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Abstract: Safe and low-cost zinc-based flow batteries offer great promise for grid-scale energy storage,
which is the key to the widespread adoption of renewable energies. However, advancement in this
technology is considerably hindered by the notorious zinc dendrite formation that results in low
Coulombic efficiencies, fast capacity decay, and even short circuits. In this review, we first discuss
the fundamental mechanisms of zinc dendrite formation and identify the key factors affecting zinc
deposition. Then, strategies to regulate zinc deposition are clarified and discussed based on electrode,
electrolyte, and membrane. The underlying mechanisms, advantages, and shortcomings of each
strategy are elaborated. Finally, the remaining challenges and perspectives of zinc-based flow batteries
are presented. The review may provide promising directions for the development of dendrite-free
zinc-based flow batteries.

Keywords: zinc-based flow battery; zinc deposition; electrode modification; electrolyte modulation;
membrane engineering

1. Introduction

Switching from fossil fuel to renewable energy sources (e.g., wind and solar) is critical
for combating climate change and energy crises [1]. Although the last few decades have
witnessed significant technological advances and dramatic cost reduction in wind and
photovoltaic power generation, the utilization of these renewable energy sources has
been severely limited by their intermittent characteristics [2,3]. One effective solution to
this challenge is to employ energy storage technologies that can store fluctuating energy
sources on a large scale and supply them to the grid and end-users in a stable manner.
Aqueous redox flow batteries (ARFBs) are well suited for this application because of
their distinct advantages, including high safety, high efficiency, superior flexibility, and
excellent scalability. Particularly, vanadium redox flow batteries (VRFBs), iron/chromium
flow batteries (ICFBs), and zinc-based flow batteries (ZFBs) have achieved considerable
advancement and are now on the verge of commercialization [4]. However, the high price
and low solubility of vanadium species, the sluggish kinetics of chromium redox reactions,
and the aging effects of chromium diminish the potential of VRFBs and ICFBs for wide
commercial applications [5,6]. By contrast, ZFBs stand out as an attractive candidate for
large-scale energy storage owing to their low cost, nontoxicity, high energy density, and
recyclability [7–9]. A comparison between different ZFBs is presented in Table 1. In the case
of zinc–bromine flow batteries, it has been shown that the practical specific energy, energy
density, specific power, and power density reach 60–85 W·h kg−1 [7,10], 15–65 W·h L−1 [7],
90–110 W kg−1 [10,11], and 4–6 W L−1 [12], respectively. Moreover, their power rating,
cycle life, and round-trip efficiency are up to 2 MW [13], 10 years, and 85% [14], with a
low capital cost of $400 kW h−1 [7,10]. In early 2022, a 10 kW/30 kWh zinc–bromine flow
battery system for residential energy storage was developed by the Dalian Institute of
Chemical Physics, Chinese Academy of Sciences [15], showing the great promise of ZFBs
for industrial applications.
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ZFBs are typical hybrid flow batteries that involve the plating and stripping of zinc (Zn)
at the negative electrode during the charging and discharging process. As an amphoteric
metal, Zn undergoes different electrochemical reactions in acidic and alkaline solutions:

In acidic or neutral solutions

Zn2+ + 2e− = Zn E0 = −0.76 V vs. standard hydrogen electrode (SHE) (1)

In alkaline solutions

Zn (OH)4
2− + 2e− = Zn + 4OH− E0 = −1.22 V vs. SHE (2)

Although the electrochemical reactions seem to be simple as depicted in the equa-
tions, the real electrochemical process is much more complex, and Zn dendrites are easily
formed during the charging process, posing a tremendous challenge for the development of
ZFBs [16]. The formation of Zn dendrites will increase the surface area that accelerates side
reactions and may detach from the electrode surface during the discharge process, resulting
in low Coulombic efficiencies and rapid capacity decay [17,18]. Even worse, the rampant
growth of Zn dendrites will penetrate the membrane/separator, causing short circuits in
the ZFBs [19]. Therefore, it is imperative to develop an effective solution for suppressing
the formation of Zn dendrites. Thus far, considerable efforts have been devoted to under-
standing the fundamental mechanisms of Zn dendrite formation, and various methods
have been proposed to solve the problem. In general, these methods can be classified into
three categories: (i) electrode modification [20–22]; (ii) electrolyte modulation [16,23–25];
and (iii) membrane engineering [26–28]. The performance corresponding to ZFBs classified
by these methods is summarized in Table 2. In this review, the formation and growth
mechanisms of Zn dendrites are first discussed, and the key factors affecting Zn deposition
are identified and elaborated. Then, approaches to tackling Zn dendrites are summarized
based on electrode, electrolyte, and membrane. Finally, the remaining challenges and
application prospects of ZFBs are presented.

Table 1. Comparison of various types of ZFBs.

Media Types Voltage
(V)

Current
Density

(mA cm−2)

Energy
Efficiency (EE)

(%)

Areal
Capacity

(mA h cm−2)
Cycle Number

Acid

Zn-V [29] 1.85 20 72 20 50
Zn-Fe [30] 1.53 30 71.1 - 50

Zn-PbO2 [31] 2.4 20 83 - 10
Zn-Ce [32] 1.86 2 64 - 15
Zn-Mn [33] 1.66 20 75 - 300

Neutral

Zn-Fe [34] 1.32 30 86.7 - 2000
Zn-Mn [35] 1.55 40 78 20 400
Zn–I2 [36] 1.38 20 70 5 600
Zn-Br [37] 1.84 180 63.5 40 400

Zn-TEMPO [38] 1.7 80 ~52 - 1000

Alkaline

Zn-Fe [39] 1.88 80 86.8 20 120
Zn-Ni [40] 1.70 80 77.5 25 60
Zn-Air [41] 1.53 10 60 - 2660
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Table 2. Performance comparison of ZFBs using different strategies.

