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Abstract: Accurate online parameter identification and state of charge (SOC) estimation are both
very crucial for ensuring the operating safety of lithium-ion batteries and usually the former is a
base of the latter. To achieve accurate and stable SOC estimation results, this paper proposes a
model-based method, which incorporates a vector forgetting factor least square (VFFLS) algorithm
and an improved adaptive cubature Kalman filter (IACKF). Firstly, considering it is difficult for
the traditional forgetting factor recursive least square (FFRLS) algorithm to balance the accuracy,
convergence, and stability for multiple parameters with different time-varying periods, an improved
VFFLS method is employed to determine the multiple parameters of the first-order RC battery model
online. It supersedes the single forgetting factor in the FFRLS with multiple forgetting factors in a
vector form for improving adaptive capability to multiple time-varying parameters. Secondly, aiming
at the fact that the standard cubature Kalman filter (CKF) cannot operate properly when the error
covariance matrix is non-positive definite, which is caused by disturbance, initial error, and the limit
of the computer word length, the UR decomposition rather than the Cholesky decomposition is
applied, thus improving the algorithm stability. In addition, an adaptive update strategy is added to
the CKF to enhance accuracy and convergence speed. Finally, comparative experiments with different
operating patterns, positive and non-positive definite error covariance matrices, and temperatures are
carried out. Experimental results showed that the proposed method can estimate the SOC accurately
and stably.

Keywords: state of charge; vector forgetting factor least square; non-positive definite error covariance
matrix; UR decomposition; adaptive cubature Kalman filtering

1. Introduction

With the increasing energy crisis and environmental pollution, new/clean/renewable
energy power generation such as nuclear power, water power, wind power, and solar
power have been rapidly developed around the world in the last decades [1,2]. In addition,
electric vehicles (EVs) have been widely used in both industry and academia communities
for reducing the emission of greenhouse gases [3–5]. The energy storage system (ESS)
is a key component of EVs. Lithium-ion batteries (LIBs) are known to have high energy
capacity, high columbic rate, no memory effect, and long cycle life, so they have been
commonly used as the ESS of EVs [6–8]. LIBs are subjected to significant nonlinearity
and dynamics. Thus, in order to ensure the operating safety of the LIBs, an effective
battery management system (BMS) is required to monitor battery parameters and states,
such as state of charge (SOC), state of energy (SOE), and state of health (SOH) [9–11].
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Among these states, SOC, indicating the current capacity state of the LIBs, is an important
index for avoiding abnormal charging/discharging of the LIBs. However, SOC cannot
be acquired directly using a sensor, so it is often estimated based on other measurable
parameters, including voltage, current, and temperature. Additionally, the accuracy of
SOC estimation is influenced nonlinearly by many factors such as model error, current rate,
ambient temperature, battery degradation, and cell inconsistency [12,13]. Consequently,
the quick and accurate estimation of battery SOC is still an open and challenging issue.

Currently, a large number of methods have been put forward for SOC estimation. In
general, they can be divided into four categories: the Coulomb counting (CC) method [14],
the open-circuit voltage (OCV) method [15], model-based methods, and data-driven meth-
ods. The CC method is commonly used in real-world applications because of its easy
implementation, simple calculation, and low cost. However, as an open-loop method, it
is highly dependent on the accuracy of the current sensor and requires an accurate initial
SOC value [16]. The OCV method calculates the SOC based on a nonlinear OCV–SOC
relationship, which is usually stored in a lookup table. Accurate measurement of the OCV
can accurately estimate the SOC. Nevertheless, it requires a long time to measure the OCV,
thus the OCV method is unsuitable for online estimation [17]. The data-driven methods do
not require the assumption of an explicit battery model and, accordingly, they are becoming
increasingly popular [18]. Commonly used data-driven methods include artificial neural
networks [19], support vector machines [20], and fuzzy logic [21,22]. The data-driven
methods can learn a nonlinear mapping model between the SOC and measured data such
as voltage, current, and temperature, and they do not require extensive domain knowledge
about the LIBs [23,24]. However, the data-driven approaches are still limited by factors
including the small simple data, tedious feature extraction, huge computational cost, and
strong dependency on battery operation conditions [25].

