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Abstract: The most popular approach for smoothing renewable power generation fluctuations is
to use a battery energy storage system. The lead-acid battery is one of the most used types, due to
several advantages, such as its low cost. However, the precision of the model parameters is crucial to
a reliable and accurate model. Therefore, determining actual battery storage model parameters is
required. This paper proposes an optimal identification strategy for extracting the parameters of a
lead-acid battery. The proposed identification strategy-based metaheuristic optimization algorithm is
applied to a Shepherd model. The bald eagle search algorithm (BES) based identification strategy
provided excellent performance in extracting the battery’s unknown parameters. As a result, the
proposed identification strategy’s total voltage error has been reduced to 2.182 × 10−3, where the
root mean square error (RMSE) between the model and the data is 6.26 × 10−5. In addition, the
optimization efficiency achieved 85.32% using the BES algorithm, which approved its efficiency.

Keywords: energy storage; lead-acid battery; parameter identification; optimization techniques

1. Introduction

Due to the overuse of fossil fuels, there has been an increase in air pollution and global
warming worldwide. As a result, the development of various alternative energy sources
has been substantially expedited. Renewable energy sources such as solar energy have
recently received much attention as an alternative solution. Because of their unexpected and
intermittent availability, renewable energy sources have encountered a dilemma regarding
power generation. This changeable nature poses considerable challenges to the power
grid, such as instability and power quality issues. Energy storage systems (ESS), such
as battery storage systems, have been presented to address these issues [1]. Batteries in
renewable energy applications must have high cycle stability and an intense discharge rate.
Lead-acid batteries (LaBs) can be suitable for these applications [2]. Lead-acid batteries
(LaB) are commonly utilized in various applications where cost takes precedence over
weight and space. In addition, a LaB battery has the advantages of being totally recyclable,
maintenance-free, and have a high reserve capacity [3]. However, after a lengthy period of
usage, the properties of the batteries will degrade, owing to changes in their internal states,
such as capacity, state of health (SoH), and remaining useful lifecycle [4]. In addition, the
battery model has usually been used for battery management system (BMS) laws. Battery
deterioration, on the other hand, clearly produces parametric modifications, which reduce
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their performance [5]. Therefore, to ensure its lifecycle’s proper functioning and extension,
the BMS must consider its internal parameters. Furthermore, battery identification enables
the estimation of the battery’s state of health (SoC), which displays the deterioration
ratio [6].

Some of these parameters can be extracted using an appropriate model and exper-
iment/manufacture data. The battery behavior has been expressed using several mod-
els. There are Shepherd [7], Guasch [8], PSPice [9], and CIEMAT [10] models among
the existing models. Each model contains several parameters that must be identified.
The other parameters cannot be measured directly and can only be determined using
model-based strategies.

In the literature review, several identification techniques and methodologies have
been provided to extract the unknown parameters of the battery model. Shen et al. [11] sug-
gested a group-wise algorithm-based identification Lithium-ion (Li-ion) battery parameter
technique. However, this approach is essentially experimental and depends on measure-
ment precision and data availability. An extended Kalman filter (EKF) and an unscented
Kalman filter (UKF) were used to identifying the resistance-capacitance (RC) model [12].
The precision of these approaches is determined by the filter settings, which may increase
the estimation error. Due to their excellent performance, the utilization of metaheuristic
algorithms (MAs) in extracting the battery parameters has gained considerable attention.
Some of the used MAs are artificial ecosystem-based optimization (AEO) [6], modified
COOT [13], and the bald eagle search algorithm (BES) [14].

Unlike lithium-ion batteries (Li-ion), few papers present lead-acid battery identifica-
tion strategies. In [15], several methods for predicting the lifespan of lead-acid batteries
are compared. Each strategy’s merits and downsides are listed in this paper. A simple,
fast, and practical identification approach was reported in [16] to extract the parameters
of an equivalent circuit model for lead-acid batteries. The suggested approach is based
on an experimental data set. A review of LaB’s state of health estimation methods is
presented and discussed in [17]. The battery aging and the SoH estimation strategies are
well explained in this paper. The reported research in [18] proposes an algebraic approach
for identifying Thevenin’s equivalent circuit model parameters. The identification strategy
has been operated under non-zero initial conditions. An optimal LaB battery parameters
identification strategy using Evolutionary Algorithms (EA) has been proposed in [19]. This
strategy is based on reducing the error between the real and estimated datasets.