Methods Type Electrode Membrane Electrolyte
Current
Density

(mA cm−2)

Energy
Efficiency

(%)

Areal
Capacity

(mA h cm−2)

Cycle
Number

Electrode
modification

Zn-Br [42] NTCF Daramic HP
(~900 µm)

2 M ZnBr2 + 3 M
KCl + 0.4 M

MEPBr
80 75.91 66.6 -

Zn-Br [21] CZ-5 SF600
separator

2 M ZnBr2 + 0.5
M ZnCl2 + 4 M
NH4Cl + 0.02 M

MEPBr

100 >60 20 5000

Zn-Br [43] SH/PH Daramic HP
(~900 µm)

2 M ZnBr2 + 3 M
KCl + 0.8 M

MEPBr
40 - 40 142

Zn-Br [44]

Titanium mesh +
carbon paper +

graphite
plate/carbon

paper + graphite
plate

Nafion 115 2.25 M ZnBr2 + 3
M KCl 80 34.68 10 650

Electrolyte
modulation

Zn-Fe [45] Carbon felts PBI
membrane

0.4 M
Zn(OH)4

2−+ 3 M
OH− + 0.01 M
THEED/0.8 M

Fe(CN)6
4− + 3 M

OH−

80 ~85.4 100 180

Zn-I2 [46] Graphite felts Nafion 115 1 M ZnI2 + 1 M
NH4Br 40 85 40 100

Zn-Br [23]

Graphite felt +
poly-

acrylonitrile
felt/graphite felt

Nafion 212 2 M ZnBr2 + 1 M
MSA 40 75 20 50

Zn-Br [25] Graphite
electrodes

Porous
separator

2.25 M ZnBr2 +
0.5 M ZnCl2 + 0.8
M MEPBr + 5 ml

L−1

Br2 + HBr + 0.1 M
CrCl3·6H2O/carbon

slurry

20 76.1 ~85.14 -

Zn-Ni [47]

Graphite +
polyvinylidene-

fluoride
compos-

ite/sintered
nickel plate

-
6 M KOH + 0.5
M ZnO + 5 mM

TEAH
20 79 5 50

Zn-Fe [48] Carbon felts
Perfluorinated
sulfonic acid
membrane

0.5 M ZnCl2 +
0.05 M NAM + 3

M KCl/0.5 M
K4Fe(CN)6·3H2O

+ 1 M KCl

20 83 3.33 400

Zn-Br [24] Carbon felts SF600
membrane

0.5 M ZnBr2 +
0.125 M

Zn(ClO4)2

20 71 - 25

Membrane
engineering

Zn-Br [28] Carbon felts

Porous poly-
olefin/PEG
composite
membrane

2 M ZnBr2 +3 M
KCl + 0.8 M

MEPBr
40 - 40 >100

Zn-Fe [49] Carbon felts ns-MFI-P/S-
7

0.3 M Zn(OH)4
2− + 5 M

NaOH/0.6 M
K4Fe(CN)6 + 5

M NaOH

80 81.9 13.33 600
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Table 2. Cont.

Methods Type Electrode Membrane Electrolyte
Current
Density

(mA cm−2)

Energy
Efficiency

(%)

Areal
Capacity

(mA h cm−2)

Cycle
Number

Zn-Fe [26] Carbon felts Turing-PBI-
80

3.8 M NaOH +
0.2 M ZnO/3 M

KOH + 0.4 M
Na4[Fe(CN)6]·12H2O

80 90.1 160 110

Zn-Fe [50] Carbon felts BN-M
membrane

0.4 M Zn(OH)4
2−

+ 3 M OH−/0.8
M Fe(CN)6

4− + 3
M OH−

80 87.6 66.67 500

Zn-Fe [51] Carbon felts DM-HM

0.4 M Zn(OH)4
2−

+ 3 M KOH/0.8
M Fe(CN)6

4− + 3
M KOH

80 88.3 20 500

Zn-Fe [52] Graphite sheets

The
self-made

anion-
exchange

membrane

1 M ZnCl2/0.5
M FeCl2 + 0.5 M

FeCl3 + 2 M
NH4Cl

25 78.2 12.5 30

2. Mechanisms of Zn Dendrite Formation

Although the underlying mechanisms of Zn deposition and dendrite growth have
not been fully understood, it is generally accepted that the Zn deposition process involves
three steps regardless of the pH of the electrolyte: (1) liquid-phase mass transfer (Zn2+

ion diffusion), (2) charge transfer (Zn2+ ion reduction), and (3) electrocrystallization (Zn
nucleation and growth) [53]. The morphology of Zn electrodeposition is determined by
the nucleation and growth process. As depicted in Figure 1a, during the charging process
of the ZFB, Zn2+ ions adjacent to the electrode interface are initially reduced to form
nuclei, which results in a concentration gradient of Zn2+ ions between the electrode surface
and bulk electrolyte [54,55]. The presence of the concentration gradient will trigger a
deviation of the electrode potential from the equilibrium potential, thereby accelerating
the accumulation of Zn atoms on the deposited nuclei [56,57]. It should be noted that the
electrode surfaces are not always smooth and flat. As a result, Zn nuclei tend to be formed
at high curvature tip protrusions, including dislocations, boundaries, and impurities,
resulting in inhomogeneous Zn deposition (known as the “tip effect”) [43,54,58–60]. Under
the collective effect of the concentration gradient and tip effect, Zn nuclei will gradually
grow into dendrites.

It is worth noting that, although the formation of dendrites shares similar mechanisms,
the exact fundamental reactions for Zn electrodeposition in alkaline and acidic/neutral
electrolytes are different [53]. In alkaline electrolytes, Zn species typically exist in the form
of zincate ions (Zn(OH)4

2−), which are reduced to metallic Zn on the surface of the negative
electrode during battery charging [61], while the Zn species engaged in the reaction are
Zn2+ ions in the neutral or slightly acidic electrolytes [62]. Note that in alkaline electrolytes,
the liquid-phase mass transfer step is followed by an additional pre-transformation step,
that is, the conversion of Zn(OH)4

2− with the high coordination number into Zn(OH)2 with
the low coordination number as reaction species for the subsequent charge transfer [53].
This step is absent in neutral or slightly acidic electrolytes [63]. It is well acknowledged
that Zn dendrites exhibit low formation barriers and grow readily in alkaline electrolytes
in comparison with neutral or slightly acidic electrolytes, especially at a high operating
current density [7,54,64,65]. This is because Zn presents a high electrochemical activity
along with thermodynamic instability in alkaline solutions [66–68].

