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Abstract: As the desired components and crystal structure of a transition metal oxide catalyst are
selected, architecture is a dominating factor affecting its electrocatalytic performance for applications
in lithium-sulfur (Li-S) batteries. Nano-compounds with a hollow architecture are undoubtedly
the ideal catalysts for enhancing cathodic performance for more exposed active sites and shortened
path lengths than are other architectures. Additionally, the internal stress in hollow architecture
is favorable for further performance enhancement, due to its regulation effects of driving the d-
band center of the transition metal in the active sites to migrate toward the Fermi level, which will
promote the chemical adsorption and catalytic conversion of the polysulfides (PSs). To this point,
we select hierarchical porous dual transition metal oxide CoNiO2 nano-boxes (CoNiO2(B)) as the
conceptual model; meanwhile, CoNiO2 nano-flakes (CoNiO2(F)) with identical stoichiometry and
crystal structure are also analyzed as a comparison. Li-S batteries based on CoNiO2(B) deliver
superior energy storage features, including a reversible discharge capacity of 1232 mAh g−1 at 0.05 C
and a stable cycle performance with decay rate of 0.1% each cycle even after 300 cycles at 1 C. This
research presents an alternative scheme for booting the performance of Li-S batteries.

Keywords: transition metal oxide; hollow architecture; catalysis; Li-S battery

1. Introduction

Li-S batteries are generally accepted as the most attractive energy storage systems
owing to their high specific capacity of 1675 mAh g−1 and theoretical energy density of
2600 Wh kg−1 [1,2]. Additionally, as an active substance, sulfur is ample on Earth and
environmentally friendly [3,4]. However, several technical issues, including the intrinsic
insulating properties of sulfur, the shuttle effect associated with soluble PSs, and the
enormous variation in volume during electrochemical reaction, significantly constrain the
industrial application of Li-S batteries [5,6].

In the last few decades, many kinds of sulfur hosts have been developed to tackle
the problems mentioned above. Among each host, conductive porous carbon has been
considered the most promising material [7–9]. The porous carbon host greatly increases
the sulfur cathode’s electronic conductivity as well as provides sufficient empty space to
contain volumetric alterations during charging and discharging reactions [10–12]. Nazar
et al. prepared mesoporous carbon with a highly organized structure (CMK-3), and the
S/CMK-3 cathode had a high initial capacity of 1005 mAh g−1 at sulfur loads of up to
70 wt% [13]. Despite the fact that their initial cycle-specific capacities for carbon/sulfur
composites are extraordinarily high, capacity decays sharply in later cycles due to the
repulsion between polar PSs and non-polar carbonaceous substrates.

In recent years, polar non-organic substances such as transition metal oxides [14–17],
sulfides [18–20], carbides [21,22], and hydroxides [23,24] have been focused on effective
sulfur hosts, which are not only an effective component to chemically capture lithium poly-
sulfide (LiPSs) but also an excellent catalysis for facilitating LiPSs conversion kinetics [25].
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Among them, the layered double hydroxides (LDHs) and their derived oxide are a class of
prominent sulfur hosts. The abundant hydrophilic groups in LDHs have strong affinity
for LiPSs, and the existence of numerous sulfophilic sites accelerates the transformation
kinetics of LiPSs [26,27]. As the desired components and crystal structure are selected,
architecture-tuning is another key factor affecting the electrocatalytic performance of the
material. Nanostructures with hollow architecture, including nano-boxes, nano-cages,
and hollowed-spheres, etc., are undoubtedly a series of ideal configuration in enhancing
catalytic performance, exhibiting more exposed active sites than other morphological struc-
tures. Furthermore, tensile strain aroused from the smaller curvature radius in hollow
architecture is another effective factor in performance enhancement, as the tensile strain
regulates the electronic structure of materials and drives the d-band center of the transition
metal in the active sites to migrate toward the Fermi level, which will enhance the chem-
ical adsorption and catalytic conversion of the PSs [28,29]. Benefiting from multivariate
designable morphologies and controllable synthesis, metal-organic frameworks (MOFs)
are desired sacrificial templates for synthesis of hollowed-LDH-nanostructures. Through
annealing at appropriate temperature, they can further be transformed to oxide-hollowed
analogues. Due to the high aspect ratio and hierarchical porous structure inherited from
MOFs, these hydroxide- or oxide-hollowed nanostructures are especially favorable for
improving utilization of a sulfur cathode. For example, Zhao’s group prepared a hollow-
structured NiCo-LDH, and the corresponding Li-S battery exhibited excellent capacity
(1540 mAh g−1 at 0.1 C) and a high rate of electrical performance (485 mAh g−1 at 5.0 C) [30].
Ying et al. developed a MnO-TiO2 core-shell nano-box composite with a 0.05% decay rate
each cycle after 500 cycles at 0.5 C [31]. These transition metal hydroxide and oxide sulfur
hosts grown on MOFs exhibit extraordinary electrochemical activity for Li-S batteries.

