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Abstract: Metal oxide anode materials are affected by severe volume expansion and cracking in the
charging/discharging process, resulting in low capacity and poor cycle stability, which limits their
application in lithium-ion batteries (LIBs). Herein, a new strategy is uncovered for a preparing spinel-
structured, multi-component transition metal oxide, (Ni,Co,Mn)Fe2O4−x, with oxygen vacancies as
an LIB anode material. The as-fabricated material presented excellent reversible capacity and cycling
stability, delivering a discharge capacity of 1240.2 mAh g−1 at 100 mA g−1 for 200 cycles and then
at 300 mA g−1 for 300 additional cycles. It presented extremely long cycle stability even at 2 A g−1,
revealing 650.5 mAh g−1 after 1200 cycles. The good lithium storage capacity can be ascribed to the
entropy stabilization effect, the multi-cation synergistic effect, abundant oxygen vacancies and the
spinel structure. This study provides a new opportunity to fabricate and optimize conversion-type
anodes for LIBs with satisfactory electrochemical performance.

Keywords: dealloying; spinel; transition metal oxide; Li-ion battery; anode

1. Introduction

A great challenge for advanced batteries is the successive exploration of electrode
materials with excellent energy density and stable performance to meet the ever-increasing
demands in the field of smart grids and electric vehicles [1–3]. The ideal electrode should
meet the demands of high Li storage capacity, low lithiation/delithiation potential and high
ionic conductivity [4]. Transition metal oxides (TMOs) have been regarded as potential
anode materials because of their high energy density, suitable potential and abundant
resources since they were proposed in 2000 [5]. The mechanism for Li storage is associated
with a conversion reaction that follows the equation of MOx + 2xLi↔M+ xLi2O, where M
refers to transition metals such as Co, Fe, Ni and Cu [6]. Accompanied by the conversion
reactions that occur, the structure and morphology of active electrode particles completely
change during the regeneration of the initial particles when charging a perfect conversion-
type electrode [4,7,8]. Unfortunately, the voltage hysteresis caused by reaction limitations
usually leads to lower energy efficiency and poor capacity. Moreover, TMOs can catalyze the
decomposition of electrolytes to some extent and thus deteriorate the cycle life of batteries.
The severe volume changes during the charging/discharging process usually induce the
cracking and pulverization of active particles and further damage the performance [9–13].

To solve the problem of pulverization and improve cycling stability, it was reported
that the introduction of additional atoms on the basis of a single transition metal ox-
ide can be an effective approach [14–16]. The lithium storage performance of bimetallic
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oxides such as AFe2O4 (A = Zn, Ni, Co, Cu, Cd) [15] and MCo2O4 (M = Mn, Zn, Fe,
Ni, Co) [14,17,18] and high-entry oxides (HEOs) such as (FeCoNiCrMn)3O4 [19–22] and
(CrMnFeNiCu)3O4 [23,24] were reported, which confirmed that multi-component oxides
can effectively inhibit the phenomenon of pulverization through stepwise lithium storage.
Furthermore, the introduction of rationally designed nanostructures could also provide
an efficient diffusion pathway for Li+, thereby enhancing the reaction kinetics [25–28].
Therefore, it is necessary to make further efforts and adopt reasonable design strategies to
develop TMO anode materials with good cycle stability and high specific capacity that are
suitable for practical applications.

Inspired by the aforementioned progress, we open up a new opportunity for the
fabrication of a multi-component TMO as anode for LIBs. A spinel-structured, AB2O4-type,
multi-component transition metal oxide, (Ni,Co,Mn)Fe2O4, with oxygen vacancies was
obtained by dealloying (Ni0.2Co0.2Mn0.2Fe0.4)5Al95, where Ni, Co and Mn occupy the A
sites and Fe occupies the B sites. The synergism of multiple metal cations resulted in
a stable cycle life, which could be cycled for more than 1200 times at 2 A g−1 with no
dramatic performance fading. Meanwhile, a large number of oxygen vacancies were found
to promote the adsorption toward the Li atom and boost the electrochemical reactivity
according to density functional theory (DFT) calculations. Moreover, combined with SEM
observations, the active material showed a stable structural retention capacity during the
(de)lithiation process because of the entropy stabilization effect. The current study discloses
a route for the fabrication of spinel-structured, multi-component transition metal oxides,
which can have positive effects on the composition design and development of novel anode
materials for LIB applications.

