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Abstract: In this paper, it is shown that the Peukert generalized equations C = Cm/(1 + (i/i0)n),
C = 0.522Cmtanh((i/i0)n/0.522)/(i/i0)n and C = Cmerfc((i/ik − 1)/(1/n))/erfc(−n) are applicable for
capacity estimation of the automotive-grade lithium-ion batteries within the discharge current range,
from 0 to 10 Cn. Additionally, it is shown here that all the parameters (Cm, n, i0 and ik) in the Peukert
generalized equations under study have a clear physical meaning, unlike in the classical Peukert
equation, in which all the parameters are just empirical constants. In addition, it is shown that, in
the case of lithium-ion batteries, the dependence of their released capacity on the discharge current
reflects the phase transition statistical pattern in the electrodes’ active substance, which follows the
normal distribution law. As the Peukert equation is used in many analytical models, the better
electrochemical and physical meaning and understanding of this equation and its clarification are of
great practical importance.

Keywords: Peukert equation; lithium-ion battery; automotive-grade battery; capacity; discharge current

1. Introduction

Currently, environmentally friendly vehicles are being developed intensively, includ-
ing hybrid-electric vehicles (HEVs), battery-electric vehicles (BEVs) and plug-in hybrid-
electric vehicles (PHEVs) [1–5]. In electric vehicles of all kinds (xEV), large-format lithium-
ion batteries are used.

When lithium-ion batteries are used in electric vehicles, one of the problems is the
exact estimation of the remaining capacity of these batteries. Electrochemical models
of batteries built on the basis of fundamental chemical and physical laws are the most
accurate [6–8]. However, Hausmann, in his paper [9], showed that for practical use, the
electrochemical models of batteries are unsuitable. Firstly, electrochemical models cannot
be calculated by on-board computers of electric vehicles due to their great complexity.
Secondly, when batteries in electric vehicles are replaced with batteries of other types
or from other manufacturers, the used electrochemical models require some complex
calibration. Thirdly, many customers require that the parameters of battery models be
determined without disassembling those batteries.

That is why, usually in practice, in order to determine various parameters of batteries,
analytical models are used [9–12], as well as nonlinear structural models [13–15] that are
not too complex and can be calculated by the on-board computers of the electric vehicles.
The analytical models were constructed using empirical equations, whose parameters were
found from the experimental data.

In our opinion, the Hausmann analytical model [9] is the most promising analytical
model for determining a battery’s remaining capacity. The Hausmann model [9] is based on
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the empirical Peukert equation and on the empirical dependence of the battery’s capacity
on temperature. This model makes it possible to estimate the battery’s remaining capacity
with a relative error of no more than 5% [9].

Additionally, it should be noted that analytical models are used when the investigated
processes are poorly understood, so it is impossible to build an electrochemical model of
these processes. For example, this is true for the case of modeling thermal runaway in
batteries [16,17] or the same for hydrogen accumulation in electrodes during the batteries’
operation [18–20], etc.

Of course, there have been a lot of other developed models and methods for estimating
a battery’s remaining capacity. One of the earliest methods was the estimation of the
battery’s remaining capacity based on the open circuit voltage [21]. However, in the
conditions of the dynamic operation of a battery, this method is inaccurate, since it allows for
an error of up to 20% [22]. In addition, this method is inapplicable at all for the lithium-iron-
phosphate batteries (LiFePO4), distinguished by their flat discharge curves [23]. Among
other models for a battery’s remaining capacity estimation, there are many analytical
models based on the Kalman filter and the fuzzy logic [24–28]. These models provide more
accurate estimates of a battery’s remaining capacity [24]. Nevertheless, our experiments
have shown that in the case of a battery’s dynamic operation, the use of those models is
associated with a possible error of up to 10% [29].

Currently, most often for a battery’s remaining capacity estimation, a combination of
the two following methods is used. The first one is counting the ampere-hours spent by a
battery in a particular discharge cycle and subtracting the resultant value from the number
of the ampere-hours spent by the battery in its previous full discharge cycle. The second
method consists of a voltage profile use. This method has a number of disadvantages noted
in [1], as well.