Given its low cost and inherent corrosion resistance, bimetallic nickel cobalt oxide
has great advantages as an excellent catalyst with dual roles for accelerating the slow
redox kinetics [32]. In this paper, we adopt dual transition metal oxide CoNiO2(B) with
a hierarchical porous structure as the conceptual model and CoNiO2(F) with identical
stoichiometry and crystal structure as the comparative control sample. CoNiO2(B) was
transformed from ZIF-67 through the ultrasonic solve-thermal method. The Li-S battery
based on CoNiO2(B) delivers outstanding energy storage features, including a reversible
discharge capacity of 1232 mAh g−1 at 0.05 C, and a stable cycle performance with a decay
rate of 0.1% each cycle even after 300 cycles at 1 C.

2. Results and Discussion

The preparation process of the S/CoNiO2(B) cathode is schematically illustrated in
Scheme 1. First, ZIF-67 is used as a sacrificial template. When nickel nitrate is added,
ZIF-67 is etched by H+, which is produced by the hydrolysis of Ni2+. Then, the −NH2
falls off from ZIF-67 under ultrasonic vibration and hydrolyzes to generate OH−, which
accelerates the internal collapse of ZIF-67 and causes Co2+ to move outward. Both free
Co2+ and Ni2+ bind with OH− and co-deposit on the surface of the ZIF-67 framework
to form NiCo-LDH nanosheets [33], which finally stack together to constitute a hollow
NiCo-LDH nano-box (NiCo-LDH(B)). With further annealing, NiCo-LDH(B) is transformed
into CoNiO2(B). Sulfur is injected into CoNiO2(B) by the melt-diffusion method; finally,
formed S/CoNiO2(B), carbon black, and PVDF are mixed as the cathode to assemble the
Li-S battery.

Figure 1a is the scanning electron microscope (SEM) picture of ZIF-67. It can be
observed that the formed ZIF-67 template exhibits a regular dodecahedron morphology.
NiCo-LDH(B) (Figure 1b) constructed with nanosheets presents a hollow nano-box shape
with uniform size. The finally transformed CoNiO2(B) in Figure 1c has almost the same
regular polyhedral morphology as ZIF-67. By thermal removal of crystal water in NiCo-
LDH nano-flakes (NiCo-LDH(F)) (Figure 1d) synthesized by hydrothermal procedure,
CoNiO2(F) is also prepared as the comparative sample, whose two-dimensional mor-
phology is inherited from NiCo-LDH(F), as shown in Figure 1e. Transmission electron
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microscopy (TEM) was employed to further analyze the morphology and crystal structure
of the transition metal oxide nano-boxes and nano-flakes. The TEM image of CoNiO2(F)
(Figure 1f) verifies the perfect crystallinity, and its inset exhibits distinct lattice fringes with
a spacing of 0.24 nm corresponding to the (200) plane of CoNiO2. The transmission electron
microscope image of CoNiO2(B) (Figure 1g) illustrates the hollow interior. Figure 1h is a
high-magnification TEM image of CoNiO2(B), which indicates two set lattice fringes, with
interplanar spacings of 0.24 and 0.21 nm, which correspond to the (200) and (111) planes of
the CoNiO2 compound crystal, respectively. Figure 1f is the EDS mapping of CoNiO2(B),
which displays the uniform elemental distribution of the Ni, Co, and O components.
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X-ray diffraction (XRD) measurements were conducted to investigate the crys-
tallographic characteristics of the materials. Diffraction peaks of NiCo-LDH(B) in
Figure 2a were located at 2θ = 11.2◦, 22.3◦, 34.1◦, and 62.8◦, corresponding to the (003),
(006), (012), and (110) planes, respectively, of a standard NiCo-LDH crystal [34]. The
two materials of CoNiO2(B) and CoNiO2(F) have identical XRD diffraction patterns
as shown in Figure 2b. The diffraction peaks at 36.8◦, 42.8◦, 61.8◦, 73.9◦, and 77.9◦