To reduce the Zn2+ ions and form a solid phase, a nucleation energy barrier needs
to be overcome, as shown in Figure 1b [69]. This is typically reflected in a sharp spark
of voltage at the initial stage in a voltage–time plot. After nucleation, the potential of Zn
deposition gradually rises, ascribed to the continuous plating of Zn. The difference between
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tip potential and subsequent stable potential is usually defined as nucleation overpotential,
which has a profound effect on the size and generation rate of Zn nuclei. Of note, the effects
of nucleation overpotential on Zn nucleation and growth remain elusive. Some researchers
found that with higher nucleation overpotentials, the nucleation rate is faster, and the nuclei
size is smaller and finer, which is conducive to uniform Zn deposition [7,70–72]. However,
if the nucleation overpotential is too high, Zn2+ ions are more inclined to deposit on existing
Zn nuclei rather than generate new nuclei on the bare electrode, leading to severe dendrite
formation [73–76]. On the contrary, some results show that uniform Zn deposition is
achieved when the nucleation overpotential is small [77–79]. These controversial results
call for more investigations to clarify the role of overpotential in the Zn deposition process.
Moreover, Zn dendrites become more severe after charge/discharge cycles. This is because
Zn usually cannot be completely stripped during the previous discharge process, and the
residual Zn becomes preferential nuclei for subsequent Zn deposition [80]. The accumulated
non-uniform Zn residue will trigger more severe Zn dendrite formation, as displayed in
Figure 1c. The intensified dendrites will eventually penetrate the membrane, leading to
short circuits and thus the failure of ZFBs.

Figure 1. (a) Schematic illustration of the formation and growth of Zn dendrites. (b) The energy
barrier involved in Zn nucleation and the typical voltage profile during Zn deposition. (Reproduced
from [69] with permission from Wiley.) (c) The growth, dissolution, and regrowth process of Zn
dendrites during battery cycling. (Reproduced from [80] with permission from Elsevier).

3. Key Factors Affecting Zn Deposition

As mentioned above, the electrodeposition of Zn is a complex process, and the evo-
lution of Zn dendrites may be affected by various key design and operating factors. In
this section, the effects of principal factors, including electrode parameters (e.g., substrates,
surface properties), electrolyte composition (e.g., salts and ion concentration), flow rate,
operating current density, and temperature are discussed. Adverse effects arising from Zn
corrosion and hydrogen evolution reaction (HER) will also be elaborated.

3.1. Effect of Electrode

Electrodes play a crucial role in determining the electrochemical performance of Zn
as they not only provide active sites for Zn2+/Zn redox reactions but also a place for Zn
deposition. Therefore, the properties of electrodes will impose a significant impact on
the Zn electrodeposits and thus the battery performance. For example, electrocatalytic



Batteries 2022, 8, 117 6 of 23

activity and electrode surface area usually determine the activation loss, nucleation, and
subsequent Zn growth. The pore structure of the electrode will affect the transport and
distribution of electrolytes that will influence the Zn deposition process. Other parameters
such as electrical conductivity, thickness, hydrophilicity, mechanical strength, and chemical
stability will also affect the efficiency and cyclability of ZFBs.

Generally, the Zn electrodes can be divided into two types, i.e., planar and porous.
For the plate electrode, a gap is reserved between the electrode and membrane for Zn
deposition and electrolyte flow. The distance of the gap is a key parameter that needs to
be optimized for this type of electrode as it has a direct effect on the areal capacity and
internal resistance. However, due to the low active surface area and severe dendrite growth
of plate electrodes, more attention has been shifted to porous electrodes, in particular,
porous carbon electrodes with attractive features, including large specific surface area,
high porosity, good chemical/electrochemical stability, and low cost. More importantly, it
should be noted that the capacity of ZFBs is determined by the electrodeposited Zn at the
negative electrode during charge.

3.2. Effect of Electrolyte Composition

A typical electrolyte for ZFBs consists of Zn species in an aqueous solution with
or without supporting electrolytes and additives. Based on the pH of electrolytes, ZFBs
can be divided into alkaline and neutral/acidic flow batteries. In alkaline ZFBs, the
active species is Zn(OH)4

2− while KOH, NaOH, and LiOH usually serve as supporting
electrolytes. The types of supporting electrolytes and concentrations will influence the
electrolyte conductivity, solubility of zincate ions, and electrochemical performance of Zn
electrodes. For instance, it was found that a 6 M concentration of KOH enables a Zn-Ni flow
battery to achieve the highest Coulombic efficiency, but the high concentration of KOH
suppresses the reduction of Zn2+ ions by limiting their transport to electrodes [81]. Due to
the severe corrosion and dendrite growth, additives are usually added to the electrolytes to
improve the performance. The effects of additives will be discussed in Section 4.2.

In the neutral/acidic electrolytes, various Zn salts can be used, such as ZnCl2, ZnBr2,
ZnI2, Zn(CH3SO3)2, Zn(ClO4)2, and ZnSO4. The Zn electrochemistry will be affected by
the type of anions and concentration of Zn2+ ions. For example, it is reported that dendrites
are less likely to form in the acidic Zn(CH3SO3)2 electrode due to the complexation of
Zn2+ and CH3SO3

− anions [82]. Kim and Jeon found that the presence of Zn(ClO4)2 in
ZnBr2 electrolyte improved the Zn dissolution rate compared with conventional ZnCl2 [24].
Similar to alkaline electrolytes, supporting electrolytes and additives also have significant
effects on the performance of Zn electrodes. Rajarathnam et al. compared the influence
of different sodium salts with anions of Cl−, Br−, SO4

2−, H2PO4
−, and NO3

− on the Zn
electrode of Zn-Br flow batteries [83]. It was found that the addition of NaBr, Na2SO4, and
NaH2PO4 could improve the electrochemical performance of Zn electrodes.