This research is aimed at analyzing the most well-known Peukert generalized equa-
tions and selecting an equation, which corresponds most accurately to the available ex-
perimental data for automotive-grade lithium-ion batteries. The achievement of the afore-
mentioned goals will provide a more accurate estimation of the remaining capacities of
those batteries.

2. Theory

In electric vehicles, lithium-ion batteries work in dynamic mode. In this case, the
discharge currents of the batteries change a lot. The Hausmann analytical model [9] was
developed, specially, for estimating the remaining capacities of batteries during their
function in the dynamic mode. The model is as follows.

Ct = Cm −
t

∑
i=0

Ie f f (ii, Ti)∆t, Ie f f (it, Tt) = f1(it) f2(Tt) = γ(it)
α
(Tre f

Tt

)β

(1)

where ∆t is the time-step; it, Tt and Ct are the current, temperature, and remaining capacity
of a battery at time t, respectively; α, β and γ are empirical constants; Cm is the battery’s
top capacity; Tref is the reference temperature for the tested battery (298 ◦K).

In the Hausmann Model (1), the entire battery discharge time range is divided into
very small time intervals, ∆t = 1 s. As the intervals ∆t are very small, the temperature and
the current inside of those small intervals of time can be considered to be constant. Hence,
in every time interval ∆t, it is possible to use empirical equations expressing dependencies
of the released capacity on current and temperature, experimentally found at constant
currents and temperatures. In the Hausmann Model (1), for the dependence calculation of
the released capacity on the discharge current, the classical Peukert equation [30] is used,
which is written often in the following form [9,10]:

C =
A
in (2)
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where C is the battery discharge capacity, i is the discharge current, and A and n are
empirical constants.

In [10], it is proven that in the Hausmann Model (1), the function Ieff (i,T) is related
to the dependence C(i,T) of capacity on the discharge current and temperature by the
following ratio:

C(i, t) =
Cm

Ie f f (i, T)/i
(3)

From Equations (1) and (3), we obtain that in the Hausmann Model (1), at every time
interval ∆t, the battery released capacity is related to the discharge current and temperature
by the following empiric equation:

C(i, T) =
Cm

γin

(
T

Tre f

)β

, n = α− 1 (4)

The first factor in Equation (4) is the classical Peukert Equation (2). The second factor
determines the dependence of the battery’s released capacity on the temperature C(T).

C(T) = Cmre f

(
T

Tre f

)β

, Cm = Cmref, A = K/γ (5)

where Cmref is the battery’s top capacity at temperature Tref.
However, Equation (5) can be used in battery models only in a small temperature

range because it contains a number of contradictions. Firstly, in Equation (5), C(T) = 0 at
T = 0, whereas, in fact, C(T) = 0 in the battery at temperatures not close to zero but to the
freezing point of the electrolyte. Secondly, in Equation (5), with the temperature growth,
the battery’s release capacity C(T) grows constantly, as well. However, in a battery, C(T)
cannot grow indefinitely because it is limited by the capacity, which is obtained by the
battery when the battery is charged up.

In paper [10], the equation for the dependence C(T) is proposed, which is devoid of
these disadvantages. It is presented as such:

C(T) = Cmre f K

(
T−Tk

Tre f−Tk

)β

(K− 1) +
(

T−Tk
Tre f−Tk

)β
(6)

where Tk is the temperature, at which C(T) = 0, i.e., the temperature close to the elec-
trolyte freezing point; Cmref is the top capacity released by a battery at temperature
Tref as C(Tref) = Cmref; and K is an empiric constant.

When T → ∞ then C(T)→CmrefK. Therefore, the physical meaning of the parame-
ter K is as follows: it indicates how many times (theoretically) the battery’s capacity in
Equation (6) can be increased with the temperature growth of the battery as compared to
the capacity Cmref.

Additionally, the classical Peukert Equation (2) cannot be used in battery models at
any discharge current. Indeed, according to the classical Peukert Equation (2), when the
discharge current decreases, the battery’s released capacity tends to go to infinity, which
is devoid of any physical meaning. In addition, the classical Peukert Equation (2) always
has a concave dependence C(i) for n > 0, while the experimental curve C(i) for lithium-ion
batteries has both concave and convex sections. Now there are generalizations of the
Peukert Equation (2) that do not contain the noted drawback [10]:

C =
A

1 + Bin (7)
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C =
A
in tanh

(
in

B

)
(8)

where A, B and n are empiric constants.
Additionally, there exist some other equations and methods for calculating the bat-

tery’s released capacity [31,32]. However, our studies have shown [33] that Equations (7)
and (8) correspond most accurately to the experimental data for the small-format lithium-
ion batteries. Here, we investigate the applicability of these equations for the large-format
automotive-grade lithium-ion batteries.