exactly fit in with the crystal planes (111), (200), (220), (311), and (222), respectively,
of the standard CoNiO2 bulk crystal (PDF#10-0188). Raman spectra also verified the
detection results of XRD, as displayed in Figure 2c. CoNiO2(B) and CoNiO2(F) have
two obvious Raman spectra peaks at 494 cm-1 and 1061 cm−1, which correspond to
the fingerprint Raman peaks of CoNiO2 oxide compounds. After vulcanization, the
Raman peak position of S/CoNiO2(B) and S/CoNiO2(F) remains unchanged, and the
peak intensity becomes weak. The results of XRD diffraction and Raman characterization
confirm that the two CoNiO2 nano-compounds have the identical crystal structures.
In Figure 2d, S/CoNiO2(B) and S/CoNiO2(F) exhibited strong XRD diffraction peaks
of sulfur, indicating that sulfur had penetrated into the interior of the two materials.
The SEM image of S/CoNiO2(B) (Figure S1) displays that the vulcanized composite
maintains the polyhedral morphology, and the corresponding element mapping ex-
plains that the injected sulfur is evenly distributed. To inspect the interface and pore
characteristics of CoNiO2(B) and CoNiO2(F), Brunauer–Emmett–Teller (BET) tests were
carried out. Figure 2e clearly reveals that CoNiO2(B) possesses a specific surface area of
204 m2 g−1, which is larger than CoNiO2(F) (137 m2 g−1), indicating that the architecture
of the hollow nano-box is conducive to expansion of the specific surface area of the
CoNiO2 nano-compound. Figure 2f shows that the average pore-sizes of CoNiO2(B) and
CoNiO2(F) are 17.356 nm and 34.563 nm, respectively. Although both materials have a
mesoporous structure, CoNiO2(B) has a larger specific surface area and smaller average
pore-size, which can provide more active sites and efficient electron/ion transportation
channels than CoNiO2(F), which is beneficial for electrochemical performance of the
Li-S batteries.
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Sulfur is injected into the host by melt-diffusion, and the mass proportion of sulfur
was obtained from a thermogravimetric analysis (TGA) measurement. Due to sublimation
of sulfur, the TGA curve has a large weight drop in the temperatures ranging from 200 ◦C
to 350 ◦C, and the weight loss reflects the mass percentage of the loaded sulfur, as displayed
in Figure 3a. S/CoNiO2(B) has a higher sulfur content (72.4 wt%) than S/CoNiO2(F)
(69.9 wt%). This can be attributed to the large internal storage capacity of the hollow
architecture of the CoNiO2(B) material. In order to characterize the lithium hexasulfide-
adsorption of the materials, 8 mg of the obtained NiCo-LDH(B), CoNiO2(F), and CoNiO2(B)
were respectively soaked into 4 mL of 5 mM Li2S6 solution with a mixture solvent of DOL
and DOE (volume ratio V/V = 1/1); their corresponding containing bottles were labeled as
bottle 2, bottle 3, and bottle 4, while the bottle containing pure Li2S6 solution was labeled
as bottle 1. All the solutions rested for 10 h. Figure 3b shows the results of the visualized
static Li2S6 adsorption. It is clearly observed that bottle 4 has the highest transparency,
followed by bottle 3, and finally bottle 2. Among them, the solution containing CoNiO2(B)
is almost colorless, indicating that CoNiO2(B) has an excellent adsorption capacity for PSs.
UV-vis spectra also confirmed the same conclusion, as the solution containing CoNiO2(B)
has the weakest absorption peak at the characteristic wavelength position of LiPSs [35].
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Figure 2. The result of XRD, Raman and BET; (a) X-ray diffraction pattern of NiCo-LDH(B). (b) XRD
pattern of CoNiO2(B) and CoNiO2(F). (c) Raman spectra of CoNiO2(B) and CoNiO2(F). (d) XRD
pattern of S/CoNiO2(B) and S/CoNiO2(F). (e) The isotherms of N2 adsorption-desorption and (f) the
distributions of pore sizes in CoNiO2(B) and CoNiO2(F).
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X-ray photoelectron spectroscopy (XPS) surveys were performed to explore the chemi-
cal state of the materials. The XPS full range binding energy spectrum (Figure S2) shows
that CoNiO2(B) and CoNiO2(F) all contain the four elements Co, Ni, O, and C; the residual
C may come from the ZIF-67 template or from environmental contamination. Figure 4a–c
shows the photoelectron spectra of Co 2p, O 1s and Ni 2p in CoNiO2(B). The Co 2p photo-
electron spectroscopy in Figure 4a is split into two bands of Co 2p3/2 and Co 2p1/2. The
three subpeaks of the Co 2p3/2 band at 781.52 eV, 779.50 eV, and 785.94 eV are attributed
to Co2+, Co3+, and satellite peaks, respectively. The Co 2p1/2 band can be deconvoluted
into three peaks at 796.94 eV, 795.36 eV, and 802.32 eV, arising from Co2+, Co3+, and satellite
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peaks, respectively [36]. In Figure 4b, the two fitting peaks of O 1s are located at 529.59 eV
and 531.36 eV, which are severally related with O2− and hydroxide [37]. Doublet bands of
Ni 2p3/2 and Ni 2p1/2 constitute the XPS spectrum of Ni 2p (Figure 4c). Ni 2p3/2 and Ni
2p1/2 can be deconvoluted into Ni3+ (855.70 eV, 873.47 eV), Ni2+ (853.80 eV, 871.74 eV), and
satellite peaks (860.91 eV, 879.08 eV) [38]. Figure 4d–f reveals the photoelectron spectra of
Co 2p, O 1s, and Ni 2p in CoNiO2(F). The Co 2p photoelectron spectrum in Figure 4d con-
tains the two spin splitting peaks Co 2p3/2 (779.19 eV, 781.06 eV) and Co 2p1/2 (794.89 eV,
796.56 eV) as well as satellite peaks (785.59 eV, 801.97 eV), indicating the presence of Co2+

