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Abstract: The prediction of the degradation of lithium-ion batteries is essential for various appli-
cations and optimized recycling schemes. In order to address this issue, this study aims to predict
the cycle lives of lithium-ion batteries using only data from early cycles. To reach such an objective,
experimental raw data for 121 commercial lithium iron phosphate/graphite cells are gathered from
the literature. The data are analyzed, and suitable input features are generated for the use of differ-
ent machine learning algorithms. A final accuracy of 99.81% for the cycle life is obtained with an
extremely randomized trees model. This work shows that data-driven models are able to successfully
predict the lifetimes of batteries using only early-cycle data. That aside, a considerable reduction
in errors is seen by incorporating data management and physical and chemical understanding into
the analysis.

Keywords: lithium-ion battery; lifetime prediction; machine learning; data management

1. Introduction

Lithium-ion batteries are utilized for a variety of applications, such as portable elec-
tronics, electric cars, medical devices and energy storage [1]. Nevertheless, downsides
and safety issues, such as overcharging, thermal runaway, lithium dendrites and gas evo-
lution, limit the application of large-scale lithium-ion battery systems [2]. Additionally,
battery degradation mechanisms restrict its energy storage and power output capabilities,
restraining further improvements to electric vehicles. Battery aging is complicated, and
comprehending such a phenomenon remains as one of the most important challenges in
the battery research field [3].

The aging phenomenon is difficult to characterize. However, it is reported that it is
often related to the degradation of the negative electrode via solid electrolyte interface
(SEI) formation in between the graphite electrode and the electrolyte, its evolution and
irreversible lithium loss [4–6]. This interface is created naturally during the first cycles and
works as a passivation layer that is vital for the battery to work safely [1,4]. The SEI allows
the lithium ions to pass through but blocks the electrons. In addition, it prevents further
reduction of the electrolyte, which is essential for battery stability [7].

The anode SEI layer is formed via side reactions between the electrode and the elec-
trolyte, and it has many components, including lithium organic and inorganic precipitates,
lithium ions and salts [7–9]. The layer thickness is in the range of a few nanometers, and it
increases during repeated charge-discharge cycles [9]. The formation and growth of this
layer consumes cyclable lithium, induces capacity loss and increases cell resistance [4,7,9].

Both the amount of capacity loss and SEI properties depend on many variables, such
as the anode material surface area and surface properties, anode-to-cathode capacity ratio,
cell temperature, charge rate, presence of additives and others [9]. A review published by
Li et al. [10] named the most common stress factors for battery aging as high temperatures,
low temperatures, overcharging or discharging, high currents and mechanical stresses.
Additionally, the charging protocol also affects the battery’s lifetime [11].
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It has been shown that increasing the battery operating temperature leads to an
increase in the degradation rate [9,12,13]. Increasing the charging rate also decreases
battery durability [9]. High charging rates have an important influence on the capacity fade
behavior. Capacity loss is initially linear, but after a turning point, it changes to a nonlinear
curve. It has been proven that high charging rates induce an earlier appearance of this
turning point from linear to nonlinear capacity loss. The internal resistance also sharply
rises after the turning point and is frequently used as an indicator for the battery health in
practical applications [14].

Due to the complexity of the batteries’ degradation phenomena, modeling, simulating
and predicting batteries’ behavior is an ongoing challenge. Different approaches and tools
are used to this end. In general, the different approaches are divided into three main
groups in the literature: mechanistic models, equivalent circuit and impedance models and
data-driven models [15,16]. Data-driven modeling uses historical data, real-time data or
both in a machine learning algorithm to predict the future behavior of lithium-ion batteries.
These models are agnostic to physics and chemistry [15,17].

Machine learning (ML) is a branch of artificial intelligence consisting of the develop-
ment of models and algorithms that are capable of learning patterns from existing data in
order to explore future trends. Machine learning can perform complex tasks independently
without explicit instructions, which makes it applicable in many different fields of knowl-
edge, such as biology, physics and chemistry [16]. There are different ML methods that can
be used to perform these tasks, and reviews have already been published focusing on the
different methods and their specifics [10,16–19]. Some examples of methods are artificial
neural networks (ANNs) [20–23], default random forest (DRF) [24], gradient boosting
models (GBM) [25], extremely randomized trees (XRT) [26], deep learning (DL) [27] and
generalized linear models (GLMs) [28]. Briefly speaking, an ANN seeks to mimic the hu-
man brain by using layers and nodes as “neurons” [20]. DL works similarly to an ANN, but
it learns by discovering representations and relationships in the data [27]. DRF and GBMs
are ensemble learners, meaning that they combine other models and decision trees to reach
better performances. XRT is similar to DRF but with a higher focus on randomness [29].
Finally, the GLM uses suitable transformations to linearize the problem. Linear regressions
are, for example, special cases of GLMs [28].

