN(SOC, Icell, T, Qloss, ω) (26)

where ω is the sets of trainable weights and biases.

4.2. Vehicle Battery Capacity Decline

According to the currents of vehicles in different situations and platoon positions, the
battery capacity decline calculation model is proposed to obtain the corresponding battery
capacity decline of different vehicles. The battery capacity decline of vehicles in different
platoon positions in the four driving situations are shown in Figures 11–14.
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As can be seen from Figures 11–14, the regions where the degree of battery capacity
decline fluctuates are consistent with the regions where vehicle velocities and vehicle
currents fluctuate. Vehicles at the end of the platoon have less battery capacity degradation.
From Equation (18), Figure 2, it can be obtained that the vehicle platoon with less external
resistance consideration has poor stability of motion. As can be seen from Figure 6, the
vehicle platoon with less external resistance consideration, has a higher magnitude and
fluctuation of velocity. From Figure 10, the velocity fluctuations will cause greater fluctua-
tions in vehicle battery current. Finally, from Equation (26), it can be seen that the change
in current magnitude will affect the degree of vehicle battery capacity decline. Thus, as
shown in Figure 14, the vehicle platoon with less external resistance consideration, has a
higher magnitude and fluctuation of battery capacity decline.

5. Conclusions

(1) In this paper, a car-following model with the acceleration generalized force coupled
with external resistance is proposed. The linear stability analysis is used to analyze
the stability of the model. The stability of the traffic flow improves as the value of
the resistance coefficient increases. Then, the effect of different physical character-
istics of driving on the decline of distributed energy storage batteries in the IoV is
investigated. The analytical results of the calculations and simulations are as follows.
For situations 1–3, the vehicle that is closest to the end of the platoon position has a
smaller and more stable vehicle velocity fluctuation. For situation 1, this vehicle has
the lowest stable velocity, and the latest start of deceleration. For situation 2, this vehi-
cle has the highest stable velocity, and the earliest start of deceleration. For situation 3,
the stable velocity and the start of deceleration are between situations 1 and 2.

(2) For situations 1–3, the vehicle that is closest to the end of the platoon position has a
smaller and more stable vehicle current in the same situation. For situation 1 and 4,
during their deceleration from a stable driving velocity to a stop, the current of the
vehicles in the front to the middle position in the platoon is higher and unstable. The
current of the vehicle at the end of the platoon is smaller and more stable.
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(3) For situations 1–3, the vehicle that is closest to the end of the platoon position has a
smaller and more stable vehicle battery capacity decline in the same situation. The
regions where the degree of battery capacity decline fluctuates are consistent with the
regions where vehicle velocities and vehicle currents fluctuate.

(4) Compared to the other three situations, the vehicle platoon with less influence of
external resistance has a higher magnitude and fluctuation of velocity, current and
battery capacity decline. Moreover, its stability is worse.

As the number of new energy vehicles grows, the power demand for unordered
charging is more than twice the power for ordered charging, which will burden the city’s
power infrastructure, and V2G technology will alleviate or even reduce the power demand
by peak shaving and valley filling.

Energy storage is the key to the energy revolution, batteries and electric vehicles are
the best carriers of distributed energy storage. These distributed energy sources will be
connected through V2G technology to form an energy interconnection.

Future works will investigate the relationship between distributed energy storage
and various factors such as temperature, humidity and air pressure. This is an important
reference for the development of distributed energy storage and the selection of energy
interaction strategies.
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