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Abstract: Li1.2Ni0.13Co0.13Mn0.54O2 (LNCM) has been intensively investigated owing to its high
capacity and large voltage window. However, despite its high performance, the synthesis of LNCM
can be challenging as it usually contains structural disorders and particle-size inhomogeneities,
especially via a solid-state method. This work introduces microwave irradiation treatment on the
LNCM fabricated via a solid-state method. The as-treated LNCM has low structural disorders, as
indicated by the smaller cation mixing, better hexagonal ordering, and higher c/a ratio compared to the
non-treated LNCM. Furthermore, the particle-size homogeneities of as-treated LNCM improved, as
characterized by scanning electron microscopy (SEM) and particle size analyzer (PSA) measurements.
The improved structural ordering and particle-size homogeneity of the treated sample enhances
the specific capacity, initial Coulombic efficiency, and rate capability of the cathode material. The
LNCM sample with 20 min of microwave treatment exhibits an optimum performance, showing a
large specific capacity (259.84 mAh/g), a high first-cycle Coulombic efficiency (81.45%), and good
rate capability. It also showed a stable electrochemical performance with 80.57% capacity retention
after 200 cycles (at a charge/discharge of 0.2C/0.5C), which is 13% higher than samples without
microwave irradiation.

Keywords: cycling stability; facile microwave synthesis; high-capacity cathode; lithium-ion battery;
low cation mixing

1. Introduction

The utilization of Li-ion batteries (LIBs) has changed from powering personal elec-
tronic gadgets to the rapidly expanding popularity of electric vehicles (EVs), which de-
mands versatile and cost-effective LIBs with high energy density [1]. The energy density of
LIBs is determined by the specific capacity of the battery as well as the working voltage,
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both of which are heavily influenced by the cathode materials [2,3]. Among the various
cathodes reported so far, a Li-rich Mn-based cathodes has shown tremendous potential as
the next generation LIB following its high specific capacity and wide voltage windows [4].

The Li-rich Mn-based cathode is extensively represented in the literature by two equal
formulas: xLi2MnO3·(1-x)LiTMO2 and Li(1+y)TM(1-y)O2 (TM=Ni, Co, Mn) [5,6]. LNCM
is an abbreviation for the formula 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2, which is one of
the stoichiometric compositions that belongs to the group of Li-rich Mn-based cathode
materials. This composition has been intensively investigated for its large theoretical
capacity (>200 mAh/g) and high working voltage (>3.7 V vs. Li/Li+) [7]. However,
activation of the Li2MnO3 phase at the first cycle produces O2 gas that leaves oxygen
vacancies as the product of oxygen evolution, leading to irreversible capacity that results in
a low Coulombic efficiency at the first cycle, the migration of transition metals, and inferior
cycling stability [8,9].

Moreover, synthesizing high-performance LNCM is challenging as the product usually
contains structural disorders (i.e., cation mixing, structural defects, and stacking faults),
which will reduce the performance and long-term stability of the LNCM [10]. The poor
structural disorders can be indicated by the high hexagonal ordering revealed from XRD
results, which can be quantified by a high I(003)/I(104) ratio, a low (I(006)+I(102))/I(101) ratio
(i.e., R-factor), and a high c/a ratio [11–13]. Cation mixing is one of the most common
structural disorders in the layered cathode (e.g., LNCM), which occurs due to a close Bohr
radius of Li+ and Ni2+, i.e., 0.76 Å and 0.69 Å, respectively. Li+ may occupy 3a sites of
the transition metal layer, while Ni2+ may occupy 3b sites of the Li layer, hampering the
reversible intercalation/deintercalation of Li ions [14]. Cation mixing also leads to local
structural collapse and accelerates the phase transformation, which often results in voltage
fading and unstable cycling performance [15].

The introduction of dopants [16,17], structural modification [18,19], and surface modi-
fication [20,21] have been reported to minimize structural disorders in LNCM. Furthermore,
the type and concentration of the structural disorders are significantly influenced by the
synthesis process, particularly the precursors’ composition, synthesis method, and syn-
thesis parameters [22]. Among the various methods used to obtain LNCM, the solid-state
approach is regarded as a simpler method than the solution-based synthesis (i.e., coprecip-
itation and sol–gel), which often requires an inert N2 environment to prevent Mn2+ and
Co2+ from forming high-valence hydroxides species [22]. In addition, hydrothermal and
solvothermal synthesis of LNCM may need a relatively high temperature and high-pressure
conditions, which is challenging for its scaled-up production [23].