and Co3+ [36]. In Figure 4e, the two peaks (529.21 eV, 530.73 eV) in the XPS spectrum of
O 1s individually correlated with O2− and the hydroxyl groups [37]. In the XPS spectrum
of Ni 2p (Figure 4f), there are four peaks at 853.52 eV, 855.22 eV, 871.17 eV, and 872.83 eV,
belonging to Ni3+ 2p3/2, Ni2+ 2p3/2, Ni2+ 2p1/2, and Ni3+ 2p1/2, while those positioned
at 860.66 eV and 878.70 eV represent the satellite peaks of Ni 2p [38]. From the above
results of the XPS analysis, it can be concluded that CoNiO2(B) and CoNiO2(F) possess
almost the same chemical status except the upshift of the binding energy of the former.
Due to the attenuation of the curvature radius from the nano-flake to the nano-box, the
material surface will generate corresponding internal stress [39]. Deng et al. [40] found
that compared with solid nanowires, hollow nanotubes exhibit higher tensile strength. The
upshift of the XPS spectrum is a fingerprint signal of the occurrence of tensile strain inside
the material. Zhou et al. [41] have proved that the existence of the tensile strain results in
the lattice deformation of materials, which makes the spectrum of XPS shift toward the
direction of the high binding energy. Although the lattice deformation is so trifling that
XRD test did not detect its existence, the XPS spectra of Co, Ni, and O elements presented
above are a shift toward the direction of high binding energy, which is circumstantial
evidence of the existence of tensile strain in the hollow architecture of CoNiO2(B) [42].
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Figure 4. XPS spectra of CoNiO2(B) and CoNiO2(F). (a) Co 2p, (b) O 1s, and (c) Ni 2p XPS spectra of
CoNiO2(B). (d) Co 2p, (e) O 1s, and (f) Ni 2p XPS spectra of CoNiO2(F).

In order to detect the chemical valence of sulfur injected into the material, the S
2p spectra in S/CoNiO2(B) are shown in Figure S3a. The peaks at 163.4 eV and 164.56 eV
can be assigned to the S 2p3/2 and S 2p1/2 of the chemical bonds towards S8. S-O species
(168.37 eV, 169.53 eV) are observed in the S/CoNiO2(B) [43]. In Figure S3b, the S 2p peaks
(163.18 eV and 164.34 eV) of S/CoNiO2(F) are also attributed to S 2p3/2 and S 2p1/2,



Batteries 2022, 8, 262 7 of 14

and peaks (168.39 eV, 169.55 eV) are consistent with S-O species [43]. It can be concluded
that the sulfur in S/CoNiO2(B) and S/CoNiO2(F) exists in two forms: pure sulfur and the
combination between sulfur and CoNiO2.

