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Abstract: With the growing requirements of retired electric vehicles (EVs), the recycling of EV
batteries is being paid more and more attention to regarding its disassembly and echelon utilization
to reach highly efficient resource utilization and environmental protection. In order to make full
use of the retired EV batteries, we here discuss various possible application methods of echelon
utilization, including hierarchical analysis methods based on various battery evaluation index. In
addition, retired EV battery disassembly is also reviewed through the entire EV battery recycling
based on human–robot collaboration methods. In order to improve the efficiency and reduce the cost
of EV recycling, it is necessary to find a suitable recycling mode and disassembly process. This paper
discusses the future possibility of echelon utilization and disassembly in retired EV battery recycling
from disassembly optimization and human–robot collaboration, facing uncertain disassembly and
echelon utilization.

Keywords: electric vehicle battery; disassembly; echelon utilization; disassembly optimization;
human–robot collaboration disassembly

1. Introduction

With the increasingly prominent contradiction between human development and
resource utilization, electric energy, as a kind of clean energy, has attracted more and more
attention regarding environment protection and green manufacturing development. In
recent years, electric vehicle (EV) batteries have received strong support from various coun-
tries all over the world, causing the sale volumes of EV batteries to keep increasing under
various national policies [1,2]. The phenomenon can be observed obviously with global
electric vehicle sales reaching 16.5 million in 2021, reaching nearly 10% of the automotive
market [3]. According to the Swedish industry consulting company, the global LIB market
demand will reach CNY 99.98 billion by 2025, with shipments reaching 439.32 GWh and
EV batteries reaching 253 million by 2030 [4]. In China, the number of EV batteries in the
energy market is predicted to have a dramatically increasing trend from 2013 to 2030 [5].
Moreover, it can be predicted that the rapidly growing trend will be continue to increase in
the future and will reach 145 million by 2030 [6]. By comparing various power batteries
(e.g., Pb-Acid, Ni-MH, Ni-Cd, Li-ion battery, graphene-based battery, all-solid-state battery,
etc.) [7–10], various performances can be described as shown in Table 1. Due to the excellent
performance in the actual application, such as energy efficiency and cycle times, Li-ion
batteries have become the mainstream of EV batteries [11]. Although next-generation
batteries have shown remarkable properties in individual ways, their high cost and toxicity,
as well as the low availability of materials, limit their large-scale use before they are widely
used in cars or transportation devices [12,13].

However, the Li-ion battery for electric vehicles or devices will be recycled when the
remaining capacity is reduced to 70–80% of the origin capacity [14], and the service life
of EV batteries is about 6–8 years [15]. Considering the growing application trend of EVs,
retired EV batteries will gradually appear on a large scale in the future, and it will reach
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117 GWh and 280 GWh in 2025 and 2030, respectively [16]. Although retired batteries have
a limited service life in actual applications, they still have enough residual energy and
reuse possibility to support their continued works in other scenarios (e.g., energy storage,
low-power EVs, etc.) [17] and can be used to recycle a large number of precious metal
elements [18,19]. Therefore, the research on the recovery and reuse of retired EVBs not only
provides a possibility of environment protection and resource savings [20], but also enables
the cost reduction of the battery to create more value products [21]. The echelon utilization
of EV batteries and the recycling of resources can be regarded as a potential application to
enhance the economic and environmental benefits of retired EV batteries and to achieve
sustainable energy development [22]. There are two major application scenarios for echelon
utilization: static energy storage stations and dynamic mobile charging applications. A
typical static scenario is an energy storage station to provide the energy storage for the
power generation, such as charging stations, communication base stations, etc. Dynamic
recycling utilization can be usually implemented in mobile charging cars, low-speed EVs,
and other applications with lower performance requirements [23].

Table 1. Comparison of the performances of various power batteries [10].

Battery
Characteristics Lead Acid NiCd NiMH Li-Ion All-Solid-State

Battery
Graphene-Based

Battery

Normal
voltage (V) 2.0 1.2 1.2 3.6 / /

Specific energy
(Wh/kg) 30–50 45–80 60–120 100 200–500 600

Specific power
(W/kg) 130 200 250 330 / >600

Energy
efficiency (%) 65 80 85 95 / /

Cycle life
(times) 200–300 500–1000 300–500 1000 2000~3000 >1000

In addition, the fundamental structure of the EV battery can a battery pack consist-
ing of several battery modules, and a battery module consists of a number of battery
cells [24]. Currently, there are two main technical methods for echelon utilization: cell level
and module level. Different retired batteries have different standards in regard to their
production and manufacturing process, and they work in different work environments
and usage habits, which will cause the retired batteries to be inconsistent in regard to
various design parameters and their performance index [25]. The inconsistency of the
battery makes it impossible to make a broad judgment on all batteries. Different batteries
have different performance parameters, and this affects their echelon utilization scenarios.
Different sizes of retired EV batteries cannot use fixed disassembly actions. Therefore, it
is necessary to explore the internal characteristics of retired EV batteries, including their
capacity, state of charge (SOC), internal resistance, and self-discharge, within the same
batch of battery cells [26]. The echelon utilization needs to consider the inconsistencies of
the battery efficiently at various application scenarios [27].

A retired EV battery consists of a battery module, frame structure, high-voltage wiring
harness, battery management system (BMS), cooling system, and other modules. Its
complex structure makes it impossible for direct use in echelons or recycling. Therefore,
it is necessary to utilize many disassembly tools to accomplish the entire disassembly
battery pack into the battery module or battery cells for a specific scenario. Thus, retired
EV battery disassembly plays a pivotal role in the echelon utilization and recycling of
EV batteries [28]. EV battery disassembly into modules or cells also corresponds to two
types of echelon utilization: module-level utilization and cell-level utilization. Due to the
uncertainty of the EV battery modules, it is still dominated by battery cell-level disassembly.
Battery disassembly is a technical and dangerous task for workers. For some retired EV
batteries with unknown performance properties, wrong operation can lead to electrolyte
leakage, corrosion, insulation damage, overheating, and even explosion [29]. Therefore,
it is necessary to envisage the use of robots to automatically disassemble the battery
according to the different physical structures, battery types, and parameter performances



Batteries 2023, 9, 57 3 of 25

of the battery to solve the safety problem of battery disassembly and improve its efficiency.
Nowadays, the mainstream battery disassembly still uses a semi-automatic disassembly
method: the robot implements some simple and repetitive disassembly actions facing with
uncertain product quality and category, such as screw tightening [30]. Thus, it is necessary
to complete the automatic disassembly based on the uncertainty of the battery as an open
issue, and we discuss its related research.