Solid-state synthesis of LNCM has been reported in the literature [24–26]. Generally,
it is started by mixing the precursors in the solid phase or the wet phase with additional
dispersant, followed by two steps of heat treatment. Unfortunately, most LNCM com-
pounds obtained by the solid-state method exhibited an agglomerated morphology with
inhomogeneous particle distribution, leading to non-uniform reactions at the interface and
the formation of a cathode electrolyte interface (CEI), which reduces the cycling stability of
the battery [22].

Microwave irradiation is a potential method that can be employed to treat the as-
synthesized cathode materials [27]. Although its mechanism is not yet fully understood,
microwave irradiation is known to cause a positive impact on the electrochemical per-
formance of the cathode. Microwave treatment was utilized by Zhao et al. and Miao
et al. on Li-rich Mn-based cathode materials that were produced via co-precipitation and
hydrothermal synthesis, respectively. It could suppress the cation mixing in the samples, as
indicated by the higher I(003)/I(104) in XRD results [28,29]. In accordance with the previous
reports, Shi et al. also utilized microwave treatment on a hydrothermally synthesized
Li-rich Mn-based cathode. The obtained sample showed an improved homogeneity of
secondary particles and enhanced structural ordering, as indicated by the lower cation
mixing and a lower R-factor [30].
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Inspired by previous results, we introduce microwave treatment on the LNCM ob-
tained by a facile solid-state method, employing a ball-milling technique. This combination
efficiently produces LNCM with a pure phase, a well-ordered crystal structure, low cation
mixing, and good particle-size homogeneity. Apart from the physical properties of the
LNCM, we also investigated the influence of microwave irradiation on the electrochemical
performance of LNCM as a cathode material in LIBs. This study showed that microwave
treatment improves the specific capacity, initial Coulombic efficiency, rate capability, and
cycling stability of the LNCM prepared via a solid-state method. Furthermore, the positive
effect of microwave irradiation on alleviating voltage fading and phase transformation in
LNCM is also investigated and explained in this work.

2. Materials and Methods
2.1. Preparation of LNCM

The LNCM was prepared via an acetate precursor-based solid-state synthesis. A
stoichiometric amount (1.2:0.13:0.13:0.54) of lithium acetate dihydrate (Li(CH3CO2)·2H2O,
99.0%, Sigma Aldrich), nickel acetate tetrahydrate (Ni(CH3CO2)2.4H2O, 98.0%, Sigma
Aldrich), cobalt acetate tetrahydrate (Co(CH3CO2)2.4H2O, 99.99%, Merck), and manganese
acetate tetrahydrate (Mn(CH3CO2)2.4H2O, 99.0%, Merck) were weighed and dissolved in
100 ml of ethanol. The mixture was stirred for 30 min to obtain a homogeneous solution.
The obtained solution was heated at 120 °C in a vacuum oven for 12 h until dry. The
produced sample was crushed in a ball mill for 30 min and then heated for 4 h at 400 °C
in a furnace. The calcined powder was subsequently treated with microwave irradiation
using a Panasonic NN-ST34HM (800 watt) microwave oven. The microwave temperature
was set to 185 °C, and the sample was treated for 0, 10, 20, and 30 min. All samples were
then heated further at 850 °C for 6 h in ambient atmosphere at a heating rate of 5 °C/min.

2.2. Materials Characterizations

The thermal decomposition of the precursors was investigated by a thermogravimetric
analyzer (TGA, Hitachi STA7300) within the range of 30 – 1000 °C at 10 °C/min under an
atmosphere of air. An X-ray diffraction system (XRD, Bruker D8 Advance, Kα wavelength:
1.5406 Å) was used to characterize the crystal structure of the samples. The lattice parameter
was determined by Rietveld refinement using Profex software [31]. The morphology of
the sample was analyzed using scanning electron microscopy (SEM, Hitachi SU3500).
Meanwhile, a particle size analyzer (PSA, Horiba SZ-100) was employed to measure the
particle size of the samples, after 10 min of sonication of the solution containing 0.01 g of
samples in the 15 ml of DI water.