During the battery discharge process, the phase transition takes place of the active sub-
stance of the electrodes. This phase transition occurs from the phases of the active substance
corresponding to the battery’s full charge to the phases corresponding to the battery’s full
discharge. However, often the phase transitions are described by the complementary error
function [34]:

C(i) =
A
2
· er f c

(
i− ik√

2σ

)
(9)

where σ is the standard deviation and ik is the average of the statistical variable i.
Therefore, let us analyze Equation (9).
For making comparison between the experimental data and Equations (7)–(9), we will

rewrite the latter in a more convenient and more understandable form:

C =
Cm

1 +
(

i
i0

)n (10)

C =
0.522Cm(

i
i0

)n tanh
((

i
i0

)n 1
0.522

)
(11)

C =
Cm

er f c(−n)
· er f c

(
i/ik − 1

1/n

)
(12)

For all Equations (10)–(12), if i→0, C→Cm. Due to each of Equations (10)–(12), the
battery capacity C grows with the current decrease (at n > 0), and Cm is the battery’s
top capacity.

In Equations (10) and (11), C(i0) = Cm/2 and, subsequently, the parameter i0 are equal
to a current, at which the battery’s released capacity C is twice less than its top capacity.
For Equation (12), C(ik) = Cm/erfc(−n) and, subsequently, the parameter ik are equal to the
current, at which the battery’s released capacity C is erfc(−n) times less than its top capacity.

For batteries of diverse capacity, it is convenient to compare Equations (10)–(12) in the
standardized coordinates (C/Cm, i/i0 (or i/ik)) and not in the ordinary coordinates (C, i).
In the standardized coordinates, the curves of the capacity dependence on the discharge
currents will not depend on the battery’s top capacity.

In order to understand clearly the physical meaning of the parameter n in the
Equations (10)–(12), let us consider the following equations:

lim
i→i0

d(C(i)/Cm)

d(i/i0)
= −n

4
(for Equation (10)) (13)

lim
i→i0

d(C(i)/Cm)

d(i/i0)
= −0.583 · n (for Equation (11)) (14)

lim
i→ik

d(C(i)/Cm)

d(i/ik)
= − 2n

er f c(−n)
√

π
= funl(n) (for Equation (12)) (15)

Figure 1 shows the comparison between the function fun1(n) and the function fun2(n)
in the following form:

fun2(n) = − n√
π

(16)
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In Equation (12), n > 1.5, in this case, fun1(n) ≈ fun2(n).
Hence, in Equations (10)–(12), the parameter n at the point i = i0 (or i = ik) determines

(accurately up to the constant) the decrease rate of the battery’s release capacity (13)–(15).
Thus, all the parameters (Cm,i0, ik and n) in Equations (10)–(12) have a clear physical

meaning: Cm is the battery’s top capacity; i0 (for Equations (10) and (11)) is the current at
which the released battery capacity is twice less than its top capacity, since C(i0) = Cm/2; ik
(for Equation (12)) is the current, at which the released capacity of the battery is erfc(−n)
times less than its top capacity, since C(ik) = Cm/erfc(−n); n (accurately up to the constant) is
the rate of decrease in the released battery capacity at the point i = i0 (or i = ik) in coordinates
(C/Cm, i/i0 (or i/ik)) (13)–(15), while the parameters (A, B and n) in Equations (7)–(9) are
just empirical coefficients.

It should be noted that in our previous paper [33], it was experimentally shown that
Equations (10)–(12) correspond very well to experimental data for small-format lithium-
ion batteries with cathodes: LiMn2O4, LiCoO2 and LiNiMnCoO2. Moreover, the average
relative error of experimental data approximation by Equations (10)–(12) decreased in the
following sequence of Equations (10)–(12). Thus, Equation (12) corresponded best to the
experimental data. This statement is also true for the large-format batteries that we studied
in this paper.