2. Materials and Methods

The materials were prepared using the previously reported melt-spinning and deal-
loying method [29–32]. Firstly, an electric-arc-melted NiCoMnFe2 high-entropy alloy ingot
and an Al ingot were remelted to form a Ni2Co2Mn2Fe4Al90 master alloy ingot. After that,
Ni2Co2Mn2Fe4Al90 ribbons (3 mm wide, 20 µm thick and several centimeters long) were
produced using the melt-spinning technique. Then, 2 g of as-obtained ribbons was etched
in 1 M NaOH solutions (500 mL) at 25 ◦C for 12 h and cleaned thrice with ultrapure water.
Finally, the product was placed in an oven and dried for 12 h at 70 ◦C for follow-up tests.
In the etching process, Al atoms were corroded away from the precursor, while the residual
Ni, Co, Mn and Fe atoms were self-assembled and oxidized to multi-element transition
metal oxide (Ni,Co,Mn)Fe2O4−x nanoplates. A schematic of the material fabrication pro-
cess is displayed in Figure 1. Two contrast materials of pure Fe3O4 and Fe3O4/Mn3O4
composite were also synthesized by etching Fe10Al90 and Fe5Mn5Al90 ribbons, respectively,
through the same process. Material characterization, electrochemical measurements and
DFT calculation processes are introduced in detail in Supporting S1.
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3. Results and Discussion

The SEM images of the three dealloyed products are presented in Figure S1a–c. All
the samples displayed nanoplate morphology. With the increase in the element types of
the precursors, the size of the nanoplates decreased gradually. Figure S1d–g compare the
length and thickness of the nanoplates in the three samples. The length of the nanoplates
was reduced from several microns (dealloyed Fe10Al90) to less than 1 micron (dealloyed
Ni2Co2Mn2Fe4Al90), while the thickness of the nanoplates was reduced from hundreds
of nanometers (dealloyed Fe10Al90) to tens of nanometers (dealloyed Ni2Co2Mn2Fe4Al90).
Figure 2 characterizes dealloyed Ni2Co2Mn2Fe4Al90 in more detail. Figure 2a,b reveal
the special morphology of these nanoplates, showing that some small nanoplates (tens of
nanometers in diameter) grew on the tip of the main nanoplates (~1 µm in diameter). The
corresponding SAED patterns (Figure 2c) consisted of diffraction spots, corresponding to
the (311), (13−1) and (440) planes of spinel structure oxides such as NiFe2O4 with a zone
axis of [−112] [33]. The HRTEM image in Figure 2d shows that the interplanar distance was
around 0.254 nm, relating to the (311) planes of the spinel structure oxide. In addition, there
were a large number of defects formed by the vacancy of oxygen on material surfaces [34].
EPR tests (Figure S2) further uncovered the existence of oxygen vacancies [35], which can
provide abundant active sites for electrochemical reactions in batteries. Figure 2e–j and
Figure S3a show EDS elemental mappings of the as-prepared material, demonstrating a
uniform distribution of O, Ni, Co, Mn and Fe elements. The atomic ratio of O:Fe:Co:Ni:Mn
was approximately 56.18:29.51:4.84:5.01:4.46, as detected using EDS (Figure S3b). All the
above results confirm that the dealloyed product was (Ni,Co,Mn)Fe2O4 with abundant
oxygen vacancies, namely, (Ni,Co,Mn)Fe2O4−x, in this work.
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To study the crystal structure of NiCoMnFe2, the precursors and the corresponding
dealloyed products, XRD tests were performed (Figure 3a and Figure S4). In Figure 3a, the
NiCoMnFe2 alloy exhibits an fcc structure with typical diffraction lattice planes of (111),
(200), (220) and (311) [36]. After alloying with Al, it mainly presented Al phase, Fe phase
and Al-M phases (M = Mn, Ni and Co), which was similar to the solidification phase of
the Fe10Al90 and Fe5Mn5Al90 precursors (Figure S4a–c). After dealloying, however, the
corresponding oxides could be obtained. Fe3O4 and Fe3O4/Mn3O4 could be identified from
the dealloyed Fe10Al90 and Fe5Mn5Al90 products, respectively (Figure S4d,e), while spinel
oxides with (311), (400) and (440) diffraction lattice planes [37] could be found for dealloyed
Ni2Co2Mn2Fe4Al90 (Figure 3a). The diffraction peaks of this spinel oxide were near those of
NiFe2O4, CoFe2O4 and MnFe2O4 and could be attributed to (Ni,Co,Mn)Fe2O4−x according
to the series of the above results. With the enhancement of the components, the peak
intensity declined, and the peak width widened. These diffraction peaks of as-obtained
polyoxides are similar to those of some high-entropy oxides [37–39].
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An XPS test was performed to analyze the element and valence state of dealloyed
Ni2Co2Mn2Fe4Al90. The XPS survey spectrum demonstrated the co-existence of Mn, Fe,
Ni, Co and O elements (Figure 3b), which was in good agreement with the EDS result
(Figure 2e–j). Figure 3c displays that the Fe 2p spectra of the dealloyed product were
composed of two main peaks at 724.5 eV (Fe 2p1/2) and 711.2 eV (Fe 2p3/2) [40]. The Fe
2p1/2 peak was superimposed by two doublets (724.4 eV and 727.1 eV), while Fe 2p3/2
was composed by two doublets at 710.6 eV and 713.4 eV. The green peaks at 710.6 eV and
724.4 eV corresponded to Fe2+; meanwhile, the blue peaks at 713.4 eV and 727.1 eV were
related to Fe3+ [41–43]. The orange peaks represented satellite peaks of the corresponding
main peaks. Similar doublets could also be found in the core-level spectra of Co 2p, Ni 2p
and Mn 2p. Both the bivalent and trivalent (Ni, Co), as well as trivalent and tetravalent
(Mn), states of these elements could be discovered [44–46]. The O 1s core-level spectrum
(Figure 3g) was divided into three peaks [47]. The peak at 531.1 eV could be attributed to
OH−, which probably originated from the residual etchant (NaOH). The peak located at
529.7 eV was due to the OM oxygen (M refers to metals), relating to the O2- in the metal
oxide. The other peak at 533.2 eV related to O in H2O.