During the charging and discharging process, a rapid conversion of PSs can sig-
nificantly minimize the shuttle effect. The effects of CoNiO2(B) and CoNiO2(F) on the
liquid–liquid and solid–liquid conversion of PSs was measured by a symmetric cell. The
CoNiO2(B) symmetric cell without Li2S6 in Figure 5a produced nearly zero capacitive cur-
rent, while the CoNiO2(B) symmetric cell with Li2S6 electrolyte exhibited more than twice
the redox current than CoNiO2(F), indicating that CoNiO2(B) vigorously accelerates the
redox kinetics of the liquid–liquid conversion of PSs [44]. EIS spectra (Figure 5b) showed
that CoNiO2(B) symmetric cells exhibit lower charge transfer resistance (Rct), further con-
firming that CoNiO2(B) could promote redox reaction kinetics of PSs. The deposition of
Li2S represents the conversion of soluble PSs to insoluble Li2S (liquid–solid). As exhibited
in Figure 5c, the onset of Li2S deposition is located at the upward inflection point of the
potentiostatic discharge curve. The initial deposition time of Li2S on CoNiO2(B) is 897 s,
which is earlier than that of CoNiO2(F) at 1831.2 s. The peak current of CoNiO2(B) is
0.430 A g−1, which is larger than the 0.211 A g−1 of CoNiO2(F). The shorter Li2S depo-
sition time and the larger peak current confirm that CoNiO2(B) can efficiently boost the
transition of soluble PSs to solid Li2S [45]. The excellent kinetic promotion of CoNiO2(B) is
predominantly attributed to the increased active site density and shortened path lengths
for mass and ion transportation. Furthermore, the tensile strain that resulted from hollow
architecture, as discussed above, is additionally beneficial for improvement of catalytic
performance. Liu et al. [46] confirm that slight lattice deformation aroused from the ten-
sile strain will result in lengthened chemical bonds, which will exert adjustment on the
crystalline electronic structure. Wang et al. [47] demonstrated that, with tensile strain, the
d-band center of the transition metal atom in the active sites shifts toward the Fermi level,
thus improving the chemical adsorption and catalytic conversion of the PSs for further
performance enhancement of Li-S batteries.
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Figure 5. Electrochemical Performance of Symmetric Battery; (a) CV cycle curves and (b) EIS curves of
CoNiO2(B) and CoNiO2(F) symmetric cells. (c) Li2S deposition profiles on CoNiO2(B) and CoNiO2(F).

A coin battery was assembled for the cyclic voltammetry (CV) cycle testing to inspect
the electrochemical reactivity of the Li-S battery. The CV curves of the S/CoNiO2(B) and
S/CoNiO2(F) electrodes were examined at a scanning rate of 0.1 mV/s, and the results are
displayed in Figure 6a. Within the voltage range of 1.7–2.8 V, there are two cathodic peaks
(2.27 V, 2.01 V), which reflect the reaction that occurs during discharge—sulfur is reduced
to soluble PSs, and soluble PSs are further reduced to solid state lithium sulfide. The
anodic peak (2.42 V) signifies the oxidation of dilithium sulfide to sulfur during charging.
The S/CoNiO2(B) electrode exhibits a significantly larger peak current and narrower peak
width, which indicates that CoNiO2(B) enhances the charge–discharge reaction kinetics of
PSs. In addition, charge–discharge reaction kinetics can be further analyzed by CV. The
results of CV at five different scan rates are shown in Figure 6b–c. As the Randles–Sevcik
principle points out, with the square root of the scanning rate and the peak current of the
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CV curve as variables, the slope of the fitted curve between them reflects the Li+ diffusion
coefficient [48]. In general, the higher the slope, the faster the diffusion of Li+. Figure 6d–f
show that the slopes of the fitted curves for the S/CoNiO2(B) cathode at peak A, peak C1,
and peak C2 are numerically larger than those for the S/CoNiO2(F) cathode. The results
verify that CoNiO2(B) provides more channels and reduced path lengths for mass and ion
transportation in the redox reaction.
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Figure 6. CV curves and Li+ diffusion coefficient fitting. (a) CV curves of S/CoNiO2(B) and
S/CoNiO2(F) electrode at 0.1 mV s−1. CV curves of (b) S/CoNiO2(B) and (c) S/CoNiO2(F) electrode
at 0.1–0.5 mV s−1. (d–f) The peak current of the CV curve is linearly related to the square root of the
corresponding scan rate.