Identification strategies based on metaheuristic optimization algorithms (MAs) are
getting more consideration, thanks to their high accuracy. These algorithms have been
used extensively in extracting the Li-ion battery parameters, such as the bald eagle search
algorithm (BES). BES is a new optimizer with a high convergence rate and high exploitation
and exploration performance due to the triple updating phases [20]. This makes it an
excellent choice for identification applications. In this paper, an offline identification
strategy for a LaB is performed. The provided model can be used to enhance its integration
for renewable applications, such as photovoltaic applications. The main aims of this search
can be listed as:

• Suggest an optimal identification strategy based on the MAs for the LaB battery model.
• Investigate and confirm the high performance of the BES-based identification strategy.
• Approve the accuracy of the proposed identification strategy by extracting the real

parameters of a Banner 100 Ah battery.

The remainder of the article has been arranged as follows. The battery mathematical
model using the Shepherd model is introduced in Section 2. Then, the BES-based iden-
tification strategy is well described in Section 3. Section 4 shows the results, as well as a
discussion section. Lastly, Section 5 presents the main findings.
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2. Lead Acid Battery Modeling

The lead-acid model has been proposed and explained in [21]. The Shepherd relation
is the simplest and most popular battery model [7]. It defines the charging and discharging
phases’ nonlinearity. The discharge equation for a Lead acid battery is as follows:

Vdis = E0 − K Q
Q−it (it + i∗) + Vexp − Rint × i

= E0 −Vpol + Vexp −Vohm
(1)

Vch = E0 − K×Q(
1

Q− it
it +

1
it− 0.1×Q

i∗) + Vexp − Rint × i (2)

where Vdis is the discharging battery output,
Vch are the charging battery outputs,
E0 is the constant voltage (V), Q denotes the battery’s nominal capacity (Ah),

K represents a polarization constant (Ah−1), it denotes the current battery charge (it =
∫

idt)
(Ah), Rint is the internal resistance (Ω), and i and i* are the battery output current and
the filtered current (A), respectively. Vpol represents the polarization voltage (V), Vohm
represents the ohmic loses voltage (V), and Vexp represents the exponential zone voltage
containing the hysteresis phenomenon.

.
Vexp = B× |i|(−Vexp + A× u) (3)

where A is the amplitude of the exponential zone (V), B denotes the time constant inverse
of the exponential area (Ah−1), and u represents the operating mode (u = 1 for the charging
case and u = 0 for the discharge case). At the full charge state, the Vexp contributes more
than 1 V, which is much higher than Vpol or Vohm. Hence, the output voltage at this state is
higher than E0.

For this model, the following assumptions must be considered:

• Rint is assumed to be constant during the charge and discharge modes and does not
change in proportion to the amplitude of the current.

• The model’s parameters are extracted from the discharge mode characteristics and are
supposed to be equal to the charging model.

• No Peukert effect (Q does not vary with the current amplitude).
• No thermal effect.
• No self-discharge effect.
• No memory effect.

A lead-acid battery discharging model is presented in Figure 1.
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3. Proposed Identification Strategy
3.1. Problem Formulation

The proposed methodology depends on minimizing the voltage difference between
real-world battery data and its model. The fitness function is generated using the root main
square voltage error (RMSE). The RMSE is represented as follows

fRMSE(T) =

√√√√ 1
M

M

∑
T=1

(VData(T)−VModel(T))
2 (4)

where VData(T) is the measured data at instant T, VModel(T) is the model output voltage, T is
discrete-time (T = k.Ts), Ts is the sampling time, k = 0, 1, 2, . . . .M, and M is the measurement
data size.

The idea is to determine the best set of parameters x for the unknown model that
minimizes the objective function. The set of parameters x can be expressed as follow

x = [E0, Rint, Q, K, A, B, τ] (5)

The optimizer assigns the candidate solutions x on the model at the first step. Then,
the error is generated, and the objective function of the candidate solutions x is evaluated.
Finally, the best solution will be assigned as a target solution, which will repeat until the
last iteration. The candidate solutions have to be limited within their limits as

LB ≤ x ≤ UB (6)

where LB and UB are the lower and the upper limits of the candidate solutions.

3.2. Bald Eagle Search Algorithm

The bald eagle search algorithm (BES) is a recent bio-inspired metaheuristic opti-
mizer [20]. It emulates the searching and fishing strategy of a bald eagle. This algorithm
contains three stages: selecting space, searching in the space, and swooping.