2.3. Electrochemical Properties Characterizations

The cathodes were fabricated using the doctor blade technique. Slurries containing
LNCM active materials, carbon black, and polyvinylidene difluoride (PVDF) binder (ratio
8:1:1) with N-methyl-2-pyrrolidone (NMP) as a solvent were prepared before casting them
on aluminum foil. The process was followed by vacuum drying at 100 °C overnight
to completely remove the solvent. The dried cathode sheet was punched into a disc
with a diameter of 16 mm and assembled together with Li metal, Celgard 2400 separator,
and organic electrolyte containing LiPF6 (1 M) dissolved in a mixture of EC:DEC:DMC
(1:1:1). The assembly was performed in a glovebox that was filled with argon, and both
the water and oxygen concentrations were kept at less than 0.1 ppm. Charge–discharge
measurements were carried out at room temperature using a Neware BTS4000 battery
tester along the voltage ranges of 2–4.8 V and 2–4.6 V. These measurements were carried
out after several hours of resting period to stabilize the voltage response. Electrochemical
impedance spectroscopy (EIS) and cyclic voltammetry (CV) measurements were conducted
using a potentiostat galvanostat (Parstat 3000 A). EIS was performed over a frequency of
100 kHz − 0.1 Hz, while CV was scanned along a voltage window of 2 − 5 V (vs. Li/Li+)
with 0.1, 0.2, 0.3, and 0.5 mV/s scan rates. In order to examine the Li-ion diffusion in
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the samples, CV measurements were performed at a variety of scan rates. The diffusion
coefficient of Li-ion for the sample prepared with and without microwave treatment was
analyzed using the Randles–Sevcik Equation (1) [32].

Ip = 0.4463 · n3/2 · F3/2 · C · A · R−1/2 · T−1/2 · D̃1/2 · v1/2 (1)

The Randles–Sevcik equation correlates the peak current (Ip, A) with the Faraday
constant (F, C/mol), Li initial concentration (n, mol/cm3), electrode surface area (A, cm2),
gas constant (R, J/mol K), temperature (T, K), lithium diffusion coefficient (D̃, cm2/s), and
CV scan rate (v, V/s).

3. Results and Discussions

TGA was conducted on the precursor mixture to find out the optimum temperature
of the first calcination step (Figure S1). Significant weight loss (~52.8%) within the tem-
perature range of 300 – 400 °C corresponds to the decomposition of organic components
(i.e., acetate) [33]. Therefore, 400 °C was selected as the temperature for the first calcination
process, producing LNCM samples in their oxide form. The microwave treatment was
conducted on the LNCM samples after the first calcination step. The microwave irradiation
was varied for 0 (i.e., without microwave treatment), 10, 20, and 30 min to obtain the
optimal parameters of the microwave treatment. After treatment, the samples undergo
the second calcination step. As reported in our previous report, 850 °C was selected as
the second calcination temperature to obtain the good crystallinity of layered–layered
LNCM [34].

After completing the second calcination as the last step of the synthesis procedure,
the crystallinity of the samples was then characterized by XRD (Figure 1). All samples
show sharp XRD peaks that are unique to the Li-rich layered structure, consisting of peaks
from the hexagonal α-NaFeO2 structure of layered LiTMO2 (TM = Ni, Co, Mn) (R3m) and
peaks from the monoclinic structure of layered Li2MnO3 (space group C/2m) [35]. No
defect structure and impurity peak appear in the sample. Meanwhile, the obvious and
distinct split of the (006)/(102) and (108)/(110) peaks across all samples suggests excellent
layered structure ordering, indicating the successful formation of the layered–layered
LNCM structure [36].

Rietveld refinement was then performed to further explore the influence of microwave
treatment on the structure of the samples in more detail (Figure 2) and the refinement
results are displayed in Table 1. The intensity ratio of (003) to (104) peaks (I(003)/I(104)) for
the layered structure is usually employed to determine the degree of cation mixing. It
can be seen that the I(003)/I(104) value of all samples is higher than 1.2, indicating the low
cation mixing of all LNCM samples [37]. Moreover, the LNCM sample with 20 min of
microwave treatment shows the highest I(003)/I(104) value (i.e., 2.015), indicating the lowest
Li+/Ni2+ mixing degree among the samples. This value is higher than previously reported
LNCM samples obtained via other synthesis methods (Supplementary Information Table
S1), indicating that microwave treatment of LNCM synthesized by the solid-state method
is a promising strategy to minimize structural disorders on the LNCM cathode materials.

Furthermore, the R-factor, which is defined as the value of (I(006)+I(012))/I(101), is widely
used to gauge how good the hexagonal ordering is within the layered structure [38]. The R-
factor of all samples is lower than 0.5, suggesting their well-ordered structure. Accordingly,
the sample with 20 min of microwave treatment has the lowest R-factor, and, hence,
possesses the best structural ordering among the samples. The low cation-mixing and
high structural ordering of the microwave-irradiated sample indicates the positive effect of
microwave treatment, as can be seen from the XRD patterns of the samples taken before
and after microwave irradiation (Figure S2 and Table S2).
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Figure 1. XRD patterns for LNCM with different microwave irradiation times: without microwave,
10 min, 20 min, and 30 min.