The biggest challenge to applying ML for battery systems is the gathering of enough
relevant data [30]. To train and validate such models, large amounts of experimental data
are needed, as the quality of the ML model relies on the quality of the data [31]. Experiments
on battery lifetimes can take months to years to be concluded, which creates a bottleneck
for researchers [32].

Research groups have already tried to overcome this issue. Severson et al. [6] and
Attia et al. [32] greatly reduced the testing time of batteries from 500 to 16 days by using
a closed-loop optimization with ML. Li et al. [33] used a numerical finite element model
(physics-based) to generate data for application in a further ML model. Johnen et al. [34]
developed an ML model with high flexibility which could predict the degradation path of
batteries, provided that at least the degradation path of one single battery was fully known.

Moreover, some groups have made their experimental datasets available online [31].
Examples of these include those of NASA [35] with 18,650 cells, NREL [36] with 228 cells
and Severson et al. [6] with 124 cells. Severson et al. [6] tested 124 rechargeable batteries until
failure under fast charging conditions. The batteries were commercially available lithium-ion
phosphate/graphite cells and were kept at a forced convection of 30 ◦C during the experimental
tests. Failure (cycle life) was defined as the number of cycles until 80% of nominal capacity
was reached. The current, voltage, charge capacity, discharge capacity, charge energy, discharge
energy, change in voltage over time, internal resistance and temperature were continuously
measured. The experimental data are available online. Using these experimental data and
machine learning algorithms, the battery lifetime was accurately predicted using only early-cycle
data with an error of 9.1%. By applying the data from Severson et al. [6], different research
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groups have performed their own predictions, with errors varying from approximately 4 to
9% [37–46].

Another difficulty of data-driven models is deriving physical explanations from the
dataset and from the results. As these models do not consider kinetic chemical and physical
effects, once the data-driven predictions are finished, extracting physical understanding
is challenging. Hence, incorporating detailed physics based models into ML approaches
could be beneficial for academia and industry in the long run [30].

Overall, the development of predictive lifetime models can aid suitable battery re-
placement strategies, as often a few cells fail, whereas the others are still in operation.
Furthermore, it can support health monitoring for critical applications. Additionally, such
predictions can be used for optimized recycling of defective cells and efficient second
life applications.

In summary, data-driven approaches are very promising, since they provide good
predictions without complex and computationally demanding algorithms. However, the
problems of these techniques are relying on access of data and physical interpretation.
Aware of these issues, this research work uses the data made available by Severson et al. [6]
to obtain predictions of the cycle lives of batteries using early-cycle data. After studying
the dataset, understanding its physical meaning and visualizing, adding and cleansing
the data, a test error of only 0.19% was obtained, a value much smaller than the ones
found in the current literature [6,37–46]. Therefore, the present work demonstrates that
the use of different machine learning algorithms and concepts, together with a limited
consideration of physical understanding, allows very accurate predictions to be reached.
These predictions are useful for various applications and bring deeper insights than pure,
knowledge-insensitive data analysis.

2. Materials and Methods

The dataset used in this research work were first published by Severson et al. [6].
The data can be downloaded as CSV files by following the link provided in the original
paper. Each CSV file contains raw data for one cell. Data for the testing time, charging
protocol step, number of cycles, current, voltage, charge and discharge capacity, charge and
discharge energy, voltage rate, internal resistance and temperature are provided. Further-
more, the data can be downloaded in a MatLab struct format. This format provides the
same data as the CSV files but also the charging policies and linear interpolations of the
discharge capacity, voltage and temperature.

The entire dataset was loaded and stored in a database using the Kadi4Mat infrastructure [47].
Further processing of the data was performed via workflows inside the Kadi4Mat and local
PostgreSQL [48] databases. Python (version 3.7.6) was used to create codes for the application of
the ML algorithms. The data were divided into three batches, and each batch had 48 experimental
testing channels. Some testing channels presented technical problems and were excluded from
the analysis. These excluded channels were the following:

• For batch “2017-05-12”, channels 1, 2, 3, 4, 5, 6, 8, 13, 19, 21, 22 and 31 were excluded.
Channels 4 and 8 did not successfully start and thus did not have data. The cells
in channels 1, 2, 3, 5 and 6 were stopped at the end of the test and resumed in the
“2017-06-30” batch. This pause in cycling led to a rise in capacity upon resuming
the tests. The tests in channels 13, 19, 21, 22 and 31 were terminated before the cells
reached 80% of nominal capacity.

