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Abstract: The Peukert equation is widely used in various analytical models of lithium-ion batteries.
However, the classical Peukert equation is applicable to lithium-ion batteries only in a limited range of
discharge currents. Additionally, it does not take into account the temperature impact on a battery’s
released capacity. In this paper, the applicability of the generalized Peukert equation C = Cm/(1 + (i/i0)n) is
investigated for the residual capacity determination of lithium-ion batteries based on the Hausmann model.
It is proved that all the parameters (Cm, i0, and n) of this equation depend on a battery’s temperature.
That is why, for a battery-released capacity calculation, it is necessary to take into account the battery’s
temperature. The equations are found to describe the temperature dependence of all the parameters of the
generalized Peukert equation. The physical meaning of all the parameters is established and it is shown
that the generalized Peukert equation obtained with temperature consideration is applicable to any current
and temperature of a battery.

Keywords: Peukert equation; lithium-ion battery; temperature dependence; current dependence; capacity

1. Introduction

Batteries are components of various machine items. That is why, for efficient operation
of those technical objects, reliable battery models are needed. For example, during the
operation of any device containing batteries, it is necessary to know a battery’s residual
capacity, its remaining service time, etc. However, these battery parameters can only be
calculated based on very reliable battery models. The most accurate battery models are
those based on the physical and chemical fundamental laws [1–5]. However, in practice,
fundamental battery models are used very rarely. There are many reasons for this. Firstly,
the fundamental models of batteries are so complex that they cannot be calculated by the
onboard computers of electric vehicles, airplanes, etc. Secondly, the fundamental models
contain a lot of parameters describing internal electrochemical processes running in bat-
teries that can only be found as a result of a very complex electrochemical examination of
the battery’s internal processes. Notably, this examination requires a battery’s disassembly,
which is prohibited very often as it is inconvenient for companies needing the models.
Thirdly, after a battery’s replacement, the fundamental models are hardly applicable as
the new batteries require a new very complex calibration. This is so even for batteries
of the same electrochemical system and format because any previously measured inter-
nal parameters depend to a large extent on a new battery’s internal structure, various
additives present in both the active mass and the electrolyte of batteries, etc. Fourthly,
the fundamental models cannot describe such poorly studied processes in batteries as
thermal runaway [6,7], hydrogen accumulation, aging [8,9], etc. Therefore, the battery
models applicable in practice should be simple enough [10] so that they can be calculated
by the onboard computers of electric vehicles and airplanes. In addition, it is necessary
that the parameters of these models can be found without disassembling the batteries,

Batteries 2022, 8, 280. https://doi.org/10.3390/batteries8120280 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries8120280
https://doi.org/10.3390/batteries8120280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-1613-8659
https://orcid.org/0000-0001-8147-8599
https://doi.org/10.3390/batteries8120280
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries8120280?type=check_update&version=1


Batteries 2022, 8, 280 2 of 9

and after a battery’s replacement, the calibration of the new batteries should be easy. The
only models able to satisfy such requirements are analytical models based on empirical
equations [11–14] or nonlinear structural models [15–17]. Currently, for the determination
of a battery’s remaining capacity or its state of charge (SoC), there are many analytical mod-
els and methods. Firstly, the SoC assessment can be done by an open circuit voltage [18].
However, this method is not applicable for lithium iron phosphate batteries distinguished
by a flat discharging curve. Moreover, with dynamic battery operation, this method gives
an error of up to 20% [19]. Secondly, the Kalman Filter can be used in analytical battery
models [20–22] but in the battery operation dynamic mode, this method often gives an
error of up to 10%. Thirdly, it is possible to calculate the ampere hours spent while a battery
is discharging, etc. Further, for battery SoC estimating, there are a lot of analytical models
using the Peukert equation. The most promising of them is the Hausmann model [10]. In
this group of models, it is very important to have a correct empirical Peukert equation
applicable to any lithium-ion battery at any discharge current and any battery temperature.

