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Abstract: PV and battery systems have been widely deployed in residential applications due to
increasing environmental concerns and fossil energy prices. Energy management strategies play an
important role in reducing energy bills and maximize profits. This paper first reviews the state of
energy management problems, including commonly used objectives, constraints, and solutions for
PV and battery applications. Then, a comparative study of different energy management strategies is
conducted based on a real applied product and household profile. Moreover, results are discussed,
and suggestions are given for different scenarios. Finally, conclusions and insights into future
directions are also provided.
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1. Introduction

Photovoltaic (PV) energy has grown rapidly in the last decade due to increasing
global environmental awareness and decreasing manufacturing costs of PV panels. As
shown in Figure 1, the global PV capacity has grown from 70 GW in 2011 to 942 GW in
2021, and the annual addition has maintained a steady growth over the last few years [1].
However, because of the stochastic and intermittent behavior of solar energy, there are some
mismatches between power generation and load consumption in residential applications.
For example, Figure 2 shows a typical electricity demand of a household in one day. PV
generates power during the daytime, but the load demand stays at only a low level. In
the morning and evening, household appliances (e.g., water heaters, dryers, microwave
ovens, electric vehicles (EV)) consume the majority of the daily energy, yet PV production
is insufficient. As a consequence, the mismatch between generation and consumption may
lead to power shortage or the overloading of distribution power networks and worsen the
power quality [2,3].
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Figure 2. An illustration of mismatch between PV generation and load consumption. 

As a promising solution, energy storage systems (ESS) have been integrated with 
many PV applications, where ESS can store excess PV energy during sunny periods and 
release it to cover the load demand when generated PV power is insufficient. Figure 3. 
shows a typical hybrid PV–battery system (HPVBS) for residential applications, where the 
PV, battery, and DC loads (e.g., televisions and computers) connect to the same DC bus 
[4]. At present, Li-ion batteries are the prime candidate in residential cases due to their 
versatility, flexible installation, and decreasing prices [5]. Through a bidirectional 
interlinking converter, the DC bus is connected to the AC bus, which connects the AC 
loads and the utility grid. Grid-connected HPVBSs are the intermediary between 
distributed power generations and the utility grid, which can distribute and buffer the 
energy between PV energy sources and the grid. On the demand side, HPVBSs can guide 
consumers to reasonably use electricity and reduce their energy costs. On the grid side, 
HPVBSs can realize the intelligent dispatching of the power grid system, which might not 
only increase the allowed PV capacity in the power grid, but also use the energy storage 
system to shift the peak loads, hence, improving the reliability of the grid and creating a 
better economic situation for the household. Therefore, energy management strategies are 
essential to reduce the impact of randomness and fluctuation of PV power generation on 
the operation of the distribution power system. 

 
Figure 3. PV–battery grid-connected system. 

Several overview papers address different aspects of energy storage and renewable 
energy-based systems. In [6], the authors summarize the recent grid codes in different 
countries for grid-connected PV applications. In [7], the impacts of different technologies 
and applications are discussed and compared. Power generation forecasting methods and 
system protection methods are summarized in [8,9], respectively. Some researchers also 
discuss the control methods at the converter level. Ko et al. in [10] investigate the 
commonly used maximum power point tracking (MPPT) methods for PV systems used in 

Figure 2. An illustration of mismatch between PV generation and load consumption.