• For batch “2017-06-30”, channels 1, 2, 3, 5, 6 and 10 were excluded. Channels 1, 2,
3, 5 and 6 were not new experiments but a continuation of experiments from the
“2017-05-12” batch. The cell on channel 10 was possibly defective as it died quickly.

• For batch “2018-04-12”, channels 26, 31, 33, 41 and 46 were excluded. No data were
provided for channels 26 and 31. The tests in channels 33 and 41 were terminated
before the cells reached 80% of the nominal capacity. The cell in channel 46 had noisy
voltage profiles due to an electronic connection error.
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Therefore, 121 channels were left in the analysis, where each channel represented
one cell.

Some differences regarding the resting times were reported for each batch [6]. The
cells in batch “2017-05-12” had two resting moments: one of 1 min after reaching the 80%
state of charge (SoC) during charging and the other being 1 s after discharging. The cells
in batch “2017-06-30” had two resting moments of 5 min each. The resting moments were
also placed after reaching an 80% SoC during charging and after discharging. The cells
in batch “2018-04-12”, as opposed to the previous batches, had four resting moments of
5 s each. The resting times were performed after reaching an 80% SoC during charging,
after the internal resistance measurement, before discharging and after discharging. An
additional difference between the batches was that the cells in batch “2017-06-30” were
cycled until 75% of the nominal capacity, while the other two batches were cycled until 80%
of the nominal capacity.

All the columns from the dataset were initially used in the prediction. However,
more columns were created: variance of discharge capacity difference, variance of charge
capacity difference and charging policies. As Severson et al. [6] stated, voltage curves are
used to study battery characteristics and variance in probability theory, and their statistics
could give better insight into the data. Therefore, it was expected that it would be relevant
to include the variance of charge and discharge capacity in the analysis. This feature
was first introduced by the authors and is explained with more details in the original
publication [6]. In summary, it consists of calculating the difference in discharge capacities
as a function of the voltage between cycle 10 and cycle 100. To create the additional columns
for our research work, this feature was not only calculated for the discharge capacity but
also for the charge capacity. The computation for the other input variable followed the
same initial principal. A picture showing the difference in discharge capacity as a function
of the voltage between cycle 10 and cycle 100 for an exemplary cell can be seen in Figure 1.

Figure 1. Difference in discharge capacity as a function of voltage between cycle 10 and cycle 100 for
an exemplary cell.

The charging policies data column was created by grouping all cells based on their
most used C rates. The C rates of each cell can be found in the original publication [6]. Cells
with C rates of 1, 2 or 3 were grouped as “high” C rates, cells with C rates of 4, 5 or 6 were
grouped as “very high” C rates, and cells with C rates of 7 or 8 were grouped as “extremely
high” C rates. These new columns were created as the charging rate greatly influences the
degradation phenomena of the batteries [9–11].
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First, a feedforward ANN with 11 layers was used to predict the cycle lives of the
lithium-ion batteries. Data for the first 100 cycles for all 121 cells were used. The relation
between the training and testing data was 75%/25%. The ANN parameters were optimized
by using their learning curve responses. After optimization, one input layer, nine hidden
layers and one output layer were chosen. Using the Adam optimizer, a learning rate of
0.001, 500 epochs and the mean absolute percentage error as a loss function were selected.
By cross-validation and additional visual inspection of the loss curves, potential overfitting
was minimized as much as possible given the limited size of the dataset. To measure the
accuracy of the ANN, the metrics of the mean absolute error (MAE) and mean absolute
percentage error (MAPE) were used, which are defined as

MAE =
n

∑
i=1

|Actual− Predicted|
n

, (1)

MAPE (%) = 100 ∗ 1
n

n

∑
i=1

|Actual− Predicted|
Actual

, (2)

where “Actual” and “Predicted” correspond to the measured and predicted cycle lives,
respectively, and n is the total amount of samples.

The same code was applied to three sets of data: (1) the original raw data without any
preprocessing; (2) the cycles that presented particularly noisy behavior or very high or low
peaks, which were removed from the dataset; and (3) along with the noises, the first cycles
of all cells were removed. Since the batteries were pre-charged, during the first cycle, they
needed to initially discharge so that they could start cycling under controllable conditions
later. This process of removing unwanted cycles is defined here as ”cleansing” the data.