Figure 4 presents the N2 adsorption–desorption isotherm and the matching pore-
size distribution of the (Ni,Co,Mn)Fe2O4−x sample. A type III curve with an H3-type
hysteresis loop is revealed in Figure 4a [29], demonstrating the existence of plentiful
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mesopores on the nanoplates (Figure 2e). The specific surface area of the material was
about 112.69 m2 g−1, which was higher than those of spinel CoFe2O4 and NiFe2O4 oxide
nanosheets (40~90 m2 g−1) obtained with traditional dealloying [47,48]. The pore size
mainly ranged from 1.5 to 10 nm (Figure 4b). These micropores and mesopores increased
the contact areas between the electrolyte and the active materials [49].
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distribution (b).

To reveal the electrochemical performance of the three dealloying products
((Ni,Co,Mn)Fe2O4−x, Fe3O4/Mn3O4 and Fe3O4), a series of tests were carried out (Figure 5).
Cyclic voltammetry (CV) curves of the battery assembled with a (Ni,Co,Mn)Fe2O4−x anode
were measured, as shown in Figure 5a, at 0.1 mV/s within 0.01–3.0 V. The CV curves of
the three products (Figure 5a and Figure S5) are similar in shape (with a certain extent of
position offset) but differ in peak intensities. It can be seen that the CV curves of Fe3O4
and Fe3O4/Mn3O4 show relatively sharp redox peaks, while that of (Ni,Co,Mn)Fe2O4−x
presents broad redox peaks, indicating that its reaction was not completed in a short time
and in a rapid way but was carried out slowly in successive substeps. This electrochemical
reaction characteristic displays a vital function in alleviating the huge volume variation
during the cycle and inhibiting the cracking and pulverization of the active materials. In
the initial cycle, two cathodic peaks at 1.2 V and 0.6 V can be found (Figure 5a), which
corresponded to the reduction of metallic oxides to corresponding metal states and the
creation of Li2O [50]. In the following cycles, the reduction peaks shift to 1.5 V and 0.8 V.
This position offset was the result of the formation of an SEI layer and the surface structural
rearrangement of active materials in the lithiation process. The redox peaks nearly remain
changeless after three cycles, reflecting the excellent cycling stability and reversibility of
the (Ni,Co,Mn)Fe2O4−x anode. The Mn3O4/Fe3O4 electrode and the Fe3O4 electrode show
a CV tendency similar to that of the (Ni,Co,Mn)Fe2O4−x anode in the first two cycles but
much sharper recession in the closed area after three cycles (Figure S5), revealing their
bad cycling stability. In the charging process, the Fe3O4 electrode shows clear and sharp
peaks at 1.1 V, 1.5 V and 1.8 V, relating to two-step oxidation from Fe0 to LixFe3O4 and
from LixFe3O4 to Fe3+, respectively (Figure S5a). For the (Ni,Co,Mn)Fe2O4−x electrode,
however, two broad anodic peaks around 1.5 V and 2.1 V can be seen, corresponding to the
intertwined multistep oxidation of multiple metals, Fe, Co, Mn and Ni, to their oxides. The
CV curves of the (Ni,Co,Mn)Fe2O4−x electrode present better repeatability than those of
the Mn3O4/Fe3O4 electrode and the Fe3O4 electrode, implying its good cycling stability
and reversibility.
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Figure 5. Electrochemical performance of the as-prepared (Ni,Co,Mn)Fe2O4−x. (a) Cyclic voltamme-
try tested at 0.01–3 V at a scan rate of 0.1 mV/s. (b,c) Long cycle performance at different current
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plots of fresh cells (inset) and cells after cycling.