In [23–25], it was experimentally proven that for lithium-ion batteries, the classical
Peukert equation is applicable only in the discharge current range from around 0.2 Cn to
2 Cn (Cn is the rated battery capacity). At currents less than 0.2 Cn, the capacity in the
Peukert equation tends to infinity, which is impossible for any battery. In experiments [24]
at currents more than 2 Cn, the curve C(i) of capacity versus the discharge current becomes
convex, while in the Peukert equation, it is always concave (when n > 0).

Therefore, the classical Peukert equation used in the Hausmann model [10] is applica-
ble for lithium-ion batteries only in a very narrow range of temperatures and
discharge currents.

Nevertheless, many analytical models of batteries use the classical Peukert equation
for calculation [19,26–28]. This study, therefore, is aimed at finding a generalized Peukert
equation for lithium-ion batteries which would be correct at any discharge current and
battery temperature.

2. Theory

For a battery’s residual capacity determination in an electric vehicle, the Hausmann
model [10] is used in the following form:

Ct = Cm0 −
t

∑
i=0

Ie f f (ii, Ti)∆t, Ie f f (it, Tt) = f1(it) f2(Tt) = γ(it)
α
(Tre f

Tt

)β0

(1)

In Equation (1), for determining the battery residual capacity Ct at the point of time t
(from the battery discharge beginning), the entire discharge time interval is divided into
small time spans ∆t = 1 s. Then, for every small time span ∆t, the effective currents Ieff(i,T)
are summed and subtracted from the maximum battery capacity, Cm0 (1), found at any
discharge current and temperature of the battery. Tref = 298 K is the reference temperature
used in the experiments and α, β0, and γ are the empirical constants.

The relationship between the effective current Ieff(i,T) and the battery capacity C(i,T) [23]
is described by the equation:

C(i, T) =
Cm0

Ie f f (i, T)/(iγ)
(2)

From Equations (1) and (2) for C(i,T), we obtain the equation:

C(i, T) =
Cm0

in

(
T

Tre f

)β0

, n = α− 1 (3)

Equation (3) is the Peukert equation taking temperature into account.
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Indeed, Equation (3) is the product of two following factors:

C(i) =
A
in and (4)

C(T) = Cmre f

(
T

Tre f

)β0

, Cm0 = Cmre f A (5)

Equation (4) is the classical Peukert equation, which is often written in this
form [10,23]. Equation (5) describes the dependence of the battery capacity on its temper-
ature. In Equation (5), Cmref is the maximum battery capacity at the reference temperature
Tref = 298 K, and A is an empirical constant.

It should be noted that the empirical Equations (4) and (5) were obtained experimen-
tally at various constant values of current and temperature, and in the Hausmann model
(1), these equations are used in the dynamic mode of battery discharge, when the discharge
currents change dramatically during the operation of the electric vehicles. However, at
every small time span, ∆t = 1 s, the discharge current and the temperature can be considered
to be constant. That is why the Hausmann model (1) gives very good estimates for the
battery residual capacity.

In [23,25], it was proved that the generalized Peukert equation:

C(i) =
Cm

1 +
(

i
i0

)n (6)

corresponds well to the experimental data obtained for lithium-ion batteries at any dis-
charge current. Notably, C(i0) = Cm/2. In addition,

lim
i→i0

d(C(i)/Cm)

d(i/i0)
= −n

4
(for Equation (6)) (7)

Thus, all the parameters of the generalized Peukert Equation (6) have their clear
physical meaning: Cm is for the battery top capacity, found at any discharge current and
a certain (under study) battery temperature; i0 is for the current, at which the capacity
released by the battery is equal to half of the battery’s top capacity; and n/4 is the tilt
angle of the function C(i) in the point i = i0 in the standardized coordinates (C(i)/Cm, i/i0).
Meanwhile, in the classical Peukert (4) Equation, parameter A is just an empirical constant.

Furthermore, in [23,25], it was shown that Equation (5) is applicable only in a small
temperature range close to the temperature value Tref. In Equation (5), the temperature
can vary from zero to infinity; meanwhile, the released capacity will also vary from zero to
infinity, which is impossible for any type of battery. In any battery, the released capacity
varies from zero (at a temperature close to the freezing point of the electrolyte) to the
maximum possible value determined by the battery’s electrochemical system. While in
Equation (5), C(T) = 0 only at T = 0, which is impossible for any type of battery. In the same
papers, it was shown that the function C(T) corresponding well to the experimental data
appears as follows.