2. Current Challenges of Battery Echelon Utilization and Disassembly

Battery manufacturing and production can be used to design its structures and pa-
rameters based on various application methods. The battery packs on the current battery
market have different structures and assembly methods of the battery modules from the
battery packs, including battery types and battery chemical properties [31]. The diversity of
EV batteries makes it a major challenge to disassemble them into battery modules or cells.
As shown in Table 2, different modules have stipulated different physical dimensions and
structures, which require us to find out different disassembly strategies. However, different
structure dimensions and sizes might cause huge challenges to the entire automation of the
disassembly process.

Table 2. GB/T 34013–2017 electric vehicle various battery module dimensions.

Various Battery
Module Types Length (mm) Width (mm) Height (mm)

#1 211–15 141 211/235
#2 252–590 151 108/119/130/141
#3 157 159 269
#4 285–793 178 130/163/177/200/216/240/255/265
#5 270–793 190 47/90/110/140/197/225/250
#6 191–590 220 108/294
#7 547 226 144
#8 269–319 234 85/297
#9 280 325 207

#10 18–27, 330–672 367 114/275/429
#11 242–246 402 167
#12 162–861 439 363

The disassembly of EV batteries mostly depends on manual-involved disassembly by
technical workers, owing to the complexity of uncertain disassembly objects. Considering
the voltage and weight of EV batteries in the disassembly operations, the disassembly
workers should have high technical requirements to accomplish the professional operations
with special disassembly tools. As known, there are many huge challenges faced by the
industrial disassembly production line, considering that there are few skilled workers. For
example, there are only 1000 technicians trained to disassemble electric vehicles in the
UK, with another 1000 being trained. Untrained technicians repairing electric cars can
have many missing operations, causing some risks to recycling EV batteries. Similarly,
in many countries with high labor costs, manual disassembly is uneconomic for material
extraction and manual-operation recycling [32]. Germany has increased investment in the
construction of electric vehicle manufacturing plants in China with the rapidly increasing
volume of EV batteries, making the efficiency of manual disassembly difficult to realize
such a large workload of massive disassembly tasks. However, it is necessary to balance
the economics of the disassembly process and the safety of disassembly operations in the
actual disassembly applications. In order to improve the automation level of disassembly
remanufacturing, it is possible to combine the robot and human operation to accomplish
the higher-efficiency disassembly tasks, thus ensuring a less time-consuming recycling
process. However, there are many challenges to battery pack and module disassembly:
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• Different modules have different physical structures and performance parameters,
which require us to consider different disassembly processes and strategies with
disassembly uncertainty.

• With the volume of retired EV batteries under a huge requirement context, the number
of recyclable EV batteries is also increasing, which greatly increases the workload of EV
battery disassembly. Therefore, it is necessary to improve the efficiency of disassembly
in the EV battery recycling.

• The safety of disassembling operations for EV batteries makes it difficult to reasonably
plan the disassembly process and strategy and optimize appropriate disassembly
planning tasks for the retired EV batteries.

The echelon utilization of EV batteries includes the reuse of battery modules and
battery cells, which can be used in various application scenarios. Usually, the disassembled
battery can be analyzed to accomplish the different hierarchical applications of echelon
utilization by considering the remaining performance of EV battery modules or cells [33].
After the EV battery meets the retired requirements, due to the fact that the battery cell
itself has initial inconsistency in the manufacturing process [25], it is necessary to consider
the different working environment to accomplish the consistency of the new reorganizing
battery products. The characteristics of the retired battery need to be analyzed for further
classifications and reorganizations, including battery capacity, internal resistance, self-
discharge rate, remaining useful life (RUL), lithium plating, solid electrolyte interphase
(SEI) film thickening, electrolyte reduction, etc. However, we need to determine the health
status of the retired EV battery to enable the accurate and efficient echelon utilization by
considering the internal characteristics and preformation of disassembled pack modules
or cells. For the echelon utilization of the retired battery, due to the dangerous possibility
of the lithium-ion battery itself and the deterioration rate of the battery, the safety and
residual value of the battery need to be tested urgently before echelon utilization [34]. The
historical data of batteries are usually missing or fragmented, thus making it difficult to
accurately evaluate the health and residual value of retired batteries. The historical data
storage method of the battery needs to be improved and adjusted so that the subsequent
battery echelon utilization can be carried out correctly and efficiently [35,36].

The echelon utilization of battery recycling is accompanied by disassembly, classifica-
tion, and reorganization, which require a lot of labor costs and material resources that affect
their economic and environmental benefits with respect to the specific industrial recycling
requirements. Considering various types of battery cells with their anode materials and
chemical properties, different strategy methods for echelon utilization will affect the overall
efficiency of battery recycling. In addition, the echelon utilization of retired EV batteries
has huge challenges relating to the recycling methods and specific technology:

• Owing to the uncertainty of the application environment and scenario modes, the spe-
cific parameters of the retired EV battery cannot be accurately evaluated to determine
the specific echelon hierarchy.

• The retired EV batteries will decay and age at a faster rate for echelon use, making
it difficult to guarantee the continuity of battery echelon utilization. The retired EV
batteries need to be evaluated by their parameters and performance before the specific
echelon applications with safety analysis during the entire recycling process.

• It is also necessary to balance all recycling stages to support the optimal applica-
tion scenarios based on the analysis of disassembly, classification, and even energy
consumption.

3. Related Policies and Technical Standards for Echelon Utilization

Echelon utilization enterprises should meet the requirements of the industrial spec-
ification in comprehensive echelon utilization for EV batteries. In order to support the
intelligent remanufacturing of EV battery recycling, we should consider giving priority to
the echelon utilization of EV batteries at the pack level or module levels. The disassembly
of battery packs or modules is in line with the relevant requirements of the specification for
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EV battery recycling, echelon utilization, and disassembly (GB/T33598). Echelon utilization
enterprises are encouraged to extend possible echelon products that are suitable for signal
base stations, energy storage, charging and replacement, and other fields. New energy EV
battery manufacturers and other enterprises are encouraged to negotiate and share the fac-
tory’s technical specifications information, charging rate information, and monitoring data
information (voltage, temperature, SOC, etc.) for echelon utilization battery enterprises.
Echelon utilization enterprises carry out battery performance tests in accordance with
relevant standards such as the Vehicle Power Battery Recycling and Utilization Residual
Energy Detection (GB/T34015) and evaluate the residual value of retired EV batteries by
combining actual test data to improve the efficiency of echelon utilization that provides
enough service performance, reliability, and economy of echelon products. Electrical in-
sulation, thermal management, battery management, and other factors should also be
considered in the design of echelon products to ensure the reliability in the EV recycling
products. The echelon products shall be verified by performance tests and their electrical
performance, it is easy to meet its safety and reliability through the relevant standards and
requirements of the application field, as shown in Tables 3 and 4. The echelon products shall
be marked with commercial information code according to the Code Rules for Automobile
Power Batteries (GB/T34014). Its related information, such as normal capacity, normal
voltage, name, address, production place, and traceability code of the echelon products,
shall be marked on the echelon product label, and the original EV battery code shall be
compared as well.