Select space: the eagle flies from a random place and searches for the area that includes
the prey. This stage can be modeled as follows

Pnew = Pbest + α× r(Pm − P) (7)

where Pnew denotes the candidate spaces, Pbest is the prey space (best position), α is con-
trolling again [1.5, 2], and r is a penalty factor [0, 1]. Pm denotes the mean of all the
existing spaces. The prey space will be updated based on the obtained fitness of the
new spaces Pnew.

Searching in the space: In this stage, the eagle explores the chosen space in the previous
stage, and determines the best position to hunt the prey. This stage can be expressed
as follow

Pnew(i) = P(i) + y(i)× (P(i)− P(i + 1)) + x(i)× (P(i)− Pm) (8)

where Pnew represents a set of new possible positions for hunting and x and y represent the
direction coordinates. They can be expressed as follow

x(i) = xr(i)
max(|xr|) ; xr(i) = r(i)× sin(θ(i))

y(i) = yr(i)
max(|yr|) ; yr(i) = r(i)× cos(θ(i))

θ(i) = a× π × rand; r(i) = θ(i)× R× rand

(9)

where a represents a constant factor [5, 10] employed to define the corner between point
search in the central point, and R represents a fixed factor [0.5, 2] employed to specify the
number of searching cycles.
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Swooping: the eagle pounces on its prey from the best-obtained location in the previ-
ous stage. This stage can be expressed as follow

Pnew(i) = rand× Pbest + x1(i)× (P(i)− c1 × Pmean) + y1(i)× (P(i)− c2 × Pbest) (10)

where c1 and c2 are random numbers in [1, 2]; x1 and y1 are direction coordinates that can
be defined as

x1(i) = xr(i)
max(|xr|) ; xr(i) = r(i)× sinh(θ(i))

y1(i) = yr(i)
max(|yr|) ; yr(i) = r(i)× cosh(θ(i))

θ(i) = a× π × rand r(i) = θ(i)

(11)

4. Results and Discussion
4.1. Test 01

The lead-acid battery model was created using Matlab 2020a. Random solutions
within the search space restrictions were generated and assigned to the model as candidate
solutions. The model was then run using these parameters, and the results were compared
to the measured data. The error was used in the objective function Equation (4).

A predetermined current supplied the considered LaB battery. The output voltage
was saved and used in the identification process. The actual parameters of the con-
sidered battery are presented in Table 1. The used current and measured voltage are
delivered in Figure 2.

Table 1. Real Battery Parameters.

Parameter E0 Q K A B Rint τ

Value 24.5467 1526.5 4.7651 × 104 1.6329 0.6 1.6 × 10−4 10
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Since the MAs are stochastic algorithms that start from random positions, the results
for each time can be different. The algorithm’s robustness means its ability to provide
similar or close to results for each identification process. The robustness can be evaluated
using ANOVA and Tuckey statistical tests.

Its results were compared with those provided by employing other MAs such as PSO,
SSA, AEO, MPA, and COOT to confirm the proposed method’s high performance. However,
due to the stochastic nature of the MAs, each algorithm was performed 30 times to approve
the performance in terms of robustness and accuracy. Each algorithm was initialized with
the following parameters: Population size (N = 30); Number of max iterations (Tmax = 30);
Upper search space limit (UB): 120% of the actual value; and lower search space limit (LB):
80% of the actual value.

Table 2 shows the final parameters for the first, middle, and last runs. The identification
statistics are given in Table 3.

Table 2. Identification results.

PSO SSA AEO MPA COOT BES

Run
Number 1 30 1 30 1 30 1 30 1 30 1 30

Q 1561.89 1569.68 1566.53 1560.89 1564.92 1564.93 1565.30 1564.61 1567.27 1548.63 1564.82 1565.01

Rint 10−3 0.2667 0.1650 0.1590 0.161 0.1581 0.1540 0.1506 0.1623 0.1601 0.1343 0.1521 0.1479

K 10−3 0.3412 0.4583 0.4620 0.462 0.4539 0.4745 0.4073 0.3941 0.4212 0.5671 0.4760 0.4787

B 0.6061 0.6142 0.5405 0.5867 0.6047 0.6023 0.6022 0.6106 0.6079 0.5928 0.6004 0.5995

τ 11.8332 9.6110 9.3154 10.163 9.5915 9.8574 9.8168 8.0082 9.7822 10.3890 9.8210 9.7676

E0 24.5581 24.5597 24.490 24.535 24.5491 24.5487 24.5416 24.549 24.5483 24.5489 24.5472 24.546

A 2.7367 1.6028 1.661 1.507 1.7499 1.5618 1.9593 1.9439 1.5688 1.8379 1.6470 1.3269

Fitness
10−5 120.25 47.65 167.4 53.3 13.44 8.63 44.10 38.01 37.56 105.84 6.51 6.60

Table 3. Identification statistics.