Figure S6a shows the representative galvanostatic profiles of the (Ni,Co,Mn)Fe2O4−x
anode at 100 mA g−1 for different cycles. There are two discharge platforms at 1.4–1.7 V and
0.6–0.9 V, respectively, in the discharging process, while two charging platforms, 1.4–1.7 V
and 2.0–2.5 V, can be found in the charging process. The above platform potential ranges
correspond well with the peak voltage in the CV curve. The first charging/discharge
capacity was about 978.5/1223.1 mAh g−1 with a first Coulombic efficiency of 80%. This
serious capacity loss was probably induced by the generation of irreversible SEI films [51,52].
As the number of cycles increases (1–50 cycles), the charge/discharge curve gradually
moves to the left, indicating that the battery capacity gradually decreased. On the other
hand, as the number of cycles further increases, the battery capacity increased slowly. It
can be seen that the reversible capacity at the 200th cycle was even higher than that at the
first cycle. In the following cycles, the battery was tested at 300 mA g−1 (Figure S6b). The
curves at the 201st, 300th, 400th and 500th cycles are close to each other, revealing that the
(Ni,Co,Mn)Fe2O4−x electrode possessed good electrochemical stability in later cycling.

Figure 5b shows the cycling performance of the three materials at 100 mA g−1 for
200 cycles and then at 300 mA g−1 for 300 cycles. During the first 66 cycles, the reversible
capacity of (Ni,Co,Mn)Fe2O4−x slowly reduced to about 630 mAh g−1 and then gradu-
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ally increased to 1369.9 mAh g−1 (at the 200th cycle). This phenomenon is known as the
U-shape increase [53,54], which is usually found in transition metal oxide materials. The
decrease in the initial tens of cycles was due to the consumption of SEI film, the rearrange-
ment of the atomic structure on the material surface and electrode activation, while the
increase in the later period may have been related to the consumption of electrolyte. At
the same time, the Fe3O4/Mn3O4 and Fe3O4 electrodes presented higher first discharge
capacity than (Ni,Co,Mn)Fe2O4−x, while their capacities dropped dramatically. The re-
versible capacities reached their lowest points after cycling for about 35 cycles. Although
the capacities of both cells (Fe3O4/Mn3O4 and Fe3O4) gradually increased during sub-
sequent cycles, the increase rate was relatively slower than that of (Ni,Co,Mn)Fe2O4−x.
At the 200th cycle, the reversible capacities reached 1275.8 (Fe3O4/Mn3O4) and 1051.3
(Fe3O4), which were lower than the 1389.9 of (Ni,Co,Mn)Fe2O4−x. During the following
300 cycles at 300 mA g−1, the (Ni,Co,Mn)Fe2O4−x electrode showed good cycling stability.
It maintained a discharge capacity of 1240.2 mAh g−1 after the latest 300 cycles, while
those of the other anodes dropped dramatically, delivering the reversible capacities of 500.7
(Fe3O4/Mn3O4) and 321.6 (Fe3O4) mAh g−1, respectively. The above results demonstrate
that the (Ni,Co,Mn)Fe2O4−x electrode presented the best electrochemical property among
the three anodes in long cycling.