The concentration of Zn2+ ions also has a strong influence on the Zn deposition
characteristics [84]. It is revealed that, at high concentrations of Zn2+ ions (≥0.4 M), the Zn
nuclei deposited at the interface undergo rapid growth in an instantaneous mode [85]. The
formed Zn crystals will preferentially expose the thermodynamically stable (002) crystal
plane. The plane grows parallel to the substrate and eventually forms the dense and flat
block. By contrast, nucleation will turn into a progressive mode when the concentrations
of Zn2+ ions are low (≤0.3 M). The generated crystals are haphazardly distributed and
eventually form a disorganized mossy shape, which will drive the formation and growth of
Zn dendrites. Therefore, the electrolyte used in ZFBs typically has a Zn2+ ion concentration
of 2 M during the initial plating stage, and an excessive amount of electrolyte is employed
to ensure that the concentration of Zn2+ ions is greater than 0.4 M at the end of the plating
process [28,37,85–87].
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3.3. Effect of Flow Rate

Because inhomogeneous ion distribution is one of the major factors that result in
dendrite growth, employing flowing electrolytes is an effective strategy for facilitating
mass transport and thus suppressing Zn dendrite formation [88]. Under convection, Zn
deposition reactions exhibit fast kinetics resulting from increased limited current densi-
ties [89,90]. Moreover, relatively slow reaction kinetics for Zn oxidation is also enhanced
with an increase in mass transfer rate [89]. As a result, ZFBs are capable of operating
at higher current densities than their static counterparts. Previous experimental results
suggest that a small flow rate of 2 cm s−1 can significantly improve the morphology of Zn
deposition [7]. As the flow rate rises, the Zn2+ ions distributed at the electrode/electrolyte
interface become more uniform, and the width of the Nernst diffusion layer becomes
thinner [7]. When the electrolyte flow rate is up to 15 cm s−1, the direction of Zn deposition
will bend along the flow direction, which minimizes the possibility of short circuits [91].
However, high flow rates will increase the pressure drop, leading to additional energy loss
and even leakage of the electrolyte. Therefore, the flow rate needs to be finely regulated to
find a balance between Zn dendrites and pressure drop. Moreover, Zn dendrites may still
be formed when ZFBs are cycled for long periods and at high current densities, especially
in an alkaline solution. More efforts are needed to understand the coupled fluid flow, mass
transport, and solid-phase evolution in the porous media.

3.4. Effect of Current Density

Current density is one of the critical indicators for evaluating the performance of flow
battery systems. Increasing the current density can raise the power density and reduce the
operating cost of flow batteries, thus accelerating the promotion of flow batteries in the
energy storage market. Unfortunately, ZFBs usually need to be operated at low current
densities (<120 mA cm−2) [92–94] in comparison to the full-flow systems (e.g., VRFBs and
ICFBs), which are capable of operating at high current densities (>200 mA cm−2) [95–97].
One of the prime reasons is that the growth of dendrites is exacerbated at high current
densities, which will cause the failure of ZFBs. At high current densities, a large concen-
tration gradient of Zn2+ ions is developed between the electrode interface and the bulk
electrolyte because the mass transfer rate of Zn2+ ions is much lower than their reaction
rate, driving the rampant growth of Zn dendrites. Therefore, a ZFB is commonly operated
at low current densities, especially in practical applications [98]. Identifying an effective
approach to addressing the issue of rapid dendrite growth at high current densities will
significantly facilitate the widespread application of ZFB systems.

3.5. Effect of Temperature

Temperature has distinct effects on the properties of the electrolyte, including viscosity,
density, and conductivity, as well as the reaction kinetics [99–102]. Theoretically, when
the operating temperature rises, the nucleation overpotential of Zn2+ ions diminishes, and
the diffusion of Zn2+ ions on the electrode interface is accelerated [103,104]. That is, the
elevated temperature promotes the nucleation and growth process of Zn. Because of the
fast diffusion behavior of ions at a high temperature, the nucleus size is more extensive,
and the nucleus density is lower than that at a low temperature [105]. As the deposition
process proceeds, large and sparse nuclei progressively grow, and the neighboring nuclei
fuse to produce dense deposition layers [106]. In contrast, the low temperature makes the
electrolyte viscosity increase and the mobility of ions sluggish, which induces the deposition
of ions on the nucleation sites. Unavoidably, further deposition of nuclei predisposes to
the overlapping of nuclei and the evolution of dendrites [106]. Therefore, the fast ion
diffusion rate at a high temperature prevents Zn dendrite formation. In practice, however,
the high temperature will exacerbate parasitic reactions, such as hydrogen evolution and
Zn corrosion [107–109]. In addition, the self-discharge behavior caused by active species
crossover from the positive electrode is worsened at a high temperature [110]. These
adverse effects associated with high temperature reduce the Coulombic efficiency of ZFBs



Batteries 2022, 8, 117 8 of 23

and affect the efficient use of the electrolyte. At present, investigations on the thermal
characteristics of ZFBs are relatively limited, rendering it challenging to optimize the
temperature for ZFBs.