Table 3. International standards for related echelon utilization and disassembly recycling.

Relevant Standard Corresponding Resources Issuing Country or Organization

Safety operation requirements and tests of
secondary lithium batteries JIS C 8715-2:2019 Japan

Safety requirements of secondary lithium battery
for light electric vehicle EN 50604.1.2016 Europe

Security Testing in Special Scenarios ISO 12405.1 International Organization for
Standardization

Square cell circular battery in secondary battery IEC 61960 IEC
Reliability and abuse testing IEC 62660.2 IEC
Recycling and disassembly VDI 2343 Sheet 3 Germany

Table 4. Related standards for echelon utilization in EV batteries (in China).

Relevant Standard Corresponding Resources

Retired battery appearance requirements GB/T 34015.3-2021 Part 5.1
Echelon Utilization Application Scenario for Vehicle Battery GB/T 34015.3-2021 Part 5.2.1

Echelon Utilization Application Scenario for Energy storage batteries and other applications GB/T 34015.3-2021 Part 5.2.2
Not suitable for echelon utilization GB/T 34015.3-2021 Part 5.2.3

Cycle life requirements GB/T 34015.3-2021 Part 5.3
Safety demand GB/T 34015.3-2021 Part 5.4

Product requirements for echelon utilization GB/T 34015.3-2021 Part 6
Residual energy detection requirements GB/T 34015-2017 Part 5

Detection process specification GB/T 34015-2017 Part 6
Specific detection methods GB/T 34015-2017 Part 7

Related terms and detection parameters GB/T 31486-2015
Battery disassembly industry requirements GB/T 33598-2017 Part 4

Disassembly process GB/T 33598-2017 Part 5
Disassembly separation removal process GB/T 34015.2-2020

Recycling packaging transportation specification GB/T 8698. 1-2020
Battery information collection GB/T 34014-2017

Specification size of battery products GB/T 34013-2017
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Echelon utilization can prolong the service life of the retired EV batteries, as this can
make the retired EVBs create more economic profits to reduce the initial product cost and
ensure the sustainable recycling market. Lih et al. [37] discussed the potential echelon
utilization value of EVBs that can be used to explore the relationship between battery life
and recycling benefits. Mahyar et al. [38] studied the economic evaluation of lithium-ion
battery pack recycling in residential, industrial, and photovoltaic power application aspects
from users and the government that further explained the economic benefits of echelon
utilization in the field of energy storage. Martinez-Laserna et al. [33] presented a com-
prehensive review of the literature that analyzed the concept of the second-life battery
from the perspective of economic, technical, and environmental feasibility. As shown in
Table 5, the application scenarios of echelon utilization include static and dynamic recy-
cling scenarios, which find out the optimal recycling method based on the optimization
algorithms for the specific retired EV battery. The reuse of the retired EV battery in spe-
cific scenarios can effectively reduce the possible degradation and iteration speed of EV
retired batteries. Most static application scenarios are mainly applied on some energy
storage systems that can be used in communication base stations, building energy storage,
and microgrids [39]. Guo et al. [40] proposed the utilization of thermal energy storage
system for a second-life battery to find out the optimal planning model that can be used
to demonstrate the economic effectiveness and service-life improvement of the retired
EV batteries. Chiang et al. [41] developed a converterless energy management system
to control energy flow that can assess various EV batteries by analyzing the monitoring
voltage of the battery pack. Hussam et al. [42] designed a microgrid of batteries to provide
energy storage support by a fuel cell-battery that presented battery-life balancing solutions
by new framework of balancing the battery utilization. In the practical use of the battery,
the cost and the reliability of the battery’s secondary use will have a feasibility impact [43].
The uncertainty of the battery performance is mainly manifested by the increasing possi-
bility of unbalanced capacity of the battery pack after the retired battery modules or cells
are assembled together, which will result in increasing the risk of over voltage and/or
over current within a battery pack to make it difficult to support well-integrated battery
management [39]. The economic-benefit analysis of battery echelon utilization usually
needs to establish a cost–benefit model considering multiple factors according to the related
application scenarios and analyze the economic benefit under the related policies [44]. The
dynamic application scenarios of retired batteries are mainly applied on some low-speed
vehicles, such as electric bicycles, low-speed scooters, logistics vehicles, and urban sanita-
tion vehicles [45]. The echelon utilization of batteries in EV battery resource recycling is
collectively regarded as an economic recycling utilization method, which can generate both
economic and environmental benefits to achieve sustainable development [46].

Table 5. The application scenario of echelon utilization.

Echelon Utilization Possible Potential Commercial Opportunity Ref.

Static application scenarios

Park-level integrated energy stations M. Guo et al. [40]
Converterless energy management system Y. H. Chiang et al. [41]

Microgrid battery group Y. Gao et al. [47]
Solar energy storage system Y. Al-Wreikat et al. [48]

Dynamic application scenarios
Electric bicycles J. Zhu et al. [45]

Low-speed scooters H. Ambrose et al. [49]
Urban sanitation vehicles X. Lai et al. [14]

However, it is necessary to disassemble and reassemble the battery before echelon
utilization of retired EV batteries, and this is usually called the remanufacturing process.
Remanufacturing is defined as the process of rebuilding parts and components from used
products [50]. The remanufacturing process permits the product to be even the same as
the original product in terms of quality, performance endurance, and warranty, and it can
greatly reduce energy consumption and production cost when compared with general
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manufacturing [51]. Both the remanufacturing and recycling of EV batteries always mainly
focus on the disassembly process that is generally considered to optimize the disassembly
task for retired EV batteries. However, the recycling process of retired EV batteries is a
technological combination of physical separations and chemical extraction. The first step is
the physical separation that disassembles the battery packs into battery modules or cells to
facilitate the subsequent chemical recycling stage. The first step in the recycling process
of retired EV batteries needs to pre-evaluate the aging degree of the batteries and analyze
the recycling method before disassembly. Then it is necessary to discharge the retired EV
batteries that can ensure the following safe disassembly operations. Physical separation
can better acquire the refined cells to ensure a better chemical reaction and recycling rate.
The chemical extraction aims to acquire the precious metal resources such as Li, Co, and Ni
from the retired EV batteries, which can regenerate lithium iron raw materials.