As a promising solution, energy storage systems (ESS) have been integrated with
many PV applications, where ESS can store excess PV energy during sunny periods and
release it to cover the load demand when generated PV power is insufficient. Figure 3.
shows a typical hybrid PV–battery system (HPVBS) for residential applications, where
the PV, battery, and DC loads (e.g., televisions and computers) connect to the same DC
bus [4]. At present, Li-ion batteries are the prime candidate in residential cases due to
their versatility, flexible installation, and decreasing prices [5]. Through a bidirectional
interlinking converter, the DC bus is connected to the AC bus, which connects the AC loads
and the utility grid. Grid-connected HPVBSs are the intermediary between distributed
power generations and the utility grid, which can distribute and buffer the energy between
PV energy sources and the grid. On the demand side, HPVBSs can guide consumers to
reasonably use electricity and reduce their energy costs. On the grid side, HPVBSs can
realize the intelligent dispatching of the power grid system, which might not only increase
the allowed PV capacity in the power grid, but also use the energy storage system to shift
the peak loads, hence, improving the reliability of the grid and creating a better economic
situation for the household. Therefore, energy management strategies are essential to
reduce the impact of randomness and fluctuation of PV power generation on the operation
of the distribution power system.
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Several overview papers address different aspects of energy storage and renewable
energy-based systems. In [6], the authors summarize the recent grid codes in different
countries for grid-connected PV applications. In [7], the impacts of different technologies
and applications are discussed and compared. Power generation forecasting methods and
system protection methods are summarized in [8,9], respectively. Some researchers also
discuss the control methods at the converter level. Ko et al. in [10] investigate the commonly
used maximum power point tracking (MPPT) methods for PV systems used in microgrids.
Control strategies for PV and wind sources are examined in [11], and the cost-effectiveness
of different ramp-rate methods to smooth the power output power is compared in [12]. In



Batteries 2022, 8, 279 3 of 18

addition, there are some reviews about the energy management strategies for renewable
energy-based systems. The energy management problems, objectives, constraints, and
strategies are summarized for microgrids [13,14], isolated microgrids [15,16], and smart
grids [17]. Unlike these review papers, this paper only focuses on hybrid PV and battery
systems for residential applications. Some highlights of this paper are:

• Energy management strategies (including objectives, constraints, and optimization
methods) are reviewed based on the state-of-the-art literature;

• Three mostly commonly deployed strategies in real cases are compared based on a
real mission profile of a typical Danish household;

• The effects of spot price are analyzed, and suggestions and future directions are also
provided.

The remainder of the paper is organized as follows: Section 2 provides an overview of
control strategies based on different objectives for HPVBS. In Section 3, a comparative study
is conducted based on a typical Danish household to compare different energy management
strategies regarding the profit self-consumption degree, etc. The results analysis and future
trends are discussed as well. Section 4 concludes this paper.

2. Energy Management for Hybrid PV Systems

As the brain ensures the economic and stable operation of the system, the energy
management system (EMS) determines the working state of each component in an HPVBS.
Therefore, proper EMS strategies are essential to achieve specific objectives in different
scenarios.

According to the International Electrotechnical Commission (IMC), an EMS is “a
computer system comprising a software platform providing basic support services and
a set of applications providing the functionality needed for the effective operation of
electrical generation and transmission facilities so as to assure adequate security of energy
supply at minimum cost” [18]. In residential applications, an EMS usually consists of
modules of forecasting, data acquisition/analysis, human–machine interface (HMI), and
optimization/control. An illustration of a hybrid PV–battery system is shown in Figure 4.
According to the forecasting results of the PV generation, load consumption, and the
acquired energy market prices, the EMS can schedule and optimize the system operation to
satisfy the technical constraints.
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2.1. Objectives and Constraints