3.6. Effect of Parasitic Reactions

Owing to the low redox potential of the Zn2+/Zn reaction, Zn is thermodynamically
unstable in aqueous electrolytes. Consequently, parasitic reactions such as HER and
Zn corrosion frequently occur during Zn deposition processes. In practice, the HER
process is relatively complex since it is influenced by various factors such as temperature,
applied voltage, surface roughness of electrodes and electrolyte composition [61,111]. The
occurrence of hydrogen evolution will generate bubbles which will cause an uneven electric
field distribution and trigger Zn dendrite growth. Even worse, the formation of dendrites
can supply more reaction sites for hydrogen evolution, exacerbating its progress [112].
Strategies such as electrode modification and adding additives have been proposed to
suppress HER. Subject to the pH of the electrolyte, the hydrogen evolution overpotential
of 1.0 V can be achieved by using organic additives and inert materials with high HER
overpotentials [113]. Nevertheless, some organic additives that significantly suppress HER
are composed of hydrocarbon chains with large molecular weights or long lengths, which
may strongly adsorb on the reactive sites, thus slowing down the charge transfer process of
Zn2+ ions [107,114]. Developing an effective strategy to address the problem of hydrogen
evolution remains an urgent challenge.

Accompanying HER is the spontaneous reaction between Zn and the electrolyte, which
is known as Zn corrosion, posing an additional challenge for the practical application of
Zn electrodes. Typically, high rates of Zn dissolution and HER will be noted in acidic
electrolytes. However, at a high acid concentration (e.g., methanesulfonic acid > 6 M), the
dissolution rate may slow down, resulting from the decreased availability of dissociated H+

in the electrolyte [109]. When the pH range is 1–4, Zn corrosion and HER prefer to proceed
simultaneously at mixed potentials. The Zn corrosion rate is jointly determined by cathodic
control and HER kinetics [115]. In a neutral system, the H2O in the electrolyte acquires
electrons from the dissolved Zn to produce hydrogen and OH− [116]. The accumulating
OH− will interact with Zn2+ ions to produce side products such as Zn(OH)2 and ZnO on the
electrode surface [117,118]. In alkaline solutions, the corrosion products are also ZnO and
Zn(OH)2 due to OH− enrichment. Notably, the corrosion products exist in a loose structure,
which fails to form an effective dense barrier to prevent further corrosion [111]. In addition,
the interphase impedance incurred by corrosion products limits electron transport and ion
diffusion, thereby increasing the energy barrier for Zn deposition [119–121]. Meanwhile,
accumulated Zn deposition tends to occur in areas that have not yet been passivated,
resulting in the formation of severe dendrites in localized regions of the electrode.

Previous works have shown that the corrosion rate is closely related to the morphology
of Zn deposition and the major crystalline surface exposed [122]. Closely packed crystal
planes, such as hexagonal close-packed (hcp) Zn (002) planes, have a trend towards higher
corrosion resistance [123–127]. In addition, deposited layers with finer crystal sizes possess
higher resistance to corrosion [128–131]. Organic and inorganic additives generally modify
the morphology of Zn electrodeposits and endow electrodeposits with superior corrosion
resistance [132–137]. Beyond improving the morphology of Zn, some electrolyte additives
such as bismuth and indium can act as corrosion inhibitors [47,138–140]. Nonetheless, the
equilibrium potential of these metal additives is close to that of Zn. Once these additives
are reduced and covered by the deposited Zn, they will stop functioning in inhibiting side
reactions. It should be acknowledged that HER and Zn corrosion usually occur with Zn
dendrites, further complicating the process. Luckily, addressing one issue can normally
alleviate other issues.
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4. Strategies for Dendrite Suppression

Over the past several decades, considerable efforts have been devoted to tackling
the challenges of Zn dendrites in ZFBs. The strategies can be classified based on the key
components (electrode, electrolyte, and membrane) in ZFBs, as illustrated in Figure 2.
In this section, we will discuss in detail the development of electrode modification, elec-
trolyte modulation, and membrane engineering to address Zn dendrites. The underlying
mechanism of each approach will also be elaborated.

Figure 2. Electrode, electrolyte, and membrane materials for a dendrite-free ZFB.

4.1. Electrode Modification

As mentioned in Section 3.1, porous carbon fiber electrodes (e.g., carbon/graphite felt)
have gained the most attention for ZFBs due to their high porosity, low cost, high stability,
and broad operating potential range. The use of three-dimensional porous electrodes can
reduce the local current density and provide abundant nucleation sites for Zn deposition.
As a consequence, dendrite formation is mitigated, and the cycling performance of the Zn
electrode is enhanced. However, it is found that Zn tends to preferentially deposit near
the electrode/membrane interface, which not only restricts the areal capacity but poses
a risk of penetrating the membrane due to the non-uniform Zn deposition. To unravel
the effect of surface properties on Zn nucleation and growth and efficiently promote the
uniform deposition of Zn on fiber surfaces, Zhao et al. investigated the adsorption and
diffusion of Zn atoms on typical carbon surfaces, including the raw graphite (0001) surface,
as well as surfaces with single vacancy, double vacancy and oxygen functional groups by
performing first-principles calculations, as shown in Figure 3a [20]. It was found that the
surface with single vacancy exhibits a remarkable anchoring effect on Zn atoms, resulting
from the availability of unpaired electrons on unsaturated carbon atoms. In contrast, the
remaining defects, including the surface with double vacancy and surfaces with oxygen
functional groups, present weak adsorption of Zn atoms owing to the lack of unpaired
electrons. Notably, Zn atoms anchored by the single vacancy defects will constitute the
nucleation sites for the subsequent deposition because of the high energy barriers for Zn
atom diffusion from the single vacancy. Hence, the deposition process of Zn can be adjusted
by varying the content of the single vacancy on the negative electrode, thus avoiding the
appearance of Zn dendrites during the charging process of ZFBs. Subsequently, defect-rich
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negative electrodes were fabricated through heat-treating graphite felts in ambient air.
Physical and electrochemical characterizations demonstrated that the uniform deposition
of Zn atoms was achieved on thermally treated graphite felts (Figure 3b), which offers a
new approach to designing dendrite-free ZFB electrodes. Subsequently, Kim et al. adopted
the zeolitic imidazole framework-8 (ZIF-8) as a template to deeply investigate the effect
of single vacancy carbon defects on Zn deposition, as displayed in Figure 3c [21]. The
defective carbon layer is constructed via carbonizing ZIF-8 at 1000 ◦C. As a result of the
strong hybridization effect between the s p d orbitals of Zn and the s p orbitals of single
vacancy defects, the surface diffusion of Zn atoms and thus the aggregative growth of Zn
is effectively hindered. The authors then employed ex situ high-angle annular dark-field
scanning transmission electron microscopy and energy-dispersive spectroscopy mapping
analyses to confirm that the defects facilitate Zn nucleation and growth. With well-designed
defective carbon layers, the newly designed electrodes enable a Zn-Br flow battery to stably
operate for 5000 cycles at a high current density of 100 mA cm−2 and a high area capacity
of 20 mAh cm−2.