Secondly, to investigate whether the ANN is the best ML approach to use, a fully
automated algorithm called H2O AutoML [49] was applied. This algorithm compares,
using the same dataset from the previous ANN analysis, the results from different ML
methods and ranks all tested models by different performance metrics to find the best
prediction. The algorithms that produced similar errors in comparison with the ANN were
investigated in more detail. Their parameters were optimized. The relation between the
training and testing data was kept at 75%/25%.

Thirdly, using the model that provided the best result thus far, the importance of the
variables was investigated in order to eliminate unnecessary data columns and obtain
a better physical understanding. Two variable importance analyses were carried out:
Kendall’s tau and the Spearman coefficient [50,51]. In these analyses, scores close to zero
indicate no relation between the input and the output values. On the other hand, scores
approaching 1 or −1 indicate a strong relation between the input variables and output
results. The sign denotes the direction of the correlation. A negative coefficient means that
the variables are inversely related [52–54].

In the end, the errors obtained in this study were compared with other similar works
found in the literature for the same dataset.

3. Results and Discussion
3.1. Prediction of Life Cycle

By following the procedures and using the datasets as described in the section above,
the results for the MAE and MAPE of the ANN analysis are summarized in Table 1. The
results show that removing noises, peaks and the first cycle did not improve the predictions
from the control dataset. However, cleansing of the data improved the predictions for the
dataset with the newly added input columns. The addition of the columns also generated
better results. With the dataset amplified, errors smaller than 1% were obtained. The
best result thus far was achieved by using the new dataset with additional input columns.
Therefore, it can be said that at this point, the accuracy of the ANN was 99.43%.
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Table 1. Results for mean absolute error (MAE) and mean absolute percentage error (MAPE) from
the ANN algorithm (1st: with raw data; 2nd: removing noise and peaks; 3rd: removing noise,
peaks and the first cycle). The control dataset was compared against the dataset with newly added
input features.

Dataset 1st: MAE
(Cycles)/MAPE (%)

2nd: MAE
(Cycles)/MAPE (%)

3rd: MAE
(Cycles)/MAPE (%)

Control 12.16/1.54 13.00/1.71 13.81/1.68
New 7.78/0.88 7.06/0.87 4.65/0.57

The results corroborate the expectation that the additional columns and the removal of
noises and first cycles should improve the results. These findings are in line with the reports
from the literature, which show that the charging rate has an influence on the lifetime of
the batteries [9–11].

Secondly, the algorithm H2O AutoML was used to compare different ML models.
The dataset applied was the one that resulted in the best prediction in the previous ANN
analysis (new dataset with additional columns). The MAE was the metric on which the
comparison was based, and the results are depicted in Figure 2. The best models were
DRF, XRT, and the GBM, with MAEs of 4.15, 5.65 and 6.19 cycles, respectively. The best
ANN analysis produced an MAE of 4.65 cycles. Meanwhile, DL and the GLM returned
errors substantially higher than the ANN reference value. An additional advantage of
these algorithms is that they are significantly more agile than ANNs. The ANN model
performed training and prediction in approximately 15 min, while the new methods took
only seconds.

Figure 2. Results for mean absolute error (MAE) from different ML algorithms obtained via H2O AutoML.

The three best models were investigated in more detail, and their parameters were
optimized. The detailed results for these models are shown in Table 2. It can be observed
that the smallest error was obtained using the XRT model, which gave a prediction accuracy
of 99.81%.

Table 2. Results for mean absolute error (MAE) and mean percentage error (MAPE) from default
random forest (DRF), extremely randomized trees (XRT) and gradient boosting models (GBMs). The
corresponding parameters were optimized.

Model MAE (Cycles) MAPE (%)

XRT 1.49 0.19
DRF 2.15 0.30
GBM 3.61 0.49
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To put it succinctly, adding hand-featured inputs to the raw data clearly improved the
prediction of the cells’ lifetimes. Cleaning the data of noises and peaks and removing the
first cycles generated better results, mainly for the dataset in which these new input data
were included. For the same dataset, six different ML models were compared, namely the
ANN, DRF, XRT, GBM, DL and GLM. From these, the best predictions were obtained via
XRT, which output an MAPE of only 0.19%.