3. Experimental Methodology

For cycling in our experiments, we used commercial automotive-grade lithium-ion
batteries, whose parameters are shown in Table 1.

Charging of the lithium-ion batteries was performed with the use of an electrochemical
workstation ZENNIUM and the potentiostat PP242. Charging was conducted in the mode
of constant current and constant voltage (CC/CV) according to the parameters given in
Table 1. This workstation makes it possible to charge batteries with the highest working
current of 40 A.

For a discharging battery, the electronic load ITECH IT8945-150-2500 was used. This
electronic load makes it possible to discharge batteries with the highest working current of
2500 A. Discharging was conducted in the mode of constant current (CC).

The batteries’ temperatures were controlled by four LM35 temperature sensors fas-
tened at different points on each battery.
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Table 1. Parameters of automotive-grade lithium-ion batteries used in the experiments.

Model SE100AHA LFP90 38120S SLPB96255255

Manufacturer CALB ThunderSky Headway Kokam
Cathode material LiFePO4 LiFePO4 LiFePO4 LiCoO2

Structure prismatic
battery

prismatic
battery

cylindrical battery
package (1S10P)

pouch
battery

Nominal capacity (Ah) 100 90 100 60
Charge current (A) 40 40 40 30

Upper cutoff (V) 3.60 4.25 3.65 4.20
End current (A) 2.5 2.25 2.5 1.5
Lower cutoff (V) 2.50 2.50 2.00 2.70

Discharge current (for
training cycles) (A) 20 18 20 12

For parameter measurements, the batteries were placed into the climatic chamber
Binder MK240 at a temperature appropriate for a specific measurement session. Before the
parameters’ measurements, each battery was kept in the climatic chamber for five hours so
that the entire battery could acquire the required temperature measurements. In addition,
in order to strengthen the heat exchange and the batteries’ cooling down when the batteries
were discharged with large currents, a number of heat sinks were attached to them using
special clamps and a heat-conducting paste. The experiments used heat sinks that cool
processors in computers. Those precautions did not let the temperature of the batteries rise
above 50 ◦C at any discharge current.

In fact, in our experiments, these measures stabilized the temperature of the batteries
near the temperature set in the climatic chamber. In addition, Section 4.1 experimentally
proves that the relative deviation of the capacity from the average value, in the temperature
range from 25 to 55 ◦C makes less than 1%. Therefore, in this temperature range, it is
possible to check the corresponding Equations (10)–(12) with the experimental data without
taking into account the effects of temperature. In the case of a real operating state of the
batteries, the temperature factor must be taken into account in the form of Equation (6).
With the purpose of the statistical data volumes increasing, simultaneously, experiments
were conducted with three batteries of each type (Table 1) at a certain discharge current
and a certain temperature.

Each experiment included the following stages:
Firstly, preliminary experiments using new batteries under study (Table 1) showed

that in the first 6–7 charge–discharge cycles, the battery’s parameters changed. Then
the battery’s parameters stabilized. Changing the battery’s parameters (in particular, the
capacity realized by the batteries) is associated with the formation of the SEI layer. This
phenomenon is typical for all lithium-ion batteries [33]. Therefore, for the purpose of the SEI
layer stabilization in the electrodes of new batteries, nine training cycles were performed
in accordance with the parameters given in Table 1. However, if the capacity of the three
batteries under study in the last three cycles differed by more than 5%, some additional
training cycles were performed (Table 1), or the troublesome battery was replaced with
another, more stable battery.

Secondly, the charging of the batteries was performed according to the parameters
given in Table 1. Discharging of the batteries was performed at a current range from 0.2 Cn
to approximately 10 Cn (Cn is the battery rated capacity).

Thirdly, the measurements were taken for three batteries of each type at each discharg-
ing current and at each temperature. However, in these three measurements, the capacity
differed by more than 5%. Then additional training cycles were carried out to stabilize the
capacity of the batteries. If the additional training cycles did not fix the problem, one or
several troublesome batteries were replaced with other, more stable batteries.

Fourthly, before changing each of the discharging currents or the temperature of
the batteries, three training cycles were fulfilled (Table 1). This method allowed for the
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exclusion of the mutual influence of some measuring discharge cycles on other discharge
cycles. However, if the measured capacity of the batteries in these three training cycles
differed by more than 5%, some additional training cycles were performed.