Alternatively, Lu et al. demonstrated that constructing nitrogen-rich defects on carbon
felts is also an effective strategy to achieve uniform Zn deposition [42]. In the study, their
density functional theory calculations reveal that the defects loaded with pyridine- and
pyrrole-N present strong adsorption of Zn atoms. During the charging process, reduced Zn
atoms are preferentially deposited in the defects, leading to the uniform Zn deposition on
the fiber surface (Figure 3d). It is shown that the ZFB with rich N-containing functional
groups delivers a Coulombic efficiency of 97.25% at an ultra-high current density of 180
mA cm−2. Furthermore, the Zn symmetry flow battery exhibits a long cycle of over
140 times at an area capacity of 40 mAh cm−2 and a current density of 80 mA cm−2.
It is worth noting that the introduction of defects may also alter the surface roughness
(specific surface area), hydrophobicity, and electrical conductivity. The improvement in
Zn deposition is the collective consequence of treatment, and it is quite challenging to
distinguish the contribution of each factor. Further systematic investigations of the effect of
other properties on Zn deposition are needed to gain a comprehensive understanding of
the Zn deposition process.

Apart from defect engineering, modifying the electrode surface with metal nanopar-
ticles is also a promising option for suppressing dendrite formation. Li et al. used a
magnetron sputtering technique to deposit tin layers on fiber surfaces, as depicted in
Figure 4a [43]. The deposited tin layers enable uniform Zn deposition as a synergistic
result of sufficient Zn nucleation sites, high HER energy barrier, and minor Zn deposition
overpotential (Figure 4b). However, the high production cost restricts the practical appli-
cations of the strategy. Daoud et al. used an impregnation–thermal treatment strategy to
construct indium-modified layers on the electrode surface [139]. It was found that the Zn
nucleation potential of modified electrodes is positively shifted by 65 mV, indicating more
favorable Zn deposition on the surface of the indium-modified electrode. Moreover, the
presence of indium greatly reduces HER and thus leads to higher Coulombic efficiencies of
the battery. More importantly, the morphology of Zn deposited on the modified electrodes
displays no nodules or dendrites. After 340 cycles of the battery, energy-dispersive X-ray
spectrophotometer analysis of the modified surface demonstrates the appearance of indium,
indicating the tight adhesion of indium on the modified electrode. Kim et al. investigated
3D titanium meshes as spacers to suppress the growth of Zn dendrites [44]. The three-
dimensional titanium interlayer provides extra sites for Zn redox reactions and substantial
electrolyte transport channels, thus enhancing the reaction kinetics and suppressing Zn
dendrite growth, as seen in Figure 4c. It was demonstrated that the energy efficiency (EE)
of the battery with a titanium interlayer is 14.7% higher than that of the original battery at a
high current density of 80 mA cm−2, confirming the practicality of the titanium mesh as an
interlayer for ZFBs. Although the metal-modified layer can greatly alleviate the formation
of Zn dendrites, some metals are corroded by the reaction with H+ or crossover species
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from the positive electrodes. Therefore, it is imperative to develop metal-modified layers
that enable the suppression of Zn dendrite formation with high stability and durability.

Figure 3. (a) The most stable structural morphologies of Zn atoms adsorbed on the original graphite
(0001) surface, and surfaces with single vacancy, double vacancy, and oxygen functional groups.
(b) SEM images of Zn deposition on pristine graphite felt (above) and heat-treated graphite felt
(below) near the membrane side after charging. (Reproduced from [20] with permission from
Elsevier.) (c) Schematic diagram for uniform Zn nucleation and growth on the defective layer coated
electrode. (Reproduced from [21] with permission from Royal Society of Chemistry.) (d) The process
of Zn deposition on the carbon felts with nitrogen-rich defects during battery charging. (Reproduced
from [42] with permission from Wiley).
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Figure 4. (a) Schematic diagram for the fabrication process of tin-modified electrodes, the morpholo-
gies of the pristine carbon felt (PH) and the tin-modified carbon felt (SH). (b) SEM images of the
pristine carbon felt (left) and the tin-modified carbon felt (right) after charging. (Reproduced from [43]
with permission from Wiley.) (c) Schematic diagram of the electrode with titanium mesh and SEM
morphologies of the electrode with (top right) and without (bottom right) titanium mesh after initial
Zn deposition. (Reproduced from [44] with permission from Nature).

4.2. Electrolyte Modulation

In general, variations in electrolyte composition will change the solvation structure of
Zn2+ ions, the electrode/electrolyte interface, ionic conductivity, and diffusion processes
of ions, thereby playing a pivotal role in determining the Zn deposition process [141–143].
Hence, it is possible and, in fact, effective to suppress Zn dendrite growth via modulating
the electrolyte. The basic components of the electrolyte for ZFBs include Zn species,
supporting electrolyte, additives, and water solvent. As for a specified ZFB, Zn species
are usually fixed. The supporting electrolyte and additives are therefore added to tune
the electrolyte properties. Currently, sodium chloride and potassium chloride are the
most widely used supporting electrolytes in near-neutral electrolytes [144–147]. Although
these chloride salts can improve the electrolyte conductivity, they are not favorable for
Zn deposition as dendrites are usually reported in these electrolytes [19,43]. Alternatively,
Wu et al. reported that methanesulfonic acid (MSA) acts as a supporting electrolyte to
suppress the growth of Zn dendrites [23]. As shown in Figure 5a, much more uniform
Zn deposition without dendrite growth is achieved in the presence of MSA, which is
due to the complexation between Zn2+ cations and MSA− anions. The same group also
developed NH4Br as a tri-functional electrolyte for Zn-I2 flow batteries, i.e., enhancing the
ionic conductivity, unlocking the capacity of iodine, and suppressing dendrite growth [46].
As displayed in Figure 5b, Zn2+ ions adsorbed on the electrode surface will first be reduced
to form initial nuclei on the electrode surface during the nucleation process. Subsequently, a
disturbed electric field around protuberances will induce continuous diffusion of Zn2+ ions
toward the tips, resulting in severe dendrites in the bare ZnI2 electrolyte. By contrast, the
complexation effect of NH4