The disassembly process has huge effects on the whole process of the echelon utiliza-
tion and recycling process, which is an indispensable step in the remanufacturing process
to acquire the valuable components or even find materials. It is necessary to re-evaluate the
disassembly tasks according to the conditions and quality of EV batteries to accomplish
the disassembly operations of checking, testing, and sorting [52]. The characteristics of
retired the EV battery need to evaluate its state of health (SOH), state of charge (SOC),
and remaining useful life (RUL) by considering its complexity and diversity of multilevel
structure [53]. The evaluation of EV battery recycling is important to determine the final
disassembly feasibility that needs to balance the possibility of disassembly operations
and the disassembly cost [54]. In order to achieve a better disassembly task in EV battery
recycling, some reasonable detection methods have emerged to quickly and accurately
check, test, and sort them, as shown in Table 6. A widely used recycling technology method
for industrial checking and recognition needs to acquire the labeling information for the EV
battery [55], which can effectively track the battery to obtain the specific battery information
by open data-sharing support [56].

Table 6. Related research points for echelon utilization for EV battery.

Echelon
Utilization Ref. Side

Reaction
High

Efficiency
Safety
Index

Performance
Index

Aging and
SOH

Estimation and
evaluation

Harlow et al. [57]
√

Santhanago et al. [58]
√

Santos-Mendoza et al. [59]
√

Sorting and
regrouping

Sheikh-Zadeh et al. [60]
√

Xin et al. [61]
√ √ √

Guo et al. [62]
√ √

The prediction of the state of charge (SOC) data can be analyzed by a variety of
time-dependent factors, such as external temperature, charge and discharge rates, and
battery pack aging. Currently, the SOC detection methods mainly include the open-circuit
voltage method, Kalman filter algorithm [63,64], and neural network method [65,66].
Kawahara et al. [67] combined SOC based on open-circuit voltage with SOC to obtain
accurate charge states that can adjust battery characteristic parameters by simple analysis.
Wu et al. [68] used electrochemical impedance spectroscopy (EIS) to detect the SOC of
lead–acid batteries under different conditions. In order to solve the problems of low SOC
prediction and charge-state estimation, Zhang et al. [69] proposed an intelligent algorithm
model to predict the low SOC that combined the genetic algorithm (GA) and echo state
network (ESN) to reduce the error within 4%. It is necessary to have a pre-inspection on
the retired EV batteries to evaluate their aging degree, which can be used to determine the
optimal recycling process for retired EV batteries [70].
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The state of health (SOH) is commonly used as an estimation index to evaluate the
battery-aging degree, as shown in Figure 1, which is easily affected by characteristic param-
eters of the battery, including operation temperature, depth of discharge (DOD), discharge
current [71], state of charge (SOC), and cycling depth, as well as charge throughput [72].

Figure 1. Statistics of related papers on the estimation of the SOH of EV battery.

The battery can be used for a certain period that its internal characteristics mainly
manifest as capacity attenuation [73]. The battery capacity can present the current maxi-
mum capacity of the battery, which is different from the initial capacity, in order to analyze
the its performance; namely Incremental Capacity Analysis (ICA) [74–76], Electrochemical
Impedance Spectroscopy (EIS) [77–79], X-ray computed tomography (CT) [80], and other
technologies based on the physical and chemical properties of the battery can be used to
obtain the parameters required by evaluating the battery-aging degree. EIS has been widely
used in battery-aging analysis in recent years due to its high accuracy and non-invasiveness.
EIS uses a low-amplitude sinusoidal current or voltage signals to excite the EV battery
within a certain range to obtain a change in impedance [81]. The surface layer model
(divided into high-frequency, medium-frequency, and low-frequency regions) is commonly
used to represent the extraction and insertion process of lithium ions in the chimeric elec-
trode. The measured EIS spectrum is divided into high-frequency, medium–high-frequency,
medium-frequency, and low-frequency regions. The electronic conductivity of the active
material affects the medium–high frequency region, corresponding to the surface-film resis-
tance [82]. The main step of the charge–discharge process is the extraction and insertion
of lithium ions in the positive- and negative-electrode materials. Diffusion coefficients
of positive and negative electrodes have an intuitive representation. The ion diffusion
coefficient affects the low-frequency region, corresponding to the charge transfer resistance
at the electrode/electrolyte interface. In addition, quantitative or semi-quantitative analysis
of electrochemical impedance spectroscopy data allows for the extraction of kinetic infor-
mation of the electrode processes in batteries. Surface film resistance and charge transfer
resistance are the key factors affecting the battery charge and discharge performance, and
they can also be used to determine the degree of battery aging [83].

Waldmann et al. [84] discussed the application methods above and reviewed the disas-
sembly optimization methods for retired EV battery cells. By considering the characteristics
of SOH as an indicator, we can divide the echelon utilization of retired EV batteries into



Batteries 2023, 9, 57 9 of 25

four application stages. The first stage is that the capacity of battery SOH is in the range of
100%~80%, which can fully meet the traction application for EVs [85]. When the SOH of the
battery drops below 80%, it should no longer be used for EVs, for safety reasons, that are
mainly used in the field of energy storage, such as the standby power supply of communica-
tion base stations [86] and photovoltaic power storage equipment [47]. If the SOH is below
50% and above 40%, it applies to the third stages that are mainly used for other low-end
users, such as electric motorcycles. However, it is important to accurately estimate the SOH
of the battery that is a prerequisite to estimate whether the battery is suitable for echelon
utilization or regenerative material recycling. As is known, it is necessary to discharge the
fully charged lithium-ion battery and measure the total amount of discharged electricity to
obtain the SOH. However, this original method is time-consuming and energy-consuming,
which is unreasonable in practical application. Therefore, it is necessary to comprehensively
analyze the internal and external characteristic parameters of the lithium-ion battery and
establish the health-state estimation model of the lithium-ion battery.

The methods of SOH estimation and RUL prediction can be divided into a model-
based method and data-driven method, as shown in Table 7. The aging estimation method
is to establish the corresponding evaluation and prediction model by revealing the physical
and chemical mechanism of battery aging, mainly including the electrochemical method
and equivalent circuit method. The electrochemical method is based on the internal
and external characteristics of the battery to analyze the actual aging mechanism of the
battery by simulating the aging process of the battery, which can be used to establish a
mathematical model. Andrew et al. [87] presented the systems of microscopically reversible
reactions, including both heterogeneous thermal reactions and electrochemical charge-
transfer reactions. Meyer et al. [88] proposed the transfer processes and charge-transfer
reactions in a five layered single cell consisting of current collectors, electrode layers,
and separator by Comsol Multiphysics simulation. Liu et al. [89] presented an adaptive
nonlinear observer design that compensates nonlinearity to achieve better estimation
accuracy. Although the electrochemical model has complete theory and high accuracy,
there are complex mathematical equations, which make it difficult to solve the external
environmental factors. An equivalent circuit model [90] is constructed by using circuit
elements to simulate the dynamic characteristics of the battery based on the working
principle of the battery that its accuracy is slightly lower than that of the electrochemical
model with the simple structure and data analysis. Although the model-based method
can provide high prediction accuracy, it often needs a high understanding of the battery
aging mechanism [59]. The data-driven method does not require researchers to have a lot
of relevant professional knowledge, but it trains an approximator through a large number
of data sets to map the relationship between input and output, including the random
filter algorithm, time series analysis approach, regression analysis methods, and machine
learning [91]. The random filtering method is usually used to predict the current battery
condition combined with the empirical model of battery degradation. Therefore, it is
popular to predict their related performance by model-driven methods in many works of
the literature, including the particle filter (PF), unscented particle filter (UPF), extended
Kalman filter (EKF), and unscented Kalman filter (UKF).