The energy management strategies for HPVBS can have different objectives. These
objectives are based on user comforts and preferences, installed equipment, regulations
and tariff, generation and consumption, etc. In state-of—the-art research, the variables
regulated by the EMS are expanded from the adjustable power supply to the demand
side management, and the control objectives are expanded from economics to the environ-
ment [19]. In this regard, Figure 5 shows different types of optimization objectives, which
can be briefly divided into four categories: capital costs and profits, energy storage costs,
environmental costs, and other objectives. Among them, the capital costs/profits consider
the initial investment, energy costs (buying/selling energy), maintenance and operation
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costs (e.g., start-up/shut-down costs), allocation cost, total costs, annual costs, etc. Energy
storage costs include the costs during the charging/discharging periods, storage degra-
dation costs, and annual levelized battery costs. Environment costs are about carbon and
pollution emission, and penalties for emissions or subsidies for emission reduction. There
are some other miscellaneous objectives, which are hard to categorize, including consumers’
comfort/satisfaction, reliability, load-shedding costs, demand response costs, etc.
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In order to achieve multiple objectives and obtain the optimal trade-off between compet-
ing objectives, different multi-objective optimization strategies are proposed [18–61]. In [21],
the authors create a multiple-objective function to minimize the fuel, maintenance, and
start-up costs. Houshmand et al. [22] use a multi-objective to minimize the energy costs and
maximize the battery lifetime. In [18], a smart schedule is conducted to minimize energy
costs and improve the self-consumption of the PV system, which maximizes the economy
of the household power system and improves the power flexibility. Although the above
research considered the economic benefits of microgrid operation, they lack the analysis
of its environmental benefits. In this context, many scholars studied energy management
optimization strategies considering both economic and environmental benefits. The work
in [37] sets the operation cost and emissions reduction as optimization objectives, constantly
adjusting the weight coefficients of the two objectives, and analyses the impact of different
weights on the economic and environmental benefits of the microgrid. The authors of [56]
propose a microgrid dispatching strategy for a hybrid system consisting of PV arrays, a
wind turbine, a battery, and a diesel generator. By optimizing the system operation and
power flow, the operation cost and carbon emissions can be minimized simultaneously.
In [38], a novel home energy management system is proposed, where peak power smooth-
ing and carbon emissions are considered. By using wireless communication technologies,
different components in this system can quickly coordinate with each other and respond
according to the demand, and carbon emissions can be reduced greatly. Furthermore, some
scholars also consider the system’s reliability and users’ comfort and satisfaction. In [57], a
techno-economical objective function is formed, which includes maximization of profits,
self-consumption, and reliability. The proposed electricity market strategy and energy
transaction method can dynamically dispatch power between the grid and each sub-grid,
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which improves energy profits and enhances system reliability. In [58], the authors study
the impacts of the proposed energy management strategy on the reliability of distribution
networks when considering customers’ satisfaction. The results show that the proposed
strategy can maintain the system’s reliability when conducting load shedding and curtail-
ment. Shafie-Khah et al. [59] propose a home energy management strategy considering the
uncertainty of EV charging behaviors and PV output power. The proposed strategy can
reduce “response fatigue” in long-term periods and improve consumers’ satisfaction.

When conducting energy management optimization, many constraints should be
considered. In real applications, almost all optimization strategies for energy management
include a series of constraints that describe the physical and economic limitations of
the system. A system must work within these constraints to ensure an economic and
stable operation. For example, as a hybrid PV system, PV arrays have upper power
limits to generate solar energy, and batteries or other energy storage devices have state of
charge (SOC) limits and current rate limits for charging/discharging. In addition, some
loads cannot be shifted or cut down, which forms the demand constraints. Operational
constraints are used for ramp-rate limits, power balance, and shut-down and start-up
limits. Converters in the HPVBS also have power limitations, which means only a certain
amount of power can be fed into the grid and the energy storage system. When the diesel
generators are integrated, carbon emissions can be a constraint, too. Table 1 presents the
commonly used constraints related to the PV and battery systems.

Table 1. Summary of commonly used constraints.

Ref. Generation Demand Storage Operation Price Emissions

[20]
√ √

[60]
√ √

[61]
√ √ √ √

[62]
√ √ √ √ √

[63]
√ √ √

[64]
√ √ √ √

[65]
√ √ √

[66]
√ √

[67]
√ √ √ √

[68]
√ √ √

2.2. Solution Approaches to Energy Management Problem

To achieve optimal operation of HPVBS, various solution approaches have been used
to solve energy management problems. Figure 6 presents the commonly used optimization
approaches, which are discussed below.