Fifthly, the tables below show the average values of three measurements for three
batteries of the same type at a certain discharge current or a certain temperature.

It should be noted that a value of a measured capacity of batteries of the same type
at the same discharge current and the same temperature is influenced by many random
factors related to both the batteries’ manufacturing processes and the process of their
discharge. Upon that, the difference in the measured released capacity between the same
batteries (for batteries of various electrochemical systems) can reach 1–2% and sometimes
even more. For lithium-ion batteries, this unavoidable statistical dispersion is typically well
below 1%, unless the batteries differ greatly in the number of charge–discharge cycles. That
is why, it is important to study the experimental curves in the standardized coordinates
(C/Cm, i/Cm) and not in the ordinary coordinates (C, i); the noted random factors will be
eliminated to a large extent. This is associated with the fact that also the top capacities Cm
are found experimentally for each specific battery. To use this method, it is possible to find
experimental curves that are more reliable.

4. Results

A battery’s released capacity depends on two parameters: a discharging current and a
battery temperature [9,10].

4.1. Studying of Dependence of Released Capacity on a Battery’s Temperature

For batteries cycling at different temperatures, the climatic chamber Binder MK240
was used (Binder GmbH, Tuttlingen, Germany). Before each measurement, a battery was
kept in the climatic chamber for five hours so that the entire battery’s temperature reached
the required temperature measurement. The measurements were conducted at discharging
currents according to Table 1. The obtained experimental results are represented in Figure 2.

For finding the optimal parameters of Equation (6) according to the experimental
data obtained, the least square method was used as well as the Levenberg–Marquardt
optimization procedure. The obtained optimal values of the parameters of Equation (6) are
given in Table 2.

Table 2. Optimal values of parameters for Equation (6).

Parameters CALB
LiFePO4

ThunderSky
LiFePO4

Headway
LiFePO4

Kokam LiCoO2

Cn (Ah) 100 90 100 60
Cmref (Ah) 107.05 99.18 107.74 60.72
Tref (◦K) 298 298 298 298
Tk (◦K) 240 239 238 237

β 5.10 4.95 5.11 5.13
K 1.010 1.021 1.027 1.020

δ (%) 1 1.8 1.8 1.7 1.9
1 Relative error of experimental data approximation with Equation (6) in Figure 2.

From Figure 2, it can be seen that the relative deviation of the capacity from the average
value in the temperature range from 25 ◦C to 55 ◦C is less than 1%. Hence, when studying
the battery’s released capacity dependence on the discharge current in this temperature
range, the temperature influence can be ignored.
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Figure 2. Comparison between Equation (6) and the experimental data for automotive-grade lithium-
ion batteries: (a) batteries CALB SE100AHA; (b) batteries ThunderSky LFP90; (c) batteries Headway
38120S; (d) batteries Kokam SLPB96255255.

4.2. Studying of Dependence of Batteries’ Released Capacity on Discharging Current

The batteries were cycled at the temperature of T = 25 ◦C inside of the climatic chamber
Binder MK240 (BINDER GmbH, Tuttlingen, Germany). In addition, in order to strengthen
the heat exchange and the batteries’ cooling down, some heat sinks were attached to the
batteries from all sides. The heat sinks were attached with the use of special clamps and
the heat-conducting paste MX-2 (ARTIC). As a result, in all our experiments, the battery’s
temperature was lower than 50 ◦C. It was possible to discharge the batteries at high currents
as the batteries had no protection.

The batteries were discharged by the currents from 0.2 Cn to 10 Cn. The results of our
experimental studies are represented in Figure 3 in standardized coordinates (C/Cm, i/Cm).
The parameter Cm is taken from Table 3.
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Figure 3. Comparison between experimental data for automotive-grade lithium-ion batteries and
Equation (12). Value Cm is taken from Table 3 for each battery.

Table 3. Optimal values of parameters of Equations (10)–(12).