However, the implementation of this method can be summarized by analyzing the
degradation characteristics, extracting the degradation silver, and predicting the remaining
life. The empirical model can be used to describe the battery degradation process by
extracting health indicators (HIs) from experimental data and fitting the experimental data.
Cheng et al. [92] presented the effects of different storage temperatures and storage times
on battery capacity degradation, which established a semi-empirical model to predict the
remaining life according to the residual capacity degradation. Dalal et al. [93] presented
the detailed implementation of a lithium-ion battery life prognostic system, using a PF
framework. Zheng et al. [94] proposed a new method to predict battery short-term capacity
by using an unscented Kalman filter (UKF) and correlation vector regression to RUL. Zhang
et al. [95] proposed an improved unscented particle filter (IUPF) method based on Markov
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chain Monte Carlo (MCMC) for RUL prediction of Li-ion battery. Noise often has a great
impact on the prediction results, but this method does not consider the noise components.
However, a time series and regression analysis can solve these problems. Liu et al. [96]
introduced an optimized nonlinear degradation auto-regressive (ND-AR) time series model
for remaining useful life (RUL) estimation of lithium-ion batteries. Zhou et al. [97] proposed
a novel approach for RUL prognostic which combines empirical mode decomposition and
autoregressive integrated moving average (ARIMA) model. Selina et al. [98] proposed the
effects of different working conditions and ambient temperature under constant discharge
current on the remaining life of the battery based on a data-driven Bayesian prediction
model. Kai et al. [99] predicted the battery impedance based on a GPR algorithm to
indirectly infer the remaining capacity and remaining life. Sarasketa et al. [100] considered
the effects of different DODs, ambient temperatures, and charge–discharge current ratios
on cycle life by establishing a semi-empirical dynamic model to study the parameters of
the battery to predict the cycle life of the battery.

Table 7. Comparing various methods for SOH estimation and RUL prediction.

Modeling Methods Description Advantage Disadvantage

Model-based prediction

Electrochemical model

The internal and external
characteristics of the battery
to consider the actual aging
mechanism of the battery

and simulate the aging
process of the battery

Complete theory and
high precision

Complex mathematical
equation; difficult to

solve external
environmental factors

Equivalent circuit model
Circuit components to
simulate the dynamic

characteristics of the battery

Simple structure and
easy for data analysis

Slightly lower than the
electrochemical model

Data-driven prediction

Stochastic Filtering
Algorithm

Particle filter (PF)

Can be used to analyze
degradation characteristics
and predict remaining life

Not required to have a
lot of relevant

professional knowledge
Less accurate than

model-based methods

Unscented particle
filter (UPF)

Extended Kalman
filter (EKF)

Unscented Kalman
filter (UKF)

Time series analysis method

Regression analysis method

Machine Learning

The machine-learning method needs a large number of historical data to train the
model, which is suitable for the large amount and high quality of data, mainly including
the artificial neural network (ANN), support vector machine (SVM), and relevant vector
machine (RVM). Parthiban et al. [101] presented an artificial neural network to understand
the charge–discharge characteristics of the lithium-ion battery and found that there was
excellent consistency between the calculation capacity and the observation capacity. Wu
et al. [102] proposed an evaluation method for the online estimation of RUL of lithium-
ion battery, using FFNN and IS, and they verified it by conducting an experiment and
numerical simulation. Pattipati et al. [103] proposed an SVM model to predict the SOC,
capacity attenuation, and power attenuation. The estimated values of capacity attenuation
and power attenuation are used to estimate the remaining useful life (RUL) of the battery
by SVM regression. Liu et al. [104] implemented a flexible and effective online training
strategy in the RVM algorithm to enhance the prediction ability based on the incremental
optimization RVM algorithm through efficient online training. They presented a simple
and effective online training strategy of the RVM algorithm to achieve high prediction
performance. The model-based method is widely used, and the data-driven method
requires the completeness of historical data, making it vulnerable to the uncertainty of the
data. However, the hybrid prediction method has gradually become a potential trend in
the field of residual life prediction of the lithium battery, and it usually needs to integrate
the prediction modeling methods and data-driven methods. Chang et al. [105] presented a
hybrid method based on fusion technology to effectively improve the prediction accuracy,
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including poor model generalization, unstable prediction, complex parameters, and a large
number of calculations.

4. Disassembly Planning and Operations Management

The disassembly of the retired EV batteries is an extremely critical step in echelon
utilization and the EV battery recycling process. The retired products or parts must be
completely disassembled before their further disposal. The disassembly of EV batteries can
be defined as a remanufacturing process, which is to decompose all the EV battery modules
and/or cells into the useful components of the EV batteries. Battery disassembly is easily
restricted by economic, environmental, and current uncertain disassembly processes; this
is recognized as one critical research point and bottleneck technology issues in the next
research study [106]. However, disassembly safety problems in the disassembly process of
the EV battery are facing many huge challenges. Obvious disassembly differences exist
between decommissioned batteries due to various battery classes and quality difference,
resulting in different disassembly methods for EV battery modules and cells. Owing to the
fact that retired EV batteries are composed of hazardous chemical ingredients [107], the
disassembled EV battery generally contains residual electricity, which can easily cause an
unnecessary accident or even an explosion. The battery cells are connected by welding. If
the battery disassembly is not accurate to position in disassembly operations, the disassem-
bly tool might penetrate the battery to cause the electrolyte overflow and explosion [30].