+ ions will induce more uniform Zn nucleation on the surface.
After being reduced, the NH4

+ will be released and electrostatically accumulate around the
tips of protuberances, forming an electrostatic shield to repel the Zn2+ to adjacent regions
of the electrode, thereby leading to uniform, dendrite-free Zn deposition. Furthermore,
Zn perchlorate can also be employed as an efficient supporting electrolyte to mitigate
the growth of Zn dendrites by accelerating the dissolution rate of Zn [24]. The effect
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comparison is displayed in Figure 5c. These results demonstrate that tuning the supporting
electrolyte is a promising way to boost the reversibility of Zn electrodes. However, it should
be noted that as the supporting electrolyte is usually used in a large amount, the developed
electrolyte should be low-cost, non-toxic, and abundant.

Figure 5. (a) SEM images of deposited Zn on graphite felts adjacent to the membrane side without
MSA (upper images) and with 1 M MSA (lower images). (Reproduced from [23] with permission
from Elsevier.) (b) Schematics of Zn2+ ion diffusion and deposition processes on electrodes without
(upper image) and with (lower image) NH4Br support electrolyte. (Reproduced from [46] with
permission from Elsevier.) (c) SEM images of the carbon felt after 25 charge/discharge cycles with
the original (left), Zn chloride (middle), and Zn perchlorate (right) support electrolytes. (Reproduced
from [24] with permission from Wiley).

In addition to the supporting electrolyte, the employment of additives is a widely
adopted approach to overcoming challenges facing Zn electrodes. Generally, the additives
are classified into polymers, organic molecules, and metal ions [76]. Compared with sup-
porting electrolytes, additives are usually added with a small amount. Polymers with high
molecular weight selectively adsorb on the electrode surface, thus promoting uniform Zn
nucleation and preventing dendrite formation. However, the overpotential of Zn deposi-
tion is increased as the active sites are blocked [107,148,149]. For example, Akolkar et al.
investigated the effects of polyethylene glycol (PEG)-200 and polyethylenimine (PEI) on the
suppression of Zn dendrites [149,150]. The results show that the adsorption of polymers on
electrode surfaces lowers the exchange current density and increases the overpotential for
Zn deposition. Notably, the adsorption strength of polymers on electrode surfaces needs to
be considered. If the adsorption strength of polymers is weak, there is little effect for Zn
dendrite suppression. Conversely, if polymers are strongly adsorbed onto the electrode, the
Zn nucleation sites will be firmly occupied, leading to a dramatic increase in the activation
polarization of ZFBs and thus a decrease in charging/discharging performance [57,76].
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Therefore, exploring polymers with suitable adsorption capacity is crucial to balancing ZFB
polarization and Zn dendrite formation.

Organic molecules are another promising additive for Zn dendrite suppression [151–154].
Like polymers, they tend to preferentially absorb on the electrode surface and facilitate uniform
Zn nucleation at the sacrifice of overpotential. In addition to this role, organic molecules
can partially replace the water in the Zn2+ solvation shell, which reduces the solvate water
molecules and thus mitigates parasitic reactions [57]. Wang et al. investigated the use of ethanol
as an additive for Zn dendrite suppression. It was shown that ethanol can be complexed
with Zn2+ ions, alleviating the continuous growth of Zn dendrites [16]. Tang et al. used
nicotinamide (NAM) as an organic molecular additive for Zn-I2 flow batteries to achieve
a highly reversible plating/stripping of Zn while suppressing HER [48]. Experimental
characterization and theoretical calculations demonstrate that the carbonyl and amino polar
groups of NAM have distinct interactions with the electrode surface. This enables NAM
to adsorb on the deposited Zn layer to modulate the Zn2+ diffusion and avoid adverse tip
effects, thus achieving uniform Zn deposition (Figure 6a) and suppressed HER. As a result
of the synergistic modulation of solvation structures and electrode interfaces, the Zn-Fe
flow battery displays an energy efficiency of 70% at 50 mA cm–2 and a high power density
of 185 mW cm−2.

Figure 6. (a) The morphology of the Zn plated on carbon felts after the addition of NAM and the
high-resolution XPS of the corresponding samples. (Reproduced from [48] with permission from
American Chemical Society.) (b) Morphologies of Zn electrodeposited on graphite felts without Cr3+

(left) and with 0.1 M of Cr3+ (right). (Reproduced from [25] with permission from Elsevier).

Metal cations with reduction potentials between the Zn2+ ion reduction potential
and the hydrogen evolution potential can be used as additives to address the Zn dendrite
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issue [155]. They preferentially absorb on the tips without being reduced and form an
electrostatic shielding layer impeding the continuous deposition of Zn2+ ions, thus sup-
pressing the growth of Zn dendrites [156]. Based on this principle, Kim et al. demonstrate
that adding Cr3+ can transform the deposited layers from needle-like dendrites to mirror-
image films and shift the growth direction of Zn from the vertical to the horizontal plane
(Figure 6b) [25]. As a result, the Coulombic efficiency of the ZFB increased from 89.8% to
91.3% after the addition of Cr3+ ions.