PSO SSA AEO MPA COOT BES

Min × 10−5 47.6472 24.5568 8.2118 11.8537 28.5957 6.26281

Max × 10−5 614.963 962.0183 38.5174 116.6024 362.0126 16.2673

Mean × 10−5 280.5831 141.0525 17.6019 39.5681 123.533 7.79776

Median × 10−5 128.3692 170.6487 8.07614 21.9564 79.9468 2.42301

StD × 10−5 47.6472 24.5568 8.2118 11.8537 28.5957 6.26281

Efficiency (%) 2.90 7.69 41.52 19.95 7.52 85.32

Execution time (sec) 157 587 263 490 132 691

Total voltage
error × 10−3 772.4 4.077 1.423 3.12 52.58 2.182

The average efficiency can be calculated as follow

ηav =
100
n

n

∑
i=1

OFnom

OFest
(12)

where n is the number of runs (30 runs), OFest is the estimated fitness value, and OFbest is
the best-obtained fitness value.
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From the provided results in Table 2, all the estimated parameters were near the real
ones. However, the identification precision differed from one algorithm to another and
from run to run. To analyze these results, a statistical study is presented in Table 3. Based
on these results, the best mean fitness value was 7.79776 × 10−5, provided by the BES.
In addition, the BES’s min, max, and standard deviation were the best-obtained results
by 6.26281 × 10−5, 16.2673 × 10−5, and 6.26281 × 10−5, respectively. Moreover, the BES
optimization efficiency was the highest at 85.32%. Consequently, the battery parameters
estimated using the BES were nearer to the actual values. However, the elapsed time by the
BES was much longer compared to the other optimizers, as confirmed by the total voltage
error (2.182 × 10−3).

Figure 3 introduces the evolution of the mean fitness. The provided curves demon-
strate the superiority of the BES over the other methods. The mean fitness value was
7.79776 × 10−5, which is better than the AEO by 2.25 times, better than the MPA by five
times, better than the COT by 16 times, better than the SSA by 18 times, and finally better
than PSO by 36. Furthermore, the BES needed only ten iterations to reach the minimum
cost function, unlike the other algorithms, regarding the convergence rate.
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Figure 4 presents the agent evolution of both PSO, SSA, and COOT algorithms. Figure 5
shows the agent evolution of MPA, AEO, and BES algorithms. These curves explain the
obtained results in Tables 2 and 3. The PSO and COOT algorithms required more iterations
to achieve better results. Thirty iterations were not enough. SSA agents were much closer
to optimal results than PSO and COOT. However, the accuracy was still weak during the
last iterations. The MPA provided a competitive performance; however, the variation range
of its agent was vast compared with BES and AEO. BES and AEO gave the best results in
terms of accuracy and convergence speed; the movement of their agents can explain this.
Nevertheless, the evolution of the BES agents is slightly better than the evolution of the
AEO agent, demonstrating its superiority.
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A variation analysis test called ANOVA was performed to approve the superiority
of the BES. The ANOVA test results are provided in Table 4 and Figure 6. These re-
sults prove the high ability of the suggested identification strategy to extract the optimal
lead-acid battery.
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Table 4. ANOVA Results.

Source SS df MS F p-Value > F

Columns 0.00016 5 3.2256 × 10−5 36.84 1.21864 × 10−25

Error 0.00015 174 8.75739 × 10−7

Total 0.00031 179
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The calculated and measured voltages are given in Figure 7. The model output
voltage is identical to the measured battery voltage. Therefore, the battery parameters were
accurately identified using the proposed strategy.
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4.2. Test 02

Some parameters can be known or measured (Q, Rint, and E0). In this case, these
parameters were set very close to their real values to produce a simpler optimization
problem where the number of unknown parameters was decreased to only four. In this
case, only the following parameters were identified: K, A, B, and τ. The search space limits
were extended to 150% of the real values. The statistical results are provided in Table 5, and
the produced fitness curves are illustrated in Figure 8.

Table 5. Identification statistics for test 2.

PSO SSA AEO MPA COOT BES

Min × 10−5 0.001705 0.001672 0.001672 0.001672 0.001673 0.001672

Max × 10−5 0.00194 0.001832 0.001672 0.001685 0.001738 0.001672

Mean × 10−5 0.001821 0.00175 0.001672 0.001674 0.001697 0.001672

StD × 10−5 9.31 × 10−5 6.77 × 10−5 3.43 × 10−9 6.04 × 10−6 2.83 × 10−5 6.38 × 10−9
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The other optimization algorithms’ performance was raised to reduce the optimization
problem complexity. The AEO provided a very similar performance to the BES, with a
slight superiority in terms of mean fitness to the BES and a slight advantage to the AEO in
terms of StD.