Linear programming and non-linear programming are classical methods to solve
static optimization problems. When the constraints are linear equations or inequations,
linear programming approaches can solve the maximum or minimum value of the lin-
ear objective function. Non-linear programming should be applied when there are one
or more non-linear functions in the objective function or constraint conditions. In this
regard, [69] proposes a two-stage resilient energy management strategy, where the first
stage concentrates on the forecast and the second stage is about the flexible operation.
Linear programming is used to solve this energy management problem and the results
show that the proposed strategy can tackle extreme weather conditions without increasing
the system capacity. In [70], the authors model and design modular energy management
for the hybrid PV–wind–battery–grid system. Considering the on/off state of the energy
storage unit, the energy management optimization is seen as a mixed integer linear pro-
gramming problem. Through the hierarchical control structure, the hybrid system can work
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in different modes with avoiding damage to the battery; meanwhile, the operation costs are
minimized, and self-consumption is promoted. In [71], a complex mixed non-linear integer
model is proposed in a residential scenario. The optimization approach, which consists of
particle swarm optimization (PSO) and sequential quadratic programming (SQP), is used
to solve this non-deterministic polynomial-time hard problem. The results show that the
proposed hybrid algorithm is more effective to search for the global optimum considering
the demand response function.
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Heuristic approaches are defined as: an algorithm based on intuition or experience
that provides a feasible solution to each instance of the combinatorial optimization problem
to be solved at an acceptable cost (computing time and space), and the deviation degree
between the feasible solution and the optimal solution is generally unpredictable. Many
heuristic algorithms have been developed, and the commonly used heuristic approaches
include genetic algorithm (GA), ant colony optimization algorithm, swarm optimization
algorithm, etc. In [72], PSO is adopted to solve a Pareto energy management optimiza-
tion problem. Considering that lower utilization of a battery can decrease battery health
degradation yet increase energy consumption, the PSO algorithm is used to compromise
the weight coefficient. The results show the proposed strategy can greatly reduce the
battery lifetime degradation without increasing the energy consumption much. The work
in [73] predicts photovoltaic output power and optimizes the weights and thresholds of
neural network using GA to obtain photovoltaic power prediction output. This method
can avoid local optimal values and has higher prediction accuracy than traditional neural
network algorithms, hence, improving the economic operation and efficiency of the energy
management strategy. In [74], based on a standalone renewable energy-based system in
India, the model of each component (e.g., the total cost, output power, and battery SOC)
is established. Taking the continuity of load demand as the objective function, the ant
colony algorithm is used to solve the problem, and the optimal capacity configuration of
photovoltaic and energy storage equipment is obtained.

Agent-based approaches can obtain information individually and make independent
decisions according to the information. Through negotiation among multiple agents, the
agent cooperates to complete the overall task to achieve global optimization. The authors
in [75] propose a multi-agent-based management structure, where each component can
communicate with each other. By using an adaptive multi-input and single-out fuzzy
controller to dynamically regulate the control parameters, the generation cost of the system
can be minimized. In [76], a three-layer multi-agent architecture is proposed, which
includes three mechanisms: day-ahead planning, day rolling, and real-time scheduling.
The whole system realizes the coordinated operation of microgrids through cooperation
between time scales.
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Model predictive control (MPC) is a rolling horizon optimization method, which is
robust to disturbances from outside the system. Tobajas et al. propose a stochastic MPC
optimization strategy in [77] to control the hybrid energy storage system by considering
the two operating modes of standalone and grid-connected modes. Through the power
complementation of each subsystem, the battery degradation can be minimized, and the
energy purchase cost is reduced. In [78], a SOC-based charging scheme is proposed to
control the battery and smooth the PV power fluctuation. In islanded mode, voltage MPC
is applied to control the interlinking converter to stabilize the voltage. In grid-connected
mode, power MPC is applied to control the grid-feeding power to provide grid support.

Artificial intelligence approaches are increasingly used to predict PV and wind gener-
ation, and load consumption due to their capacity of handling massive data. Traditional
strategies rely on the accuracy of the day-ahead forecast, which may lead to the low
economy of distributed renewable energy (DRE) systems [19]. Shimotakahara et al. [79]
propose a coordinated resource allocation method between devices based on the multi-
agent principle. A Q-learning-based algorithm is introduced to optimize the long-term
communication process, which reduces the communication pressure and improves the
quality and accuracy, hence, resulting in a reduction in power oscillations in the demand
response. In [80], an artificial neural network (ANN) controller is employed to perform the
energy management strategy, and the cooperation among different sources and loads is
based on a multiple-agent system. Through real-time energy dispatch, the power source
can operate in MPPT mode, which maintains the power quality of grid-feeding power and
improves the utilization of renewable energy.

There are also some other approaches to handle the energy management problems.
In [81], the game theory approach is used for demand response programs with a microgrid.
Applying the game theory approach, demand response is implemented by scheduling the
shiftable loads, which greatly reduces the operation costs, and the technical and security
constraints can be satisfied as well. A robust optimization method is evaluated in [82]
for a grid-connected PV–wind–battery system, where the uncertainty of the pool market
price challenges the energy dispatch and leads to increases in procurement costs. A robust
optimization technique can reduce the effects of uncertainty on decision-making, hence,
reducing the purchasing cost from the grid.