Parameters CALB
LiFePO4

ThunderSky
LiFePO4

Headway
LiFePO4

Kokam LiCoO2

Equation (10)
Cn (Ah) 100 90 100 60
Cm (Ah) 106.95 104.59 107.82 59.42

i0 or ik (A) 1107.82 1088.23 692.93 396.04
n 1.867 1.872 1.982 2.130

δ (%) 1 2.3 2.2 2.4 2.3

Equation (11)
Cm (Ah) 106.85 104.55 107.20 59.06

i0 or ik (A) 1140.23 1075.35 683.30 392.61
n 1.003 0.998 1.17 1.255

δ (%) 1 3.2 3.4 3.3 3.4

Equation (12)
Cm (Ah) 107.88 105.05 110.74 61.285

i0 or ik (A) 1039.26 1084.57 524.67 321.90
n 1.037 1.187 0.547 0.653

δ (%) 1 1.7 1.8 1.9 1.8
1 Relative error of experimental data approximation with Equation (12) in Figure 3.

The optimal parameters for Equations (10)–(12) were found using the least square
method and the Levenberg–Marquardt optimization procedure. The optimal parameters
found are represented in Table 3.

In Figure 3, the experimental data is approximated by Equation (12) as this equation
has the smallest approximation error (Table 3).

5. Discussion

From the obtained results (Table 3), it follows that Equations (10)–(12) can be used
in analytical models of batteries because these equations approximate any experimental
data with a relative error of less than 5%. As a rule, in practical estimations of batteries’
remaining capacity, such an error is acceptable [9]. However, it should be noted that, among
others, Equation (12) has the smallest approximation error of the experimental data, i.e., it
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corresponds to the experimental data best of all. Additionally, Equation (12) has a statistical
basis, while Equations (10) and (11) are just empirical equations.

Any process of batteries discharging is a phase transition of the active substance of the
electrodes; this phase transition goes from the phases corresponding to the charged state
of the batteries to the phases corresponding to the discharged state of the batteries. Often,
however, the phase transitions [34] are described by the complementary error function (9),
which is based on the normal distribution law.

Undoubtedly, the phase transition at the level of molecules and ions is a statistical
process because the discharge process, which takes place at the boundary between the
active substance of the electrodes and the electrolyte, is described by the Butler–Volmer
statistical function with an exchange current j0. That is why it is not surprising that the
generalized Peukert equation is described perfectly by a statistical function (namely, by the
complementary error Function (9)).

The conducted research shows that the Hausmann analytical Model (1) can be im-
proved significantly by taking into account the Peukert statistical Equation (12) and
Equation (6). Indeed, in this case, instead of Equation (4), we obtain the following equation,
well-grounded by experiments:

C(i, T) =
( Cmre f

er f c(−n)
er f c

(
i/ik − 1

1/n

))
K
γ

(
T−Tk

Tre f−Tk

)β

(K− 1) +
(

T−Tk
Tre f−Tk

)β
(17)

Now, considering Equation (3), for the effective current Ieff(i,T) (1) in the Hausmann
model [9], we obtain the following improved equation:

Ie f f (i, T) = iγ
er f c(−n)

er f c
(

i/ik−1
1/n

)(1 +
(Tre f − Tk

T − Tk

)β

(K− 1)

)
, Cm = CmrefK (18)

It should be noted that direct testing of the Hausmann Model (1) using both the
classical Peukert equation (taking into account temperature) (4) and the generalized Peukert
equation, proposed by us (taking into account temperature) (17), requires the same time for
calculation, since Equations (4) and (17) are simple analytic functions. The calculation of
any analytical function does not lead to an increase in the calculation time, in contrast to the
time of solving the partial differential equations in electrochemical models of batteries [6–8].

6. Conclusions

Equations (10)–(12) have a number of advantages over the classical Peukert Equation (2).
Firstly, these equations (for the automotive-grade lithium-ion batteries) are true for

discharge currents from 0 to 10 Cn, while the classical Peukert Equation (2) is true only in
the range of discharge currents from 0.2 Cn to 2 Cn [35].

Secondly, all the parameters (Cm, n, i0 or ik) in Equations (10)–(12) have a clear physical
meaning, whereas in the classical Peukert Equation (2), the parameters (A, n) are just
empirical constants.

Thirdly, Equation (12) has a clear statistical meaning, whereas Equations (1), (10) and (11)
are just empirical equations.

The Peukert Equation (2) is used in many analytical models [9,10,23,36–38], and that
is why it is better to understand the electrochemical meaning of this equation, and its
refinement is of great practical importance.
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