Figure 2. Rietveld refinement result of all LNCM samples prepared (a) without microwave irradiation
(without microwave), and with (b) 10, (c) 20, and (d) 30 min of microwave irradiation.

Table 1. The refined lattice parameter of the LNCM samples.

Sample c (Å) a (Å) c/a I(003)/I(104) (I(006)+I(012))/I(101) Rwp (%)

w/o microwave 14.2378 2.8513 4.9934 1.909 0.4431 13.16
10 min 14.2418 2.8515 4.9945 1.923 0.4154 12.74
20 min 14.2463 2.8521 4.9950 2.015 0.4011 12.98
30 min 14.2492 2.8532 4.9940 1.946 0.4326 13.03
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The c and a lattice parameter represent the interslab distance and interlayer metal–
metal distance, respectively. A high c/a ratio corresponds to facile Li-ion diffusion, which
positively affects the rate capability of the battery [39]. Table 1 shows the increase in
c/a ratio with the duration of microwave irradiation. The LNCM sample with 20 min of
microwave treatment has the highest c/a ratio, indicating the optimal parameter for facile
Li-ion diffusion. The significant increase in lattice parameter a after 30 min of irradiation
caused the decrease in the c/a ratio in the sample, which probably corresponds to the high
formation of reduced transition metals (i.e., Mn3+) [40].

Furthermore, both c and a of the samples with microwave treatment are larger than
those without microwave treatment, suggesting the structural expansion of the microwave-
treated samples in both the c and a direction. The longer lattice parameter a can be associated
with the reduction of the transition metal cation (e.g., Mn4+→Mn3+) caused by the increase
in cation radius of the transition metal [17,41]. On the other hand, the rise of the c lattice
parameter can be attributed to the minor formation of oxygen vacancies during microwave
irradiation [42].

The SEM images of all LNCM samples shown in Figure 3 demonstrate a uniform
platelet shape, identical to the morphology of the cathode particles obtained by the solid-
state method [24,34]. Meanwhile, the particle size distribution of each LNCM sample
is represented by the bar diagrams in the inset of Figure 3. As microwave irradiation
reduces the tendency of the primary particles to agglomerate, the samples with microwave
treatment (i.e., 10, 20, and 30 min of irradiation) exhibit a more homogeneous particle size
distribution than the non-treated sample. The LNCM sample with 20 min of microwave
treatment shows the most homogeneous particle size distribution, as shown by the nar-
rowest size distribution. The uniform particle size provides a more homogenous interface
reaction during contact with the electrolyte, which minimizes cathode electrolyte interface
(CEI) formation and subsequently enhances capacity retention [22].

Figure 3. Morphology and particle size distribution of LNCM (a) without microwave irradiation,
and with (b) 10, (c) 20, and (d) 30 min of microwave irradiation.

The charge–discharge measurement was used to characterize the electrochemical
performance of LNCM samples. The voltage profile of all samples during the first cycle
measured within the range of 2–4.8 V at a rate of 0.1 C (~20 mA/g) are given in Figure 4a.
During the charging process, all samples exhibit two voltage plateaus. The smooth voltage
incline below 4.5 V corresponds to cationic oxidation, while the long voltage plateau
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above 4.5 V represents the activation of the Li2MnO3 phase, which is responsible for
providing the extra capacity [43]. The initial discharge capacities of LNCM samples without
microwave irradiation and with microwave irradiation treatment for 10, 20, and 30 min are
232.92, 252.69, 259.84, and 243.77 mAh/g, respectively. The LNCM sample with 20 min
of microwave treatment shows the largest specific capacity, which is in line with the XRD
characterization that suggests the lowest structural disorders in the sample.

Figure 4. (a) Initial charge–discharge profile and (b) cycling stability of all LNCM samples, measured
at a current density of 0.1 C (20 mA/g, 2–4.8 V) during the first activation cycle, followed by 100 cycles
at 0.2 C (40 mA/g, 2–4.6 V); (c) rate capability of all LNCM samples, measured at various current
densities within the 2–4.8 V voltage window; and (d) Nyquist plots of all LNCM samples.