3. Comparative study of Different EMS Strategies in Real Applications

An EMS strategy is essential in residential applications because consumers are very
sensitive to operations costs. In this section, different EMS strategies are compared from
different perspectives based on a real PV–battery grid-connected commercial product.

3.1. Data Profiles

Figure 7 shows the data profiles for the PV–battery grid-connected system. In Figure 7a,
the ambient temperature and solar irradiance are represented by a blue curve and orange
curve, respectively. These data are recorded for a full year with a one-minute resolution in
Aalborg, Denmark, located at 57◦ N, 9◦ E. The load profile of a typical Danish household is
shown in Figure 7b, whose annual electricity consumption is about 3 MWh. Figure 7c,d are
the spot price of west Denmark (DK1) in 2020 and the first half year of 2022 [83]. The data
of load and spot prices are based on one-hour resolution.
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Figure 7. Data profiles: (a) PV data; (b) load data; (c) price data in 2020; (d) price data in 2022.

The PV–battery system is based on Huawei LUNA2000-(5-30)-S0 [84]. The system
structure is shown in Figure 3, and the system parameters are shown in Table 2 below.

Table 2. Objectives for minimization of environmental costs.

Parameter Value Unit

PV capacity 5 kWp

Battery capacity 5 kWh

Inverter capacity 5.5 kVA

Max battery power 5 kW

Efficiency of converters 95 %

Upper limit of battery SOC 90 %

Lower limit of battery SOC 10 %

3.2. Different Strategies

In order to compare and illustrate the impacts of different energy management strate-
gies on the system operation costs, self-consumption, and self-sufficiency, two simple cases
(with PV only and without PV or battery) are also taken into account. Self-consumption is
defined as the ratio between consumed PV energy (including energy directly used by loads
and charged to the battery) and the total PV generation, which describes the utilization rate
of the PV energy. Self-sufficiency is defined as the ratio between the energy supplied by
the PV–battery system (including energy directly used by loads and discharged from the
battery) and the load demand, which is used to qualify the energy independence of the
PV system. The degree of self-consumption (sc) and self-sufficiency (ss) are represented
as follows:

sc =
EDC + EBC

EPV
(1)
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ss =
EDC + EBD

EL
(2)

where EPV and EL are the produced solar energy and total demand, respectively. EDC is the
directly consumed energy by the load. EBC and EBD are battery charged and discharged
energy, respectively.

3.2.1. Strategy 1: Maximum Self-Consumption

In this mode, the strategy aims to maximize the self-consumption of the HPVBS. The
flowchart of the maximum self-consumption is shown in Figure 8, and the principle can be
described as follows:

• When the sunlight is sufficient, the PV energy first covers the load demand, then
charges the battery, and feeds into the grid lastly;

• When the sunlight is insufficient, the PV energy first flows to the load, and then the
battery discharges. The power shortage (if any) will mean electricity is purchased
from the grid lastly.

Figure 9 shows several scenarios when the HPVBS conducts the maximum self-
consumption strategy.

(a) When the sunlight is sufficient, the PV output power is 8 kW, and the load demand is
4 kW, the remaining power flows to the battery;

(b) When the PV output power is 8 kW, and the load demand becomes 2 kW, the battery
is charged to the maximum, and the remaining power flows to the grid;

(c) When the sunlight becomes weak, the PV output power is 3 kW and load demand is
4 kW, the battery discharges to cover the shortage;

(d) When there is no sunlight at night and the load demand is 8 kW, the battery discharges
at its maximum output. The power shortage is covered by the grid.
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3.2.2. Strategy 2: Time of Use (TOU)

In this mode, the charge period and discharge period should be set manually or
automatically. There can be more than one charge/discharge segment across one day, and
each segment is hour-based. The flowchart of this strategy is shown in Figure 10, and the
principle of this mode is described as:

• The battery does not discharge in the charge period, and does not charge in the
discharge period. Each time segment should be set as charge mode or discharge mode;

• During the charge period, the battery is charged to a certain SOC. The grid provides
power to cover the load demand and charge the battery;

• During the discharge period, PV and battery energy are used to cover the load demand.
When PV energy is insufficient or the battery is fully discharged, the grid provides
extra power to cover the load.