C(T) = Cmre f K

(
T−Tk

Tre f−Tk

)β

(K− 1) +
(

T−Tk
Tre f−Tk

)β
(8)

As C(Tk) = 0, Tk is the temperature at which all electrochemical processes stop in the
battery, i.e., this temperature is close to the electrolyte freezing temperature. In addition,
lim

T→∞
C(T) = Cmre f K. Therefore, the parameter K shows how many times (theoretically)

the battery capacity can increase compared to its capacity at temperature Tref, and β is an
empirical constant.
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In [23], in the Hausmann model (1), instead of the Peukert equation taking temperature
into account (3), the generalized Peukert equation was used to consider the temperature in
the following form:

C(i, T) =
Cmre f(

1 +
(

i
i0

)n)K

(
T−Tk

Tre f−Tk

)β

(K− 1) +
(

T−Tk
Tre f−Tk

)β
(9)

Equation (9), when used in the Hausmann model (1), significantly improves the estima-
tion accuracy of the residual battery capacity [23] as compared to the use of Equation (3). This
is because Equations (6) and (8) correspond well to the experimental data at any discharge
current and battery temperature value. In contrast, Equations (4) and (5) correspond to the
experimental data only in the limited ranges of current discharge and temperature.

A comparison between Equation (9) and the generalized Peukert Equation (6) shows
that in [23], the authors believed that only one parameter depends on the temperature in
Equation (6), namely Cm, while the other two parameters of this Equation (i0 and n) do not
depend on the temperature.

In this paper, we will check the temperature dependence of all the parameters
(Cm, i0, and n) in the generalized Peukert Equation (6).

3. Experimental Methodology

In order to test the temperature dependence of the parameters of the generalized
Peukert Equation (6), the following lithium-ion batteries were used: HR3781162227 NMC
Pouch (Guangdong, China), voltage 3.7V. The rated capacity of these batteries is Cn =40 Ah.

For battery charging, the workstation ZENNIUM (with a potentiostat PP242) was used
in the mode (CC/CV), i.e., constant current/constant voltage. The following values were
used: the constant current 0.5 Cn charge to 4.2 V and the constant voltage 4.2 V charge to
0.02 Cn cut-off.

For battery discharging, the electronic load ITECH IT8945-150-2500 was used in the
DC mode (CC). The discharge was performed at currents in the range from 0.33 Cn to 10 Cn
up to the discharge cut-off voltage of 3 V.

The experimental values of the studied batteries were found at the following tempera-
tures: −18 ◦C, −10 ◦C, 0 ◦C, 10 ◦C, 25 ◦C, and 40 ◦C. The climate chamber Binder MK240
was used for maintaining these battery temperatures. For the purpose of cooling down
the batteries when they were discharged with large currents, heat sinks were attached to
the batteries from all sides (they were the heat sinks used in computers for cooling down
processors). The heat sinks were attached by a heat-conducting paste and special clamps.
Moreover, four LM35 temperature sensors were attached to different battery surface points.
Due to the LM35 temperature sensors, at any discharge current, the climate chamber
maintained the battery temperature close to the specific temperature under examination.

At the same time, we carried out experimental measurements with five batteries at
certain discharge currents and temperatures. This procedure enabled us to determine the
battery capacity more accurately at certain values of the discharge current and the tempera-
ture. Each time, we calculated the average value of the capacity for the five measurements,
but the average value is less dependent on any inevitable insignificant random process
related to either the battery manufacturing process or the battery capacity measurement
process. In addition, this allows for using statistical methods to more accurately estimate
the error of each measurement. Because each experimental point is measured multiple
times, the error will reflect not only the accuracy of the measuring tools used but also the
above-noted inevitable minor random processes.