Figure 5c shows the cyclic performance of the three electrodes cycling at a high current
density of 2 A g−1 for 1200 cycles. During cycling, the capacities of Fe3O4/Mn3O4 and
Fe3O4 electrodes decreased sharply and resulted to be around 230 mAh g−1 after 1200 cycles,
while the U-shape increase could also be found for the (Ni,Co,Mn)Fe2O4−x electrode. It
delivered 650.5 mAh g−1 after 1200 cycles. Figure 5d shows the rate performance of the
three electrodes at increased current densities from 50 to 1500 mA g−1. Although the
(Ni,Co,Mn)Fe2O4−x electrode displayed relatively low reversible capacity when cycling at
50 mA g−1 (low current density), among the three electrodes, it presented the best reversible
capacity when cycling at higher current densities (500~1500 mA g−1). It delivered discharge
capacities of 1003, 891, 747, 661 and 508 mAh g−1 at 50, 100, 500, 1000 and 1500 mA g−1,
respectively. The reversible capacity of the (Ni,Co,Mn)Fe2O4−x electrode could be recovered
as 809 mAh g−1 when cycling at 100 mA g−1 again, indicating acceptable reversibility.
The voltage profiles of the three electrodes at the current density of 1500 mA g−1 are
presented in Figure S6c, uncovering an obvious advantage in the charge/discharge capacity
of (Ni,Co,Mn)Fe2O4−x compared with those of Fe3O4/Mn3O4 and Fe3O4. Figure 5e shows
the EIS diagram of the three electrodes before and after cycling. The EIS curves show
semicircles in the high-frequency area and oblique lines in the low-frequency region,
relating to charge transfer resistance and ion diffusion resistance, respectively. Though the
EIS diagram of the three fresh electrodes shows similar curve shapes and overlap among
them to a certain extent, the (Ni,Co,Mn)Fe2O4−x electrode showed the lowest resistance
after cycling for 500 cycles, which can explain the good cycle stability of the battery in the
long cycling process. Table S2 presents the Li-ion diffusion coefficients calculated using EIS;
it can be seen that (NiCoMn)Fe2O4−x showed a higher diffusion coefficient after cycling
than the fresh one, revealing good reaction kinetics of (NiCoMn)Fe2O4−x. On the other
hand, the diffusion coefficients of the contrast materials were decreased, demonstrating
their poor reaction kinetics.