3.2. Analysis of Input Variables

The cycle lives of all analyzed cells are depicted in Figure 3. There were different
distributions of lifetimes for the three batches, where the highest lifetimes belonged to
batch “2018-04-12” and the shortest to batch “2017-06-30”. The batches differed in the
resting times while cycling, as described in the Section 2. One observation that can be
made is that the cells with the shortest cycle lives belonged to the batch with the longer
resting times. Longer relaxation times have already been linked to higher impedance
measurements in experiments [55]. A similar correlation seemed to happen in the data
from Severson et al. [6].

Figure 3. Resulting distribution of cycle lives of all analyzed cells. The different colors correspond to
each experimental batch. One difference between the three batches is the resting times while cycling.
The cells with the shortest cycle lives belonged to batch “2017-06-30”, which was the batch with the
longer resting times.

Additionally, the discharge capacities of the analyzed cells can be seen in Figure 4 as
well as the internal resistance in Figure 5. The color set-up indicates the lifetimes of the
cells. Cells with higher initial internal resistance ended up with shorter lifetimes. These
were mostly the cells belonging to the batch “2017-06-30”, which was the batch with longer
resting times. Another observation is that those cells from batch “2017-06-30” were cycled
until reaching 75% nominal capacity, while the remaining two batches were cycled until
80% nominal capacity. Therefore, the cells were easy to spot when the discharge capacity
was plotted, as their curves were slightly longer.

To better analyze the input features, the importance of the variables for the XRT model
was investigated using two different models: Kendall’s tau and the Spearman coefficient.
The results are shown in Figures 6 and 7. A score which tends toward zero indicates that
no correlation is present. Meanwhile, a score tending toward 1 or −1 indicates a strong
correlation between the input variables and the cycle life. The sign denotes the direction of
the correlation. A negative coefficient means that the variables are inversely related [52].
In this analysis, it can be seen that the discharge energy, voltage rate and charge capacity
variance were the features with the smallest importance coefficients, meaning that they
were the least important ones. On the other hand, the features of the current, internal
resistance and discharge capacity variance appeared to be the most relevant ones.
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Figure 4. Discharge capacity versus cycle number of all analyzed cells. The different colors indicate
the corresponding cycle life of each cell. The cells with shorter lives belonged to batch “2017-06-30”,
which was cycled until 75% nominal capacity. The remaining two batches were cycled until 80%
nominal capacity.

Figure 5. Internal resistance of all analyzed cells. The different colors indicate the corresponding
cell cycle life. The higher the internal resistance, the shorter the lifetime. The cells with the shortest
lifetimes belonged to batch “2017-06-30”, which was the batch with longer resting times. The batches
differed regarding the resting times.

Features such as the discharge energy, charge energy, discharge capacity and charge
capacity showed poor correlation with the cycle life. A trivial link between the discharge
capacity and cycle life existed, as the curves show a slower degradation for higher lifetimes.
Nevertheless, for the first 100 cycles, this weak relationship between the initial capacity and
lifetime has already been pointed out [6]. On the other hand, the discharge capacity variance
had a strong connection with the lifetime. This fact has already been explored as well [6].

The current and the charging policies had a strong negative correlation with the cycle
life, meaning that when these two variables increased in value, the cycle life decreased.
This agrees with previous publications, which showed that some of the most relevant stress
factors for the degradation of batteries are exposure to high currents and high charging
rates [9–13]. It was also already anticipated that the internal resistance would rank in
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between the most important variables, since the increase in internal resistance is deeply
connected to the decrease in battery capacity [14]. Contrarily, the voltage rate appeared
to have a zero score, indicating no relation with the cycle life. Neglecting this quantity
reduced computational demand and the complexity of the XRT model. Thus, when the
voltage rate was removed from the analysis, the prediction errors remained the same, and
the dataset could be reduced without deteriorating the predictions. If more columns were
removed, the results were worsened.

Figure 6. Results from variable importance analysis. Kendall’s tau and Spearman coefficient for all
input features were evaluated. Values close to 0 mean no importance, while values close to either 1 or
−1 mean strong correlation.

Figure 7. Results from variable importance analysis. Kendall’s tau and Spearman coefficient for all
input features were evaluated. Values close to 0 (white color) mean no importance, while values close
to either 1 (blue color) or −1 (red color) mean strong correlation.
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The measured temperatures of the cells showed a weak relation with the cycle life.
However, it has been observed that cells with short lifetimes have lower final temperatures
than cells with long cycle lives. This relation can be seen in Figure 8. It can be suggested
that this is simply due to heating up the cells during operation. Nonetheless, the literature
indicates that higher temperatures induce lower impedance measurements [55]. It must be
noted that the temperature measurements are not perfectly reliable, as the thermal contact
between the thermocouple and the cell may vary substantially, with contact sometimes
even being lost in the course of the experiment [6].