All assembled coin batteries were aged at 50 ◦C for 48 h for activation before charge
and discharge. Figure 7a shows galvanostatic charge–discharge profiles of the batteries
with S/CoNiO2(B) and S/CoNiO2(F) cathodes for the initial three cycles at 0.05 C. The
S/CoNiO2(B) cathode exhibits one plateau near 2.39 V related to sulfur oxidation and
two stages at 2.26 V and 2.10 V correlated with sulfur reduction, while the S/CoNiO2(F)
cathode exhibits one oxidation peak at 2.40 V and two reduction peaks at 2.24 V and
2.10 V. The charging–discharging overpotential of S/CoNiO2(B) is 0.13 V, lower than
that of S/CoNiO2(F) (0.16 V), which denotes slighter polarization of the CoNiO2(B) host.
The discharge specific capacities of S/CoNiO2(B) corresponding to the first, second, and
third cycles are 1232 mAh g−1, 1215 mAh g−1, and 1190 mAh g−1, respectively, which
are all larger than S/CoNiO2(F) (894 mAh g−1, 869 mAh g−1, 849 mAh g−1). The 0.5 C
rate cycling characteristics of the two type cathodes were revealed in Figure 7b. The
first 25 cycles are conducted at current density of 0.05, 0.1, 0.2, 0.5 and 1 C. The first
discharge specific capacity of the S/CoNiO2(B) cathode decreased to 822 mAh g−1, while
a stable value of 730 mAh g−1 remained after 150 cycles, which is 50% greater than the
S/CoNiO2(F) cathode (486 mAh g−1). Figure 7c further reveals the rate performance of
the S/CoNiO2(B) cathode, which delivered an initial specific capacity of 931.2 mAh g−1,
836.72 mAh g−1, 736.82 mAh g−1, 655 mAh g−1, and 502.1 mAh g−1 at a current density of
0.1, 0.2, 0.5, 1, and 2 C, respectively. When the current density suddenly decreased from
2 C to 0.2 C or 0.1 C, the reversible specific capacity can still be maintained at 757 mAh g−1

and 807.441 mAh g−1, respectively.
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Figure 7. The electrochemical measurement of S/CoNiO2(B) and S/CoNiO2(F); (a) The voltage
plateau curve of the S/CoNiO2(B) electrode at 0.05 C in initial three cycles. (b) Cycle perfor-
mances of the S/CoNiO2(B) and S/CoNiO2(F) electrode at 0.5 C. (c) Rate performances of the
S/CoNiO2(B) electrode. (d) EIS curves and (e) cycle performances at 1 C for the S/CoNiO2(B) and
S/CoNiO2(F) electrode.

The electrochemical impedance spectra (EIS) of S/CoNiO2(B) and S/CoNiO2(F) cath-
odes are presented in Figure 7d. At the interface between electrolyte and cathode, the
resistance of charge transfer is equivalent to the length from the coordinate origin to the
right inflection point of the semicircle. The smaller impedance shows that the CoNiO2(B)
compound exhibits excellent electrochemical conductivity and diffusion kinetics. Long
term cycle stability is an important evaluation index of Li-S battery performance. In order
to study the effect of sulfur loading on battery performance, sulfur loading was accurately
regulated at 1.6 mg cm−2. When operated under 1 C rate, the initial specific capacity
of the CoNiO2(B) cathode maintained 631 mAh g−1, while the CoNiO2(F) cathode was
only 421 mAh g−1, as represented in Figure 7e. For the first 20 cycles, the current density
gradually increases from 0.05, 0.1, 0.2, to 0.5C. After 300 cycles, their specific capacities
were maintained at 431 mAh g−1 and 121 mAh g−1, respectively, and the CoNiO2(B) was
almost three times higher than CoNiO2(F). Within 300 cycles, the capacity decay rate of
the S/CoNiO2(B) cathode was 0.1% per cycle, which is remarkably lower than that of
the S/CoNiO2(F) cathode (0.26%). The cycling stability of the S/CoNiO2(B) electrode is
preferable to the S/CoNiO2(F) cathode.

Except for the fact that CoNiO2(B) shows higher binding energy, CoNiO2(B) and
CoNiO2(F) exhibit the same chemical status. However, the electrochemical performance
of CoNiO2(B) is much better than that of CoNiO2(F). When material transforms from
two-dimensional nano-flakes to three-dimensional nano-boxes, the specific surface area
is enlarged, and slight internal tensile strain is generated [39]. The increase of the specific
surface area not only exposes more active sites, but also provides more channels and
reduced path lengths for mass and ion transportation. These effects are conducive to the
performance improvement of Li-S batteries. In addition, due to the slight lattice deformation
resulting from tensile strain in the material, chemical bonds are lengthened, which leads to
the upshift of binding energy [46]. The lengthened chemical bonds will also exert effects
on the electronic structure of the crystal; that is, the d-band center of the transition metal
in the active sites will migrate toward the Fermi level, which will promote the chemical
adsorption and catalytic conversion of the PSs for further performance enhancement of Li-S
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batteries [47]. It can be asserted that, for the transition metal oxide compound, the hollow
architecture is more promising than the two-dimensional analogues for the applications as
sulfur host in Li-S batteries.