4.1. Disassembly Optimization Methods

The complete disassembly is often considered to acquire the optimal economic benefit
and environmental friends, while partial disassembly has more advantages to support
the echelon utilization for the EV battery [108]. There are many problems for the EV
battery disassembly process, e.g., the optimal disassembly process or disassembly depth
for the retired EV battery. Traditional remanufacture seeks the best disassembly level
of the product. It improves product performance by replacing certain parts to balance
economic benefits and disassembly depth [109]. However, this cannot maximize the
use of retired batteries, so we need to determine the depth of battery disassembly by
combining the parameters of the battery characteristics and economic and environmental
requirements. Owing to the complexity of connection types from disassembled EV batteries
(e.g., mechanical fasteners, such as nuts and bolts, spring clasp, screws, snaps, crimping,
etc.; welding and welded joints through various welding processes; and bonded joints for
electrical insulation, sealing, and thermal conductors, etc.), it is necessary to determine
the optimal disassembly sequences and operations under the safety status. However, it is
preferable to adopt the non-destructive disassembly methods to accomplish the disassembly
tasks (i.e., screwing and selective soldering). From the battery pack to the modules, then
to the cells, making decisions for the disassembly sequence is required to determine the
optimal disassembly depth and how to remove the lid, the electrical/mechanical/chemical
connection, the electronic component, the module, the battery, and even the cathode, anode,
separator, and electrolyte in the battery disassembly process [110]. Therefore, it is important
to make reasonable disassembly planning for the specific disassembly tasks to realize the
disassembly sequence optimization, as shown in Table 8.

Table 8. Related works from the literature about optimization methods for disassembly process.

Ref. Optimization Methods Advantage Disadvantage

Go et al. [111] GA Provides an optimum disassembly
sequence in a short execution time.

It is dependent on the
disassembly time

Zhang et al. [112] GA–GM

Considers a parallel disassembly
path-planning problem with fuzzy time,
focusing on minimum overall operation

time and cost.

Not suitable for large products
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Table 8. Cont.

Ref. Optimization Methods Advantage Disadvantage

Agrawal et al. [113] GA–PPX
Provides an integrated solution from
CAD assembly model to disassembly
sequence, planning and simulation.

Does not apply to most of
the parts

Pornsing et al. [114] DPSO
Proposed a dynamic precedence matrix

for coping with the precedence
constraints of the problem.

DPSO parameters still need to
be tested

Shan et al. [115] ACO

Not only the sequence of parts in product
was optimized, but also other

information in the disassembly process
was also optimized.

Stability needs to be solved

Mukul et al. [116] ASGA Better results than ACO algorithm or GA. Higher computation time
compared with GA

Guo et al. [117] SS–PR
To optimize and the selective disassembly

sequence with multi-constraints to
maximize disassembly profit.

Not applicable to all
product types

Adenso-Diaz et al. [118] GRASP To solve these problems with composite
structures and constraints. It takes a long time

GA, Genetic Algorithm; DPSO, discrete particle swarm optimization; ACO, Ant Colony; ASGA, algorithm of
self-guided ants; SS, scatter search; GRASP, greed randomized adaptive search procedure.

In order to deal with the uncertainty disassembly of the retired EV batteries, as shown
in Figure 2, many works from the literature were reviewed to explain a potential trend for
disassembly optimization. Tian et al. [119] proposed a fuzzy variable representation of the
uncertainty disassembly of batteries to maximize disassembly profit based on AND/OR
graph, which combined fuzzy simulation and artificial bee colony to solve the disassembly
sequence planning. Feng et al. [119] proposed a disassembly sequence planning model to
deal with disassembly complexity and disassembly cost, using an improved multi-objective
optimization algorithm, which is used to deal with the uncertainty and complexity based
on fuzzy theory in the disassembly process by considering the potential impacts on en-
vironmental during the disassembly process. Feng et al. [120] considered the maximum
recovery profit and the minimum impact on environment to optimize the hybrid disassem-
bly planning tasks, which are demonstrated by the disassembly process based on CNC
machine tools. Alfaro-Algaba et al. [53] presented a case of the battery disassembly from the
Audi A3 as an example to maximize economic benefits with the minimum environmental
impacts, which can be used to design the remanufacturing disassembly process of the
EV battery packs. Similarly, Wegener et al. [110] discussed an approach of disassembly
sequence planning using the battery system of the Audi Q5 Hybrid and VM Jetta as an
example. The structure of Audi Q5 hybrid battery system can be disassembly based on
the disassembly priority graph combined with the disassembly sequence optimization.
They apply the part-priority matrix to disassembly sequence to improve the efficiency of
disassembly. Marshall et al. also developed the disassembly sequence planning of EV
batteries to further refine the recycling ways. In addition, most disassembly optimization
methods only focus on a static process, which cannot dynamically adapt to the uncertainty
in the disassembly process. Ke et al. [121] used mixed graphs and matrices to represent the
relationship between battery parts and priority disassembly levels, providing a method for
the target optimal disassembly sequence and the shortest disassembly path. Xiao et al. [122]
proposed an uncertain disassembly sequence optimization method based on the dynamic
Bayesian network in the disassembly process, which developed a feasible disassembly
graph model to describe the relationship between disassembly objects. However, it is
necessary to discuss the complexity of disassembly based on the design of disassembly
operations and tasks by considering partial automation (e.g., collaboration robot, etc.) in
the specific disassembly process.
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Figure 2. Statistics of published papers of disassembly sequence optimization.

In the face of large-scale and aged inconsistent degrees of retired EV batteries, static
methods cannot be used on various batteries. If each disassembly is to be used to generate
the sequence of methods manually set up and adjust them, then it is undoubtedly a huge
workload. The sequence optimization approach based on dynamic Bayesian networks was
mentioned above, which gives us an idea: using machine learning to make the computer
get a general model to adapt to different characteristics of the battery. This idea is also
practiced in echelon utilization [123]. They are widely used to assess the battery state.
Paul et al. [124] proposed the machine-learning-based prediction of battery capacity from
impedance. Hector et al. [125] used charge/discharge curves to predict battery aging
in large amounts of data. With the improvement of battery historical data and iterative
update of algorithm, we will see increased application of machine learning in battery
disassembly sequence.

4.2. Robot-Assisted Disassembly Operations

The disassembly process of the battery pack will produce harmful substances, includ-
ing the disassembled battery cells. However, it might cause electrolyte leakage problems
in the disassembly operations of the EV battery cells if the manual disassembly makes it
difficult to avoid the human safety problems. In addition, the disassembly process of the
battery pack and module is time-consuming when it comes to reaching the efficiency of
the production requirements. Furthermore, there are many uncertainties in the battery
pack that make it difficult to completely accomplish the automatic robot disassembly at the
current production level with uncertain and complex disassembly products. Therefore, the
design of semi-automatic/automatic disassembly production lines can be used to improve
the efficiency of uncertain disassembly to assist the human-centered disassembly task as a
research hotspot. Currently, fully automated disassembly does not offer more advantages
in both technical and economic terms for high-quality battery disassembly tasks. Therefore,
it is necessary to focus on the disassembly of human–robot collaboration [106]. The concept
of battery disassembly workstation was proposed to complete some simple and mechan-
ical disassembly tasks based on a platform of robot-assisted working disassembly [126].
Schäfer et al. [127] proposed a remanufacturing station to automatically assign disassembly
takes to finish the product removals.