Figure 8. Discharge capacities of exemplary cells for different final testing temperatures. All cells
started cycling with similar temperatures, but cells with longer cycle lives presented higher final
testing temperatures.

It becomes clear that the variable importance analysis can correlate with physics and
support detecting the possible factors influencing the degradation of batteries. The current,
internal resistance, discharge capacity variance and charging policies appeared to be highly
important input variables. Aside form that, the data also suggest that the resting times
have an influence on internal resistance and, consequently, on the cycle life. Nevertheless,
this point requires further research to be fully confirmed.

3.3. Prediction Error Comparison

Using the same dataset, Severson et al. [6] obtained an error of 9.1% using an elastic
net model. Since then, a number of studies have applied their published raw data in
self-developed ML models. Research groups have used different ML methods, input
parameters and cycle numbers. A summary of some main works, including the current
study, can be seen in Table 3. It becomes clear that the errors published in the literature are
significantly larger than the ones acquired in our study. We believe that the smaller error
can be attributed to assembling physical understanding, optimizing the ML models and
manipulating the data. By understanding the data, cleansing it, adding additional inputs
and optimizing the ML models, the results were substantially improved.
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Table 3. Results for current work and comparable literature studies using the same dataset.

Ref.
Number of Cells
Analyzed from
the Database

Number of
Input Cycles ML Method Lowest MAPE (%)

This work 121 100 Extremely randomized
trees 0.19

[6] 124 100 Elastic net 9.1

[37] 124 110 Neural Gaussian
process 8.8

[38] 123 100 Gaussian process
regression 8.2

[39] 124 100 Convolutional neural
networks 8.6

[40] 95 100 Deep neural network 3.97

[41] Less than 124 * 100

Linear support vector
regression and

Gaussian process
regression

8.2

[42] 123 100 Elastic net 5.21

[43] 124 100 Bayesian sparse
learning 8.4

[44] 123 80

Random forest,
artificial bee colony and

general regression
neural network

6.3

[45] 124 250 Gradient boosting
regression tree 7.0

[46] 124 100 Support vector
machine 8.0

* The authors mentioned that some cells were removed from the analysis, but they did not specify the quantity.

4. Conclusions

In this study, the cycle life of commercial lithium-ion batteries was successfully pre-
dicted using only early-cycle literature-available data and ML algorithms. The degradation
phenomena of such batteries are complex, rely on many factors and follow a nonlinear
trajectory. In this context, the use of data-driven models, which are in principal agnostic to
chemistry, is compelling. The disadvantages of such models are access to reliable data and
extraction of physical understanding. To tackle these issues, literature data were used, and
the data were managed in order to generate physical insights. The cells which presented
unusual behavior were excluded, new features were calculated and added to the prediction,
and the importance of the input variables was investigated.

The results show that the prediction performed by the ANN was extremely accurate
(99.43% accuracy) when removal of defectuous cells, noises and spikes and the addition
of information about charging protocols and capacity variances were performed. The
accuracy was further improved when a superior ML algorithm (XRT) was chosen, reaching
99.81%. XRT, also presenting a significantly faster running time. The computational time
was reduced from 15 min with the ANN to less than a second with XRT. The errors obtained
in our study were substantially lower than what was found in comparable works in the
current literature. More generally, this example shows that the comparative use of different
machine learning algorithms, as supported, for example, by the H2O AutoML library, can
be beneficial and is therefore also recommended for other applications.

Lastly, the variables’ importance results provided information about the relevance
of experimental inputs regarding the degradation phenomena. A feature such as the
voltage rate ranked as the least important and could be removed from the analysis without
deteriorating the accuracy. On the other hand, features such as the internal resistance,
current, discharge capacity variance and charging policies ranked as the most important
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ones and were very relevant for the developed model. Aside from that, the data suggest
that long resting times should be avoided to achieve a long cycle life.

Whereas the present analysis emerges as a successful method to predict the battery
lifetime for the given dataset, the transfer toward other cell chemistries would require
retraining or at least an adjustment of the model’s parameters. We believe that coupling it
with detailed chemo-physical models would allow even further optimizations and lead to
more robust predictions. An additional valuable future goal will be to adapt the model to
be applied to in situ data such as, for example, those obtained throughout the drive cycles
of electrical vehicles.
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