Before our measurements started, for the parameter stabilization of our new batteries
(which comes due to the SEI layer formation [25]), we performed seven training cycles of
charge/discharge. In compliance with the battery operation instructions, in our training
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cycles, the battery’s charge was performed in the standard way (as described above), and
the discharge was done by the current 0.5 Cn up to the voltage 3 V.

In order to avoid the influence of charge-discharge cycles on each other (through all
possible residual processes), we conducted three training cycles before each change of
temperature or discharge current. This guaranteed that each measurement was carried out
under the same initial conditions.

We carried out each measurement for five batteries at a certain discharge current and
temperature. However, if the obtained battery capacity values differed by more than 5%,
we conducted additional training cycles or replaced one or two unstable batteries with new
more stable ones. Then we repeated the experiment from the beginning.

4. Results

Figure 1 represents the experimental data obtained. We show the experimental data
in the standardized coordinates (C/Cm, i/i0) as this is a more convenient way of data
presentation. This method makes it possible to eliminate to a high extent the inevitable small
random factors related to both the battery manufacturing process and the measurement of
experimental values. This is due to the fact that the parameters (Cm and i0) are also found
experimentally for each specific battery and the same random factors act on them. That is
why in the ratios (C/Cm and i/i0), any random factors related to the battery manufacturing
process are compensated completely and random factors related to the measurement of
the experimental value are compensated partially. This is why the experimental curves
obtained in the standardized coordinates are considered to be more reliable.
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Table 1. Optimal values for Equation (6) parameters at different temperature values.

Temperature (◦C) −18 −10 0 10 +25 +40

Cm (Ah) 30.097 34.052 36.204 38.485 39.990 39.993
i0 (A) 84.802 157.616 219.657 278.664 314.340 314.345

n 6.703 5.618 5.033 4.926 4.751 4.754
δ (%) 1 0.9 1.7 2.9 1.4 1.0 1.2

1 Relative error of experimental data approximation by Equation (6) in Figure 1.
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The optimal parameters for the Peukert Equation (6) at different temperatures were
obtained using the least square method and the Levenberg–Marquardt optimization pro-
cedure. For this, the experimental data presented in Figure 1 were used. The obtained
parameters are shown in Table 1.

The experimental data obtained (Table 1) show that the parameters dependent on
the battery’s temperature are all the parameters (Cm, i0, and n) of the Peukert generalized
Equation (6) instead of only parameter Cm as believed in the papers [10,23]. Hence, in the
Hausmann model (1), it is necessary to take into account the temperature dependence of all
the parameters of Equation (6).

The temperature dependence of the parameters (Cm, i0, and 1/n) of Equation (6) (from
Table 1) is shown in Figure 2. In order to simplify the comparison, the parameters are
presented in the standardized coordinates, where Cmref, i0ref , and 1/nref are values of the
same parameters at the temperature Tref = 298 K.
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Figure 2 shows clearly that the temperature dependence of the parameters Cm, i0, and
1/n looks qualitatively the same and is similar to Equation (8).

Here, we introduce the vector of the parameters:

P = (Cm, i0, 1/n) (10)

Now the temperature dependences of all the parameters of Equation (6) can be written
as a common Equation:

Pi(T) = (Pre f )iKi

(
T−(Tk)i

Tre f−(Tk)i

)βi

(Ki − 1) +
(

T−(Tk)i
Tre f−(Tk)i

)βi
, Pre f = (Cmre f , ikre f , nre f ), (11)

In Equation (11), the vector Pref is equal to the vector P at the temperature Tref = 298 K.
Now, using the experimental data (Table 1), we will check the correspondence of

Equation (11) to the experimental data. The optimal parameters of Equation (11) were
found with the use of the least square method and the Levenberg–Marquardt optimization
procedure.

The values found are presented in Table 2.

Table 2. Optimal values of the Equation (11) parameters.

Parameters Cm i0 1/n

Tk (◦C) −33 −32.9 −32.24
β 1.054 2.387 1.492
K 1.118 1.14 1.063

δ (%) 1 2.0 1.9 0.9
1 Relative error of experimental data approximation by Equation (11) in Figure 1.