The disassembly of the battery has many safety issues based on experienced operators
or robots, which is a high risk of disassembly operation, especially in many special disas-
sembly environments (e.g., disassembly in a heating system, freezing airs, or even solvent).
The remote manipulation of disassembly can solve the problem of human security to the



Batteries 2023, 9, 57 14 of 25

greatest extent, which can be widely used in dangerous or uncertain environments [128].
Remote manipulation of disassembly has three basic operation modes. The first direct
control and manipulation of the robot can be used to complete the disassembly tasks. This
operation mode can complete the disassembly target by remote human operations [129].
However, due to the multilevel structure of the battery pack, the battery disassembly needs
the robot-assisted flexibility disassembly of human operations [130]. The second disassem-
bly operation mode is to implement remote supervision and the robot motion feedback,
which will be detected and estimated in real time through the network system. Humans
can interact with the information for the robot motions in a safe area by guiding the robot
execution paths. The third operation mode is controlled by a human and robot together,
which still relies on deep intelligent algorithms to make robots determine the disassembly
process by imitating and learning human disassembly actions. Due to the complexity of the
EV battery recycling, the productivity and flexibility of robot-assisted disassembly needs to
be improved for the uncertain product structure and quality to complete the disassembly
task directly with human–robot collaboration in a working station. As mentioned above,
the disassembly process of human–robot collaboration is very different from the traditional
robot manufacturing that makes the robot in the same working station with the human to
accomplish the specific disassembly tasks, as shown in Figure 3. Many researchers have ex-
plored the research points to accomplish higher efficiency and intelligent decision-making
in the disassembly process. This makes robots have more intelligent decisions.

Figure 3. Statistics of published paper on human–robot-collaboration disassembly.

4.3. Disassembly Task Safety

The safety issues for EV battery disassembly and recycling are huge challenges for
traditional robot manufacturing. It is necessary to install a guardrail in the working area
of the robot to prevent the robot from causing collision accidents. However, the human
and the robot share the working space in the disassembly working mode, thus making
it impossible to install a guardrail to protect the safety of the human. Therefore, many
scholars have studied the safety protection of human–robot collaboration by focusing on
security disassembly. In order to ensure personal safety in the human–robot-collaboration
disassembly process, a collision-detection method should be proposed to solve these
problems, including safety detection, human and robot identification, and classification and
optimization reaction [131,132]. The detection method can effectively reduce the contact
force to a level that is not dangerous to humans. The collision force of ordinary robots
will increase rapidly after a collision. The application of collision detection can effectively
prevent the robot from causing a secondary crushing injury to humans after a collision.

As shown in Figure 4, many scholars have studied the force/torque sensor installed
on the robot arm to detect the collision of the manipulator [133], including the adaptive
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control law [134] or Kalman filter [135] to analyze the collision possibility of disassembly
operations. However, these methods can only detect the robot motion collision on the
end effector. If the collision is caused by another motion robot, it cannot be accurately
detected unless force sensors are installed in all parts of the robot. Many researchers
have proposed collision-detection methods based on the comparison between the actual
motor torque and the calculated torque according to the mechanical force model [136,137].
However, these methods need to install torque sensors at the joints of the disassembly
robot, and they cannot obtain accurate models to explain the nonlinear joint viscous friction.
Some researchers focused on dynamic modeling of robots to perform collision detection
without external sensors [138]. The initial method can be used to compare the command
input torque with the actual input torque [139,140]. In order to achieve the performance
of accurate safety detection, a real-time collision-detection method can be proposed to
consider more effective methods than using external sensors that can reduce the accuracy of
monitoring signals for model uncertainty and interference [141]. Heo et al. [142] designed a
deep neural network model to predict the disassembly robot collision, which can improve
the performance of disassembly collision detection. After the collision of the robot is
detected, it is necessary to control the robot motion and disassembly operations in the
disassembly process [136,143]. However, stopping the robot motions does not necessarily
guarantee human safety. If the robot can return to the original path after collision, it will be
more convenient to continue working after the operator returns to the safe range. It does
not need to restart the robot every time.

Figure 4. Statistics of published papers on collision-detection applications.

Related detection methods were reviewed by many works from the literature that
demonstrated their various advantages and disadvantages for avoiding robot collisions. In
the human–robot collaboration operation environment, if the robot can recognize human ac-
tions to make predictions and plan a reasonable motion path to prevent collisions according
to human actions, it can improve the efficiency and safety of disassembly process. There-
fore, some researchers began to study human intention recognition. It is generally realized
through machining vision recognition and force recognition. Humans understand the
environmental information by perception and experience reasoning through their thoughts
and eyes. Therefore, machining vision recognition is often used in the research of object
positioning. Wang et al. [144,145] proposed a robot-assisted manufacturing framework of
working environment perception to detect the workers’ actions based on machining vision
recognition, which can be used to establish accurate and reliable context awareness. The
deep learning method is used as a data-driven technology to continuously analyze human
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intentions to reasonably plan the robot’s motion path. Liu et al. [146] proposed a human–
robot collaboration system of UAV based on environment awareness, which considered
three depth vision cameras (Kinect) to collect point cloud data, and they built a virtual
space through the Octagon algorithm [147]. The three-dimensional images of the human
body and the position of the robot are imported into the virtual space, which are combined
to detect the human operation intention in real time to improve the assembly efficiency to
ensure the safety of the human body. Other scholars proposed a deep learning method to
analyze human intentions by recognizing the posture of their hands. Oyebade et al. [148]
improved the efficiency of a complex disassembly task through a convolutional neural
network and stack de-noising self-encoder, but it cannot handle the clutter interference
problem in gesture recognition as shown in Table 9.

Table 9. Related detection methods and their application advantages and disadvantages.

Ref. Methods Advantage Disadvantage

Alessandro et al. [139] FDI (Fault detection
t and isolation)

When contact is detected, you
can switch to the hybrid

force/motion controller to adjust
the interaction force.

For faster collisions with harder
environments; the method for

analyzing the transient phase after the
first collision still needs to

be improved.

Dirk et al. [149] Image recognition No sensor is required.

A discretization error occurred during
the synthesis of differential images.
Some configurations were actually
occupied, but the collision test was

reported as idle.

Heo et al. [142] Deep learning Improve detection performance. Vulnerable to model uncertainty and
noise signals.