Consider that the spot price has two valleys, at night and in the afternoon. It is
assumed that 0:00–6:00 and 12:01–18:00 are charge periods, and 6:01–12:00 and 18:01–24:00
are discharge periods.

Figure 11 presents several examples of this strategy:

(a) During 0:00–6:00 (i.e., charge period 1), the grid provides power to cover the load
demand and charges the battery at half-rate power of 2.5 kW;

(b) During 6:01–12:00 (i.e., discharge period 1), the PV output power is 5 kW, and load
demand is 4 kW, the remaining power of 1 kW feeds into the grid;

(c) During 12:01–18:00 (i.e., charge period 2), the PV output power is 5 kW, and load
demand is 3 kW, the excessive PV power and the grid together charge the battery at
half-rate power of 2.5 kW;

(d) During 18:01–24:00 (i.e., discharge period 2), the PV output power is 0 kW and the
load demand is 4 kW, the battery discharges to cover the power shortage.
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3.2.3. Strategy 3: Fully Fed to Grid

This mode maximizes the PV energy for grid connection, and the flowchart is shown
in Figure 12. The principle can be summarized as:

• When the generated PV energy is greater than the maximum capacity of the inverter,
the battery is charged to store extra energy;
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• When the generated PV energy is less than the maximum capacity of the inverter, the
battery discharges to maximize the output energy of the inverter.
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Figure 13 shows several examples of this mode:

(a) When the PV output power is 8 kW, the inverter outputs power at its maximum
capacity of 5.5 kW, and the remaining power charges the battery;

(b) When the sunlight becomes weak and the PV output power is 3 kW, the battery
discharges at the power of 2.5 kW to maximize the inverter output.
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3.3. Results and Discussion

In Denmark, consumers can sell energy to the grid with “spot price” and buy energy
with “spot price + tax + value added tax (VAT)”. It is assumed that the tax is 1.5 DKK/kWh,
and the VAT is 25%. The cost can be calculated by Equations (3) and (4), and the degree
of self-consumption and self-sufficiency are calculated from Equations (1) and (2). Table 3
presents the results of different strategies based on the spot price in 2020.

Cost =
8760

∑
i=1

[
1.25

(
Pi

Load − Pi
PV

)
·
(

Si
p + 1.5

)
·[1−Q(i)]−

(
Pi

PV − Pi
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)
·Si

p·Q(i)
]

(3)
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Q(i) =

{
1 Pi

PV ≥ Pi
Load

0 Pi
PV < Pi

Load
(4)

In Equation (3), Pi
PV , Pi

Load, and Si
p are the PV power, load power, and spot price in ith

hour, respectively. Q(i) is a binary state value, which is determined by the PV and load
power in Equation (4). When PV power is larger than or equal to the load power, Q(i) is 1,
otherwise Q(i) is 0.

Table 3. Simulation results of different strategies based on spot price in 2020.

Strategy Cost (DKK) Self-Consumption (%) Self-Sufficiency (%)

Without PV or battery 6077 0 0

PV only 3449 14 24

With PV and battery

Maximum self-consumption 1560 34 58

TOU 4462 25 43

Fully fed to grid 3447 14 24

Energy prices in Denmark have risen greatly since the beginning of 2022 due to wars
and the following energy crisis. In order to demonstrate the impacts of spot price on the
operation cost, the spot price of the first half year of 2022 is taken into account. It is noted
that weather and load profiles remain the same, which means the weather conditions and
consumption patterns do not influence the results. Resulting comparisons of different
strategies are presented in Table 4.

Table 4. Simulation results of different strategies based on spot price in 2022.