3. Materials and Methods
3.1. Material Preparation

Cobalt nitrate hexahydrate and nickel nitrate hexahydrate were analytical grade and
produced by Damao Chemical Reagent Factory. 2-methylimidazole(2-MeIM) and Li2S were
purchased from Macklin Biochemical Co., Ltd. in Shanghai, China. Methanol, ethanol, and
urea were purchased from XiLong Science Co., Ltd. in Guangdong, China. The sulfur was
made by Heng Xing Chemical Reagent Manufacturing Co., Ltd. in Tianjin, China.

3.1.1. Synthesis of ZIF-67

2 mmol of cobalt nitrate hexahydrate was added to anhydrous methanol (50 mL), and
the resulting solution after ultrasonic dispersion is solution A. 0.657 g of 2-MeIM (8 mmol)
was completely dispersed in 50 mL of anhydrous methanol by sonication to get solution B.
Solution A was forcefully stirred (>500 rpm), and solution B was rapidly added to solution
A, then stirred for one minute and stewed 24 h. Finally, the purple product was rinsed with
methanol 3–4 times and dried overnight in a 70 ◦C oven.

3.1.2. Synthesis of NiCo-LDH

20 mg of prepared ZIF-67 was dissolved in 20 mL ethanol to gain solution A. 100 mg
of nickel nitrate hexahydrate was completely dispersed in 20 mL ethanol to get solution
B. Solution A was stirred (>500 rpm), and solution B was quickly poured into solution A,
continually stirred for 2 min. Then, the mixture was treated by ultrasonic treatment at room
temperature with a power of 600 W for 1 h. Lastly, it was rinsed three to four times with
ethanol before drying at 70 ◦C overnight.

3.1.3. Synthesis of NiCo-LDH(F)

Nickel nitrate hexahydrate (9 mmol), cobalt nitrate hexahydrate (4.5 mmol), and
urea (31.5 mmol) were dissolved in 35 mL methanol. The mixture was stirred vigorously
to form a transparent solution, then the transparent solution was poured into a 100 mL
polytetrafluoroethylene lined stainless steel reaction kettle. Then, the reaction kettle was
heated from room temperature to 120 ◦C at a rate of 5 ◦C/min and steeped for 10 h. Finally,
NiCo-LDH(F) was obtained by washing and drying the mixture in the reaction kettle.

3.1.4. Synthesis of the CoNiO2(B)/CoNiO2(F)

The prepared 50 mg NiCo-LDH was annealed at 300 ◦C for 120 min with argon
gas. The final product was CoNiO2(B). The CoNiO2(F) material was prepared from NiCo-
LDH(F) by the same process.

3.1.5. Synthesis of the S/CoNiO2(B) and S/CoNiO2(F) Composite

CoNiO2(B) and sulfur were mixed in 1:3 weight ratio and uniformly stirred for 5 h.
Then, the product was heated at 155 ◦C for 6 h in a sealed autoclave for the preparation of
S/CoNiO2(B). S/CoNiO2(F) composites were also obtained by the identical procedure.

3.2. Visualized Adsorption of Li2S6

To create a 5 mM Li2S6 solution, S and Li2S powder (1:5 moles) were dissolved
in a mixed solution of 1,3 dioxolane and 1,2-dimethoxyethane (1:1 volume) and stirred
vigorously at 70 ◦C for 24 h. Then, 8 mg each of the NiCo-LDH, CoNiO2(F), and CoNiO2(B)
were soaked in the prepared Li2S6 solution (4 mL) for 10 h.
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3.3. Assembly of Symmetric Cells

The two hosts CoNiO2(B) and CoNiO2(F) were separately dissolved in absolute
ethanol and sonicated for 60 min. The resultant homogeneous suspension was added
dropwise to 12 mm discs of aluminum foil and dried quickly. The symmetrical battery was
assembled by two identical electrodes into a 2025 coin battery with Celgard 2400 as the sep-
arator and an electrolyte containing 0.42 M Li2S6. The electrolyte also included 1.0 mol/L
lithium bis-trifluoromethanesulfonimide and 2% lithium nitrate, and equal amounts of
1,3-dioxolane and 1,2-dimethoxyethane. The CV curve scanning voltage range of the sym-
metrical battery ranged from −0.8 to 0.8 V at 200 mV/s. The corresponding EIS curves
were measured by a Corrtest CS350H electrochemical workstation at 10−2–105 Hz with an
amplitude of 5 mV.