Moreover, the initial Coulombic efficiency (ICE) of the LNCM without microwave
irradiation is only 69.60%, while the ICE of samples with 10, 20, and 30 min of microwave
irradiation are 74.58, 81.45, and 71.69%, respectively. The increasing ICE with the irradiation
time corresponds to the low irreversible reaction upon the initial charge–discharge cycle.
The sample with 20 min of microwave treatment shows the highest ICE, reflecting its good
structural ordering and uniform particle size distribution, which resulted in the minimum
generation of oxygen vacancies and O2 gas during Li2MnO3 phase activation and small Li
consumption during CEI formation [44].

The cycling stability of various LNCM samples is demonstrated in Figure 4b. After
phase activation of Li2MnO3 at the first cycle, the LNCM samples were tested for 100 cycles
at 0.2 C (40 mA/g) with the voltage window of 2–4.6 V at room temperature. Samples with
0, 10, 20, and 30 min of microwave treatment showed a capacity retention of 76.19, 78.87,
81.22, and 71.60%, respectively. The results show optimum capacity retention at 20 min of
irradiation time, which can be correlated with its lowest R-factor and most uniform particle
size distribution among the samples, inducing a homogeneous reaction at the interface and
minimum CEI formation [22,45].

The rate capability tests of LNCM samples were conducted under varied current
densities (0.1 C–2 C) along the voltage range of 2–4.8 V (Figure 4c). Similar to the cycling
stability test result, the sample with 20 min of microwave treatment shows the optimum
rate capability, which can be related to the high c/a ratio of this sample. A high c/a ratio
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enlarges the layer spacing, facilitating a facile Li ion diffusion and providing a large capacity
at the high current density [46].

Each Nyquist plot of the samples obtained from EIS characterization displays a semi-
circle located at the high to medium frequency domain and a straight profile at the lower
frequency domain (Figure 4d). Figure S3 portrays the equivalent circuit that fitted the
Nyquist plots, while Table S3 shows the fitting results. All samples possessed similar
cell ohmic resistance (Rs), indicating the similar resistance of the electrolyte and current
collector [47].

Meanwhile, charge transfer resistance (Rct) of the LNCM sample is represented by
the diameter of the semicircle. The sample with 20 min of microwave treatment has the
smallest Rct, suggesting its facile electrochemical reaction. Hence, according to material and
electrochemical characterizations, the sample with 20 min of microwave treatment exhibits
optimum performance, as indicated by the lowest cation mixing, the highest c/a ratio, the
most homogeneous particle size distribution, and the superior electrochemical performance
(i.e., large specific capacity, high initial Coulombic efficiency, superior rate capability, and
stable cycling behavior).

To further investigate the impact of microwave irradiation on the LNCM synthesized
via the solid-state method, cyclic voltammetry (CV) tests on the sample prepared without
microwave irradiation and the sample prepared with 20 min of microwave treatment were
conducted. First-cycle voltammograms of both samples measured with a 0.1 mV/s scan
rate along the voltage window of 2–5 V show similar profiles, demonstrating their similar
electrochemical characteristics (Figure 5a,b). The first peak at ~4.2 V during the anodic scan
corresponds to transition metal oxidation (i.e., Ni2+→Ni4+ and Co3+→ Co4+). Meanwhile
the second peak at ~4.7 V is correlated with the anionic redox reaction (i.e., O2¯→On¯ or
O2¯→O¯), which happens during the activation of the Li2MnO3 phase [48].

Figure 5. First-cycle cyclic voltammogram of LNCM samples (a) without microwave treatment and
(b) with 20 min of microwave treatment. Cyclic voltammograms of LNCM samples (c) without
microwave treatment and (d) with 20 min of microwave treatment measured at different scan rates
(the inset shows the relationship between the peak current (Ip) and the square of the scan rate (v1/2 )).

By comparing the second peak to the first peak (I(4.7 V)/I(4.2 V)), the structural
stability during the cycling test can be investigated. The sample without microwave
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treatment and the sample with 20 min of microwave treatment revealed I(4.7 V)/I(4.2 V)
values of around 2.325 and 2.239, respectively. The lower I(4.7 V)/I(4.2 V) value of the
sample prepared with 20 min of microwave treatment indicates its more stable structure
with a lower chance of oxygen loss [49]. The small oxygen loss alleviates the occurrence of
irreversible process, especially during the initial charge–discharge cycle, which is consistent
with the high ICE of the sample.