Strategy Cost (DKK) Self-Consumption (%) Self-Sufficiency (%)

Without PV or battery 5446 0 0

PV only 1653 15 28

With PV and battery

Maximum self-consumption 615 32 62

TOU 2417 24 46

Fully fed to grid 1606 15 28

From results in Table 3, it can be seen that:

1. PV arrays can greatly reduce the cost of purchased energy from the grid, and improve
the degree of self-consumption and self-sufficiency;

2. When the battery is installed, the energy costs can be further reduced to some extent,
and the degree of self-consumption and self-sufficiency can be also improved;

3. Among the three strategies (i.e., maximum self-consumption, TOU, fully fed to the
grid), maximum self-consumption can achieve the lowest cost, and highest degree
of self-consumption and self-sufficiency, which means the household consumer can
benefit from the economic operation. TOU has the highest cost, because the bat-
tery is mostly charged by the grid in charge periods, which increases the energy
exchange between HPVBS and the grid, hence, increasing the cost and reducing the
self-consumption/self-sufficiency. As for the strategy of fully fed to the grid, the
results are similar to the case when only PV is equipped. This is determined by its
principle, which requires the battery to discharge to maximize the inverter output. In
this case, the battery is not fully utilized and keeps a low SOC in most time.

The results in Table 4 have the same trend with the results in Table 3. Comparing the
results in Tables 3 and 4, it can be seen that:
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1. When there are no PV or battery, the energy cost in the first half of the year of 2022 is
close to the annual cost in 2020, due to the surging energy prices;

2. The degree of self-consumption and self-sufficiency in Table 3 is slightly different
from that in Table 4, which means the PV generation and load consumption in the
first half of the year are slightly different with that in later half of the year;

3. The energy costs of the three strategies in the first half of the year of 2022 is less than
half of that in 2020. The consumption in the first half of the year is more than that in
later half of the year, which means that PV–battery system can obtain more profits in
high energy price cases.

Therefore, from the above results and points, it can be concluded that residential
consumers can obtain more profits and energy independence with the installed hybrid PV
and battery system. However, these strategies have quite different economic performance in
the conducted household case, which means these strategies should be applied to different
scenarios. Specifically, the maximum self-consumption strategy applies to the areas where
the electricity price is high, and the higher the spot price, the more economical the scenario
is. The TOU strategy applies to the areas where the peak price differs a lot with off-peak
price, because in this mode, the grid charges the battery during off-peak price periods
and discharges during peak price periods, which improves the energy exchange between
HPVBS and the grid, and only a large price difference can cover the costs of charged energy
and battery degradation. The strategy of fully fed to grid applies to the grid-connected
scenarios where the battery needs to support the grid and works as a backup. In this
case, the battery operates in a low SOC. In order to improve the utilization of the battery,
the sunlight should be sufficient to charge the battery, which means this strategy is more
economic in dry and low latitude areas.

4. Conclusions and Future Trends

An energy management system plays a vital role in reducing energy bills for con-
sumers and reduce carbon emissions in hybrid PV and battery systems. This paper presents
a comprehensive review on the developed strategies for the PV–battery-based systems,
including objectives, constraints, and solution approaches. Moreover, three energy manage-
ment strategies are compared and discussed based on a real household profile regrading
different criterion. Even if evaluated by a criterion, the performance of a strategy can be
different considering the latitudes, weather profiles, and energy prices. Therefore, energy
management should be optimized according to specific application. This study will be
useful for several groups of people, including developers or engineers of products from in-
dustry, distribution networks engineers, and residential consumers, and has good prospects
for engineering.

With the development of mathematic techniques and calculation capability, the energy
management strategies can be improved from the following aspects:

1. Optimization objectives. Single-objective methods consider just one aspect, which
may not obtain the comprehensive performance. Hence, the optimization strategies
turn to multi-objective optimization;

2. Adaptability of algorithm. The single strategy or fixed pattern is difficult to apply to all
optimization problems. For example, the variable solar radiation or the performance
degradation of PV arrays due to aging effects requires promoting the adaptability of
the algorithm;

3. Reliability of algorithm. The randomness and convergence of the algorithm often
conflict with each other. In order to reduce the influence of uncertain factors and
better optimize the results, an artificial guidance strategy can be added, which also
improves the self-learning ability of the algorithm;

4. Accuracy of mathematical model. In some cases, real-time control has more flexibility
and can obtain a better performance, but the differences between the mathematical
model and the real dynamics may increase the control difficulty and impair the
optimization performance.
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For future work, we plan to propose new strategies based on the real data and applica-
tions, and then evaluate and compare their performance and cost-effectiveness with the
existing strategies. It should be noted that some existing strategies may not hold true due
to the modelling assumptions and simplification. Thus, it is interesting and meaningful to
compare and verify some of these strategies.
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