In order to reveal the structural stability of the electrode materials during the cycling
process, the SEM images of the (Ni,Co,Mn)Fe2O4−x, Fe3O4/Mn3O4 and pure Fe3O4 elec-
trodes before and after cycling were characterized (Figure 6a–f). Figure 6a and b show that
(Ni,Co,Mn)Fe2O4−x retained its initial nanoplate shape without any crack or pulveriza-
tion phenomenon, though it expanded its size slightly (from 0.5~1 µm to 2~3 µm) after
cycling. Different from the phenomenon of (Ni,Co,Mn)Fe2O4−x, the contrast Fe3O4/Mn3O4
(Figure 6c,d) and pure Fe3O4 (Figure 6e,f) electrodes expanded and cracked significantly af-
ter cycling from 1~2 µm to 20~30 µm and from 3~4 µm to 50~80 µm, respectively. Figure 6g
uncovers a schematic diagram of the structural changes in the three electrodes before and
after cycling. It can be found that mono-metal oxide Fe3O4 develops drastic expansion
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and severe cracking after cycling. The expansion and cracking degree of Fe3O4/Mn3O4 are
alleviated with the increase in oxide components. However, the expansion and cracking
of (Ni,Co,Mn)Fe2O4−x are significantly inhibited when more elements are added. This
phenomenon is related to the composition of the material, but also to the initial size of the
material. Moreover, slight expansion and no crack correspond to relatively good cyclic
stability, while severe expansion and cracking of the active material lead to the drastic
deterioration of the electrochemical properties. The changes in these electrode materials
are consistent with the current electrochemical properties.
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The effects of oxygen vacancies on the Li-ion adsorption ability and electronic struc-
ture of (Ni,Co,Mn)Fe2O4−x were analyzed using DFT calculations. The atomic struc-
tural models of (Ni,Co,Mn)Fe2O4 and (Ni,Co,Mn)Fe2O4−x were constructed and are
displayed in Figure 7a,b, respectively. The adsorption energy of oxygen vacancy-rich
(Ni,Co,Mn)Fe2O4−x was −2.09 eV, which was lower than that of pristine (Ni,Co,Mn)Fe2O4
(−1.89 eV; Figure 7c), supporting that the introduction of oxygen vacancies can pro-
mote the adsorption and diffusion toward lithium as well as provide more active sites
at the same time. Figure 7d and e show the projected density of state (PDOS) of pris-
tine (Ni,Co,Mn)Fe2O4 and oxygen vacancy-rich (Ni,Co,Mn)Fe2O4−x. Neither of them
have a bandgap, suggesting their band-conducting feature. Meanwhile, in the PDOSs of
(Ni,Co,Mn)Fe2O4 and (Ni,Co,Mn)Fe2O4−x, the energy 0 point was chosen as the Fermi
energy level. Around the Fermi levels, the PDOS of (Ni,Co,Mn)Fe2O4−x appears more
dense than that of (Ni,Co,Mn)Fe2O4, which confirms that oxygen vacancies can modulate
the electronic structure and may further promote Li+ storage [34]. According to the above
analysis, it was revealed that the oxygen defects on the (NiCoMn)Fe2O4 surface can pro-
vide outstanding Li capture capacity, leading to excellent electrochemical properties and
lifetime.
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Table S1 shows a comparison of the electrochemical properties of as-obtained
(Ni,Co,Mn)Fe2O4−x and previously reported materials. It can be found from the table
that the lithium storage performance of the (Ni,Co,Mn)Fe2O4−x material is higher than
that of many reported spinel-structured oxides and multi-component metal oxides. It
seems that high-entropy oxides with five cations present lower electrochemical proper-
ties than (Ni,Co,Mn)Fe2O4−x. In fact, regardless of high-entropy oxides with five cations
or the material designed in this paper, electrochemical properties are determined by the
composition and crystal structure of materials, as well as the size, specific surface area,
three-dimensional structure and other factors. To develop high-performance anode ma-
terials, the above aspects need to be carefully designed and balanced. Good Li storage
properties could be ascribed to three aspects. Firstly, the lithiation/delithiation process of
multi-component transition metal oxides is carried out stepwise (wide CV peak), which is
related to the entropy stabilization effect and the multi-cation synergistic effect [19–22,38].
This greatly inhibits the expansion and cracking of active materials (Figure 6) caused by
short time and drastic volume changes in monometallic oxides and improves the elec-
trochemical stability of materials in long cycling. Secondly, a large number of oxygen
vacancies provide abundant active sites, improve the adsorption capacity of oxides towards
lithium, improve the electronic structure of the material and thus enhance the cyclic sta-
bility and rate performance of the material. Thirdly, spinel oxides possess the advantages
of narrow band gap and higher electroconductibility than traditional oxides, which are
beneficial to improving the rate performance of materials. This paper provides a strategy
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for the preparation of spinel-structured, multi-component transition metal oxides with
abundant oxygen vacancies, which can have positive effects on the composition design and
development of related materials and the improvement of the properties of novel anode
materials for LIB applications.

4. Conclusions

In summary, a spinel-type, multi-component transition metal oxide, (Ni,Co,Mn)Fe2O4−x,
with oxygen vacancies was designed and prepared using a melt-spinning and dealloying
strategy. When utilized as anode material for LIBs, the (Ni,Co,Mn)Fe2O4−x material pre-
sented good electrochemical properties, delivering a reversible capacity of 1240.2 mAh
g−1 at 100 mA g−1 for 200 cycles and then at 300 mA g−1 for 300 cycles. It also presented
extremely long cycle stability, revealing a reversible capacity of 650.5 mAh g−1 at 2 A
g−1 for 1200 cycles. Our DFT calculations revealed the pivotal role of oxygen defects in
the ion transport process and in adjusting the electronic structure, leading to improved
Li capture ability. Moreover, the electrode material uncovered a spectacular structural
reservation capacity after cycling because of the entropy stabilization effect and the multi-
cation synergistic effect, which is a vital stimulus for satisfactory cycle stability. This work
presents positive results for the composition design and development of novel, spinel-
structured, multi-component transition metal oxides with abundant oxygen vacancies. The
as-fabricated materials are aimed to be applied as alternative LIB anode materials.
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