Although various additives have been investigated for suppressing Zn dendrite
growth, they mainly function at low capacity and low current density. Moreover, they
suffer from degradation upon cycling. The mechanisms underlying the decay remain
unclear and require more investigations. Given its simplicity, electrolyte modulation will
continue to be one of the most promising strategies to address the Zn dendrite challenge. It
can be envisioned that the advances in theoretical calculations will accelerate the discovery
of more effective additives.

4.3. Membrane Engineering

Unlike conventional all-liquid flow batteries, membranes in ZFBs are at risk of being
penetrated by the growing Zn dendrites. Therefore, the membrane should have sufficient
mechanical strength apart from high chemical stability, high ion selectivity, good ionic
conductivity, and low cost. Typically, the membranes employed in ZFBs are categorized
into two types: ion-exchange membranes and porous membranes. Perfluorosulfonic acid
membranes (e.g., Nafion membranes) with superior mechanical strength and chemical
stability are the most widely used in the lab-scale ZFBs [46,48,157–159]. However, the
high membrane resistance and production cost limit their commercial-scale application.
To overcome these challenges, Li et al. prepared an inexpensive and stable ion-exchange
membrane made of sulfonated poly (ether ether ketone) (SPEEK) [160]. The membrane
was synthesized on a pilot scale (Figure 7), and it was demonstrated that a ZFB stack
(4000 W) with this membrane can be operated continuously for more than 800 h. These
results indicate that the prepared pilot-scale SPEEK membranes hold great potential for
ZFB applications.

Figure 7. (a) Macroscopic morphology and (b) microscopic morphology of pilot-scale SPEEK mem-
brane. (Reproduced from [160] with permission from Elsevier).
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Compared with ion-exchange membranes, porous membranes can usually be fabri-
cated at a lower cost. Moreover, they exhibit a higher ionic conductivity, which is conducive
to high-power ZFBs. Hence, developing porous membranes with excellent dendrite sup-
pression capability is of great significance for ZFBs. Several attempts have been made to
achieve this objective [19,28,50,161–163]. Li et al. fabricated a novel composite membrane
by coating polyethylene glycol (PEG) on the surface and pore walls of a porous polyolefin
membrane [28]. The PEG coating as an ionic conductor promotes the uniform distribution
of Zn2+ concentration. Meanwhile, the PEG coating also works as a passivation layer for
Zn atoms, enabling a uniform electric field distribution on the negative electrode surface.
As a consequence of the dual-functional design, uniform Zn deposition without obvious
dendrites is achieved, as demonstrated in Figure 8a. In addition, the same group also
developed a boron nitride nanosheet (BNNS)/porous poly (ether sulfone) (PES) composite
membrane [50]. It is reported that BNNSs with high thermal conductivity function as a
heat-porter to improve the temperature distribution on electrode surfaces, thus converting
the deposited Zn from needle-like to French fries-like morphology, as shown in Figure 8b.
Meanwhile, the high mechanical strength of BNNSs prevents the damage from the de-
posited Zn. As a result, an alkaline Zn-Fe flow battery assembled with the composite
membrane is capable of running for 500 cycles at 80 mA cm−2. Although promising results
in Zn dendrite suppression have been achieved via membrane engineering, research in
this direction is still limited compared with electrode modification and electrolyte modula-
tion. However, given the important role of membranes, more efforts should be devoted to
developing advanced membranes to achieve high-performance ZFBs.

Figure 8. (a) The morphology of the porous polyolefin/PEG composite membrane (left) and Zn
deposition morphology on the anode when the ZFB was assembled with the membrane (right).
(Reproduced from [28] with permission from Elsevier.) (b) The morphologies of Zn deposition
corresponding to the absence (left) and presence (right) of BNNSs in PES membranes. (Reproduced
from [50] with permission from Wiley.).

5. Concluding Remarks and Outlook

In summary, the mechanisms of Zn dendrite formation, key factors affecting Zn
deposition, and recent advances in addressing Zn dendrites are summarized and discussed
in this review. To further advance this technology and eventually realize the commercial
application of ZFBs, future efforts should be devoted to the following key issues:
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1. The currently demonstrated area capacity of deposited Zn is still relatively low. This
is because dendrites become more severe at a higher areal capacity. Therefore, future
works need to develop Zn electrodes that can operate at a high areal capacity without
dendrite growth. Engineering porous electrodes (e.g., pore size, pore distribution,
surface properties) to achieve uniform Zn deposition within the porous structure
would be a promising approach.

2. The underlying mechanisms of Zn deposition in porous electrodes remain unclear. In
ZFBs, convective mass transfer is deemed to have a considerable impact on the Zn
deposition as flowing electrolytes are applied to supply reactants. Yet, the interplay
between transport phenomena, liquid–solid phase change, Zn deposition morpholo-
gies, and the corresponding electrochemical performance is unclear, hindering the
development of effective strategies to address the Zn dendrite issue. More funda-
mental studies are needed to establish an in-depth understanding of the complex Zn
electrodeposition process.

3. The fundamental mechanisms of electrolyte modulation for Zn dendrite suppression
need further exploration. The composition of the electrolyte will have a profound
impact on the electrode/electrolyte interface properties and solvation structure of
Zn2+ ions, which play a crucial role in determining the nucleation and growth pro-
cess of Zn deposition. Unfortunately, the exact aqueous environment is dynamic
and rather complex, especially in the presence of dendrite inhibitors, making it ex-
tremely challenging to clarify the fundamental interplay of electrolyte species and
Zn electrochemistry. To resolve this challenge, advanced characterization techniques
that can probe the solvation structures should be developed along with advanced
mathematical modeling in the future.

4. The role of the membrane in Zn dendrite suppression should be further explored.
At present, only a few studies on membrane engineering to suppress Zn dendrites
have been conducted. Considering that membranes determine the ion flux and may
be in direct contact with the deposited Zn, membranes are a critical component of
ZFBs to be studied to achieve dendrite-free Zn deposition. Ion selectivity, internal
resistance, mechanical strength (Zn suppression capability), stability, and cost should
be delicately considered.
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