4.3. Test 03

The experimental testing results in [22] were used to extract the parameters of Banner
120 Ah Lab. These testing results are illustrated in Figure 8. The used battery had been
supplied with a constant current (20 A). The search space limits are presented in Table 6,
where the used data are presented in Figure 9.
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Table 6. Search space limits for Banner 120 Ah battery model.

Parameter E0 Q K A B Rint τ

High 16.8 126 0.0079968 1.022 14 0.00268 14

Low 7.2 54 0.0034272 0.438 6 0.00152 6
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The mean fitness evolution compared with those provided by employing other MAs is
provided in Figure 10. Due to the large data size, each algorithm was performed five times.
Each algorithm was initialized with the same parameters as in previous cases. The search
space limits were set approximately.
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As shown in Figure 10, MPA and BES offer very similar performance with a slight
superiority to BES, as shown in the statistical results in Tables 7 and 8. The statistical
results below prove the ability of the proposed identification strategy to extract the LaB
parameters accurately. Regarding accuracy, the BES provided the minimum fitness value
(0.0747). Regarding the robustness, the BES’ StD value (2.4 × 10−7) is the lowest, and the
obtained parameters in Table 7 are very similar, which approves its robustness.

Table 7. Identification results for Banner battery case.

PSO SSA AEO MPA COOT BES

Run
Number 1 5 1 5 1 5 1 5 1 5 1 5

Q 110.44 113.28 108.04 116.76 125.95 125.88 126 126 126 125.13 126 126

Rint 10−3 3.462 2.850 1.731 2.16 2.033 1.471 1.177 3.435 3.448 2.249 1.402 1.34

K 10−3 2.589 2.603 3.965 3.868 3.442 3.480 3.433 14 14 3.840 3.434 3.433

B 12.971 9.088 6.199 9.63 11.625 13.974 14 6 6 12.296 14 14

τ 8.734 11.004 8.571 8.929 11.117 10.706 6.003 12.325 12.343 11.734 6 6

E0 12.353 12.291 12.54 12.449 12.342 12.338 12.325 0.466 0.438 12.420 12.330 12.328

A 1.120 5.425 0.79 0.807 0.831 0.763 0.438 0.0748 0.0748 0.520 0.442 0.447

Fitness 10−5 0.114 0.100 0.33 0.167 0.076 0.075 0.075 126 126 0.096 0.075 0.075

Table 8. Identification statistics for test 2 for Banner battery case.

PSO SSA AEO MPA COOT BES

Min × 10−5 0.0756 0.0774 0.075 0.0748 0.0748 0.0747

Max × 10−5 0.1135 0.5019 0.0757 0.0749 0.0962 0.0747

Mean × 10−5 0.0986 0.2734 0.0754 0.0784 0.0813 0.0747

StD × 10−5 0.0139 0.1623 0.0002 9.95 × 10−5 0.0087 2.4 × 10−7

The discharge curve simulated based on parameters obtained by the BES model
compared to the measured data is provided in Figure 11.
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5. Conclusions

This article suggests a recent method for identifying lead-acid battery parameters. This
method updates the battery model with unknown parameters employing the metaheuristic
algorithm algorithms. The identification compares the model output with actual measured
data, and RMSE is utilized as an objective function. Particle swarm optimization (PSO),
salp swarm algorithm (SSA), marine predator algorithm (MPA), artificial eco-system opti-
mizer (AEO), COOT algorithm, and bald eagle search algorithm (BES) were employed to
minimize the objective function of the optimization problem. The results demonstrated the
capability of BES compared with the other used algorithms in terms of the mean value of
7.79776× 10−5, optimization efficiency by 85.32%, convergence rate, and robustness, where
the StD is 6.26281 × 10−5. In addition, the total voltage error between the model and the
measured data is 2.182 × 10−3, which is the smallest obtained value. The BES achieved the
best results in extracting the parameters of a 120 Ah Banner battery, compared to the other
considered algorithms, which approve its performance in both robustness and accuracy.
The findings approve that the suggested identification method is excellent at precisely
estimating the parameters of a lead-acid battery. In addition, the proposed method proved
highly accurate compared to various algorithms and three testing cases.
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