Figure 5c,d shows the voltammograms of both samples measured at various scan
rates starting from 0.1 to 0.5 mV/s). The peak current observed at different scan rates
can be related to the rate of the Li-ion intercalation and deintercalation process, in which
the diffusion coefficient can be extracted from the Randles–Sevcik equation. In this work,
the exact value of the diffusion coefficient (D̃) was not calculated as some parameters are
difficult to determine [50–52]. However, given that most of the parameters are constant,
the slope of the linear relation between the peak current (Ip) and the square of the scan
rate (v1/2) can be directly related to the Li-ion diffusion coefficient. During the oxidation
and reduction process, the slope value of Ip vs. v1/2 of 20 min sample is higher than that
without microwave irradiation, indicating its higher diffusion coefficient as compared to the
sample without microwave treatment. These results imply more efficient Li ion diffusion
in the sample with 20 min of microwave treatment, leading to a better rate capability of
this sample.

Figure 6a depicts the results of long-term cycling tests conducted on samples prepared
with and without 20 min of microwave irradiation in order to determine the effect of
microwave irradiation on the prevention of voltage fading. After conducting the first
cycle at 0.1 C and a voltage window of 2–4.8 V as the activation step of the Li2MnO3
phase, the cycling performance was tested within 2–4.6 V at 0.2 C and 0.5 C for charging
and discharging, respectively. After 200 cycles, the cycling stability performance of the
sample prepared with 20 min of microwave treatment shows higher capacity retention
(80.57%) than the sample without microwave irradiation (66.78%), which is consistent with
the results presented in Figure 4b for the cycling stability test. This capacity retention
is in the higher range compared to the microwave treated LNCM sample obtained from
solution-based synthesis (e.g., hydrothermal, co-precipitation), suggesting that microwave
treatment of LNCM obtained by the solid-state method is a promising strategy to produce
structurally stable LNCM (Supplementary Information, Table S4).

Figure 6b,c shows the selected normalized discharge capacity curves of different cycle
numbers. The working voltage of both samples decreases with the number of cycles. This
phenomenon is known as voltage fading, which is usually caused by the phase transfor-
mation from a layered to spinel structure [53]. The sample with 20 min of microwave
irradiation shows a lower voltage fading than the sample without microwave irradiation,
which may be correlated to the minimum phase transformation from the layered to spinel
structure in this sample [54]. At the first cycle, oxygen evolution generates oxygen vacan-
cies, allowing transition metal migration to Li sites, and eventually driving the formation
of the spinel phase [53,55]. Microwave irradiation treatment can minimize oxygen loss,
as indicated by the low I(4.7 V)/I(4.2 V) value observed at the first cycle during the CV
scan. Therefore, the phase transformation of the sample with microwave irradiation during
the long-term cycling is minimal compared to that without microwave irradiation. The
minimum oxygen loss of the 20-minute-treated sample maintains the minimum change on
the oxidation state of the cations during cycling, minimizing voltage decay [56]. Hence, the
microwave treatment not only elevates the specific capacity, enhances initial Coulombic
efficiency, and improves capacity retention and rate capability, but also suppresses the
phase transformation and voltage fading in LNCM cathode materials.
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Figure 6. (a) Long-term cycling stability test of LNCM samples without and with 20 min of microwave
treatment, and selected voltage discharge profiles of LNCM samples (b) without microwave treatment
and (c) with 20 min of microwave treatment.

4. Conclusions

In summary, LNCM cathode materials have been effectively synthesized through
the use of a microwave-assisted solid-state technique. The experimental results indicate
that microwave irradiation effectively improves the structural ordering and particle-size
homogeneity of LNCM, and, hence, its electrochemical performance. By comparing the
treatment period, 20 min of microwave irradiation on the LNCM is the optimal treatment
time as indicated by its optimum initial Coulombic efficiency, specific capacity, capacity
retention, and rate capability, which can be attributed to its minimum structural disorders
and homogeneous particle size distribution. Moreover, microwave irradiation produces
LNCM with a more stable structure, as indicated by the lower possibility of oxygen loss
and voltage fading. These results suggest that microwave irradiation treatment on layered
cathode materials is a facile treatment that can effectively mitigate structural disorders in
the materials.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries9010031/s1, Figure S1: TG curves of the precursor of the
LNCM sample; Figure S2: XRD patterns of the LNCM sample after the first calcination step: (a) before
microwave treatment and (b) after microwave treatment for 20 min; Figure S3: Basic equivalent circuit
of the EIS measurement; Table S1: Comparison of the structural ordering with other works; Table S2:
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