Equation (11) approximates well the experimental data from Table 1 (the relative
approximation error is less than 2% (Table 2)). Hence, Equation (11) describes well the
dependence of the Equation (6) parameters on temperature.

5. Discussion

Equation (6) (taking into account Equation (11)) has a number of advantages over the
classical Peukert Equation (3) when considering the effect of temperature.

Firstly, the classical Peukert Equation (3) is applicable to lithium-ion batteries only
in a limited range of discharge currents, from approximately 0.2 Cn to 2 Cn [24]. At lower
discharge currents, the classical Peukert Equation (3) tends to infinity, which is impossible
for any battery. At higher discharge currents, the experimental function C(i) for lithium-ion
batteries is convex (Figure 1), whereas, in the case of the classical Peukert Equation (3), it
always has a concave curve (at n > 0). Meanwhile, the generalized Peukert Equation (6) is
applicable for any discharge currents.

Secondly, the Peukert Equation (3) is applicable only in the limited temperature range
close to the temperature Tref. In Equation (3), C(i,T) = 0 can only be at the temperature T = 0.
However, in the batteries, C(i,T) = 0 is only reached near the freezing point of the electrolyte.
Consequently, Equation (3) is not applicable at low temperatures. With the temperature
growth in Equation (3), C(i,T) grows indefinitely, too. However, the capacity is always
limited at any temperature in batteries; it cannot be larger than the capacity received by the
battery from the charger. Meanwhile, the generalized Peukert Equation (6) updated with
Equation (11) is applicable at any temperature.

Thirdly, all the parameters (Cm, i0, and n) of Equation (6) have a clear physical meaning,
while the parameters of the classical Peukert Equation (4) are just empirical constants.
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Thus, in the Hausmann model (1), instead of the too-limited classical Peukert Equation (3),
the more accurate generalized Peukert equation should be used:

C(i, T) =
Cm(T)

1 +
(

i
i0(T)

)n(T)
(12)

Now, using Equations (2) and (12), we can find the following equation for the effective
current Ieff(i,T) in the Hausmann model (1)

Ie f f (i, T) = iγ
Cm0

(
1 +

(
i

i0(T)

)n(T)
)

Cm(T)
(13)

In Equations (12) and (13), the temperature dependence of parameters Cm(T), i0(T),
and n(T) is determined by Equation (11).

The preliminary estimates have shown that during the normal operation of electric
vehicles, the use of Equations (12) and (13) plus Equation (11) instead of the Peukert
Equation (3) increases the accuracy of the battery’s residual capacity estimation by 10–15%
as compared to estimates based on the Hausmann model [10,23]. During extreme driving,
when the currents are very small or very high and the temperature of the batteries is low,
the use of Equation (13) in the Hausmann model (1) increases the accuracy of estimating
the residual battery capacity by several times; thus, this is a subject for further research.

6. Conclusions

Every year the number of lithium-ion batteries of any format steadily grows. Therefore,
the need for reliable models of these batteries grows, too. Basically, reliable models of
batteries are necessary for the assessment of their residual capacity because the operation
of all systems containing the batteries depends on the residual capacity in those batteries.

In this paper, the following is established.
Firstly, the classical Peukert Equation (4) can be used for lithium-ion batteries in a very

limited range of discharge currents. An equation usable for any discharge current is the
generalized Peukert Equation (6).

Secondly, the capacity of lithium-ion batteries is influenced to a large extent by
the battery’s temperature. However, in many models, the battery’s temperature is ei-
ther not taken into account at all [2,20,29] or is taken into account but in a very limited
temperature range [10,23]. This results in significant errors in the estimation of various
battery parameters.

In this paper, it is proved experimentally that in the generalized Peukert Equation (6),
all the parameters depend strongly on the temperature (in accordance with Equation (11)).
Therefore, Equation (6) (taking into account Equation (11)) is true at any battery temperature.

Finding equations that most accurately reflect the processes in batteries, i.e., when the
batteries are charged and discharged, enables a correct understanding of these processes.
Consequently, these studies are of great theoretical and practical importance.
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