3.4. Nucleation of Li2S

The 2025 coin battery was assembled with CoNiO2((B) as the cathode (or CoNi02(F)), Li
foil as the anode, and Celgard 2400 as the separator, and contained 0.3 M Li2S8 electrolyte.
The electrolyte also contained 1.0 mol/L lithium bis-trifluoromethanesulfonimide and
2% lithium nitrate, and equal amounts of 1,3-dioxolane and 1,2-dimethoxyethane. The
assembled battery was first discharged with constant current to 2.10 V at 0.110 mA and
subsequently with the voltage at 2.09 V until the current was almost zero.

3.5. Material Characterization

The microscopic structure and morphological features of the composite material were
characterized by cold field emission scanning electron microscope (SEM, ZEISS Sigma
300, 3 kv) and transmission electron microscopy (TEM, JEOL JEM 2100, 200 KV). The
mass of sulfur in the cathode was measured by thermogravimetric analysis (TGA) in the
N2 atmosphere from 20 to 500 ◦C. Raman spectroscopy was measured with a 532 nm
laser. The N2 adsorption-desorption isotherm measurement was used to determine the
Brunauer–Emmett–Teller (BET) surface area, and the diameter of pores was calculated from
the BJH method (MicrotracBEL Corp). X-ray diffraction (XRD) spectra were measured by
a D8 Advance diffractometer. X-ray photoelectron spectroscopy (XPSs, ESCALAB25Oxi)
measurements were designed to detect the chemical forms of elements in materials, and
Shirley fitting background type was selected for the XPS test data. UV/vis absorption
spectra were measured by Agilent Technologies Cary 60 UV-Vis (G6860A).

3.6. Assembly of the Li-S Batteries and Measurements

The S/CoNiO2(B) (or S/CoNiO2(F)), carbon black, and polyvinylidene fluoride were
mixed with a weight ratio of 7:2:1. The N-methylpyrrolidinone was added to the mixture,
and the mixture turned into a slurry under prolonged stirring. The slurry was evenly coated
on the dark side of aluminum foil and dried at 60 ◦C. 2025 Coin cells were constructed
with the S cathode, lithium foil anode, and a Celgard 2400 separator. The electrolyte
was 1.0 mol/L lithium bis-trifluoromethanesulfonimide and 2% lithium nitrate, which dis-
solved in equal parts 1,3-dioxolane and 1,2-dimethoxyethane. The cathode was loaded with
1.0–1.6 mg cm−2 of sulfur. The amount of electrolyte was controlled at E/S = 30 µL mg−1.
The galvanostatic charge–discharge was measured by Neware battery test devices with
the cut-off voltage of 1.7–2.8 V. EIS and CV were measured by a CorrTest CS350H Electro-
chemical Workstation. The amplitude of the EIS spectra was 5 mV, and the frequency was
arranged from 10−1 Hz to 105 Hz. The CV cycling curves were scanned at 0.1 to 0.5 mV s−1.

4. Conclusions

In this work, we explored the effects of the catalyst architecture on the cathodic
performance of Li-S batteries. Dual transition metal oxide CoNiO2 compound was se-
lected as the conceptual material to synthesize three-dimensional hollow CoNiO2(B) and
two-dimensional CoNiO2(F). As sulfur host, cells with a cathode comprised of nano-boxes
delivered a of 1232 mAh g−1 and a low overpotential of 0.13 V at 0.05 C, as well as a cycle
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stability with decay rate of 0.1% per cycle even after 300 cycles at 1 C, which are superior
to two-dimensional analogues. The experiments imply that CoNiO2(B) exhibits strong
affinity toward PSs and excellent catalytic activity for the PSs redox kinetics compared with
CoNiO2(F). The enlarged specific surface area that resulted from the hollow architecture
of the nano-box affords not only more active sites but also more channels and reduced
path lengths for fast mass and ion transportation, which are conducive to performance
enhancement of Li-S batteries. Additionally, the tensile strain aroused from the attenuated
curvature radius from nano-flake to nano-box is another advantageous factor for perfor-
mance enhancement, as tensile strain drives the d-band center of the transition metal in the
active sites to migrate toward the Fermi level, which will promote the chemical adsorption
and catalytic conversion of the PSs. Our research has demonstrated that catalysts with
hollow architecture are more promising than their two-dimensional analogues in practical
application in the Li-S batteries.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/batteries8120262/s1. Figure S1: (a) The SEM image of S/CoNiO2(B),
(b) EDS elemental mapping of S/CoNiO2(B); Figure S2: The XPS survey spectrum of (a) CoNiO2(B)
and (b) CoNiO2(F); Figure S3: S 2p XPS spectra of (a) S/CoNiO2(B) and (b) S/CoNiO2(F).
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