Lu et al. [150] Force sensor No need to modify the existing
design of industrial robots.

The collision at the end of the robot can
only be identified.

Makris et al. [151] Visual recognition

It can not only detect the collision
between robot structure and
human, but also consider the

robot tools.

The distance between robot and human
may not be recognized correctly.

Rodrigues et al. [152] Deep learning

It can provide rapid
decision-making for events in

collaborative scenes and reduce
possible harm to humans and

interactive robots.

The accuracy of collision detection is
not 100%.

Huang et al. [153] Back-input compensation It can effectively detect soft (slow)
collision and hard (fast) collision. Only rigid joints.

Lu et al. [154] Camshift Algorithm
High stability, fast speed, and
accurate calculated collision

point position.

There are high requirements for the
placement of binocular cameras.

Maric et al. [155] Visual recognition Minimize interference in
robot trajectory.

It depends on the speed of the end
effector. If the speed is fast, the

scanning volume is large and takes a
long time.

As shown in Figure 5, there are many works in the literature that involve machining
vision recognition for robot-assisted disassembly manufacturing. As is known, the ma-
chining vision system cannot play a significant role in intention recognition, so intelligent
sensors are needed to assist the specific disassembly operations. For example, direct human–
robot collaboration technology can be accomplished by using force torque sensors on the
end actuator or other joints of human–robot collaborative disassembly, or by integrating
tactile robot skin technology [156]. Many scholars transferred the detection target of the
mechanical sensor to the human body. Boris et al. [157] applied pressure sensors capable
of recognizing various human sitting, standing, and lying positions into pressure arrays
and embedded them in cushions, carpets, and mattresses to judge worker motions. In
further research, Kinugawa et al. [158] established a prediction model for worker movement
trajectory by detecting forces with intelligent sensors.
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Figure 5. Statistics of published papers on machining vision-recognition methods for robots.

5. Discussion

With the extensive requirements of electric vehicle (EV) battery recycling, the echelon
utilization and disassembly technology of retired EV batteries have become a potential
trend to efficiently improve the recycling of retired EV batteries in sustainable development.
Therefore, there are many research points that can be further discussed:

• First of all, in order to ensure the safety of product echelon utilization and make
full use of recycled electric vehicle batteries, it is necessary to efficiently recycle the
retired EV batteries. We discussed the evaluation methods based on three significant
indicators (SOH, SOC, and RUL) that affect the battery performance in various ap-
plication scenarios. We cannot directly and accurately measure the corresponding
index parameters, but we can estimate or predict them by using related algorithms.
Therefore, it is necessary to improve the accuracy of battery performance prediction
so that the related parameters and complex calculation can be acquired to improve the
efficiency of automatic disassembly manufacturing as a new research point.

• Secondly, the disassembly of EV batteries is carried out manually. However, as a large
number of EV batteries need to be disassembled and recycled, manual disassembly
cannot complete such a large amount of work in a specified time, so improving the
efficiency of disassembly will bring a lot of benefits. Therefore, we will improve the
efficiency of disassembly by optimizing the disassembly sequence and disassembly
operation by automatic robot-assisted disassembly technology.

• Many scholars have studied the optimization of disassembly sequence, but most
of the disassembly modeling cannot dynamically adapt to the uncertainties in the
disassembly process; however, there are a lot of uncertainties in battery disassembly.
In addition, many scholars often do not consider the impact of environmental factors
and disassembly constraints in their research. For disassembly sequence optimization,
parallel disassembly and dynamic disassembly sequence optimization will still be a
future research point with the gradual application of human–robot collaboration in
industrial disassembly production lines; the optimization of disassembly operation
should consider the execution of both human and robot.

In order to improve the efficiency of battery disassembly and echelon utilization, it is
necessary to select the human–robot collaboration technology for the disassembly tasks and
operations. Accordingly, it is necessary to discuss the security problems based on human–
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robot collaboration disassembly in further higher efficient disassembly and recycling for
retired EV batteries, including human-intention recognition and collision detection:

• At present, most human–robot collaborative safety protection can be completed by
collision detection. However, the accuracy of collision-signal recognition and screening
still needs to be improved. Most scholars designed it so that the robot stops working
after collision. However, simply stopping does not necessarily guarantee human
safety. If the robot can return to its original path or move far away from people after a
collision, it will not only greatly improve the safety but also save the time to restart
the robot. Therefore, more efficient robot-assisted disassembly detection is a huge
difficultly to deal with in relation to the complex coupling relationships between
human and robot interactions.

• The research of human intention recognition is still in its infancy. Most scholars
predict human actions by recognizing the human hand posture to reasonably plan the
trajectory of the robot to complete collision avoidance. In addition, the accuracy of
human-intention recognition still needs to be improved. Many scholars also installed
sensors on human operators to complete motion prediction. In the future, it will be
possible to detect visual force recognition for human-intention recognition to improve
the accuracy of prediction.

6. Conclusions

This paper reviewed the recycling status of electric vehicle (EV) batteries and pointed
out that retried EV batteries are not recycled by disassembly technology and echelon
utilization. We analyzed the challenges of echelon utilization:

• The uncertainty of the use environment and scene mode of the battery makes it difficult
to accurately judge the level and scene of the battery echelon utilization by the specific
parameters of the battery.

• The decay rate of retired batteries will increase in the process of echelon utilization,
which will affect the continuity of battery utilization and make it difficult to guarantee
the economic benefits of echelon utilization.

• For retired batteries, considering safety and economic considerations prior to echelon
utilization, the parameters and performance of the batteries need to be evaluated to
support optimal application scenarios.

Therefore, we analyzed the three health indicators of echelon utilization, namely SOH,
SOC, and RUL. Their existing evaluation methods were introduced and analyzed in detail.
Then we presented the challenges of battery disassembly:

• The inconsistency of the battery is the biggest challenge; we need address it accord-
ing to different parameters and different physical structures to develop a different
disassembly strategy.

• Based on the above point, the huge disassembly demand leads to a great increase in
the workload of disassembly. We need to improve the efficiency of disassembly on the
basis of optimizing the disassembly sequence.

• There are many safety issues in the disassembly process. There is an urgent need for
appropriate tools (robots) and reasonable planning of disassembly strategies.

We analyzed the problem in terms of disassembly optimization and human–machine
collaboration and tried to summarize previous work. We pointed out that the safety
problems of human–robot collaboration need to focus on collision detection and human-
intention recognition by reviewing many related works from the literature. Finally, we
comprehensively discussed the current issues related to echelon utilization and disassembly
in retired-EV-battery recycling and gave relevant suggestions. The echelon utilization and
dismantling of batteries is the combination of economic benefit and a safety problem. We
focused on achieving this in a safer, more profitable way.
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