In contrast, the model-based methods are more suitable for online use in actual
conditions because of their reasonable trade-off abilities among accuracy, complexity, and
computation load [26]. The process of a model-based method generally involves three
steps: battery modeling, parameter identification, and algorithm implementation.

Electrochemical models (ECMs) [27,28] and electrical equivalent circuit models
(EECMs) [29–31] are the two most commonly used battery models. Compared to the
ECMs, the EECMs have lower complexity and higher compatibility, so they are more
favorable for online SOC estimation with embedded systems. EECMs mainly include three
categories: the Rint model [29], the Randles model [30], and the nRC models [31]. Among
them, the first-order and second-order RC models are the most widely used because they
give good consideration to both accuracy and complexity. After selecting an appropriate
model, the model parameters need to be further determined.

The accuracy of battery model parameter identification has a high impact on the
precision of SOC estimation. The parameters of EECMs can be identified offline or online.
However, due to the high sensitivity of the battery parameters to the depth of charg-
ing/discharging, current profiles, and battery aging levels [32], the offline method may
cause errors in actual working conditions. As a result, the recursive least square (RLS)
family has been commonly used to identify battery model parameters online [33]. However,
it is challenging for the classical RLS algorithm to meet both the accuracy requirement and
the short-term memory capability, and with the increasing amount of observation data,
the time variability becomes worse and even leads to data saturation [34]. In contrast, the
FFRLS method can strengthen the influence of new data but weaken the contribution of
history data to the current identification result by introducing a forgetting factor, maintain-
ing a fast convergence rate, and a high storage capability for long-term data. Nevertheless,
the FFRLS easily experiences abnormal fluctuations and even divergence under complex
working conditions [35]. Furthermore, the model parameters to be identified change at
different rates when the battery is in operation. Hence, it is not recommended to identify
multiple parameters changing at different rates [36] by using a single forgetting factor
and, accordingly, some improved FFRLS methods have been proposed to address this
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issue [37,38]. For example, the authors of [38] proposed a vector forgetting factor least
square (VFFLS) algorithm to identify the parameters of different battery types on the basis
of fully reducing the complexity of the identification process. It employs a set of forgetting
factors rather than a single forgetting factor to improve adaptive capability to multiple
time-varying parameters with different time scales simultaneously. This feature makes it
favorable for EV applications, where battery model parameters such as open circuit voltage,
ohmic resistance, and polarization resistance/capacitance vary at different rates [39].

In terms of estimation algorithms, the most widely used methods are Kalman filters, in-
cluding the extended Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman
filter (CKF), etc. [40,41]. Among them, the CKF, first proposed in 2009 by Arasaratnam
and Haykin [42], has high fitting accuracy, especially for high-order nonlinear systems,
which is conducive to achieving high-precision battery SOC estimation. The Cholesky
decomposition used in the UKF and CKF requires the matrix to be symmetric positive
definite. However, the rounding and discretization in hardware calculation may cause a
cumulative error. Then, the covariance matrix may not always be symmetric and positive
definite, further resulting in filter divergence [43]. To address this problem, scholars have
proposed some improved algorithms. Zhang et al. [25] used the singular value decompo-
sition (SVD) as a substitute for the Cholesky decomposition in the conventional AUKF
to realize robust SOC estimation. Wang et al. [44] proposed a combined method, which
incorporates the alternative generalized least square method with the forgetting factor and
the robust H∞-CKF based on singular value decomposition for SOC estimation of LIBs.
Li et al. [45] combined an adaptive cubature Kalman filter (ACKF) using Frobenius-norm-
based QR decomposition and an H-infinity filter to estimate the battery SOC. Tian et al. [46]
compared and analyzed the differences in the performance of the CKF algorithm caused by
using SVD, UR, and LU decomposition instead of Cholesky decomposition. The results
showed that all three matrix decomposition strategies can avoid filter failure caused by the
non-positive definiteness of the error covariance matrix, and in general, the UR decompo-
sition outperformed the other two methods, showing moderate convergence speed and
computational cost, and it is robust against the initial value of the error covariance matrix.

This paper proposes an approach that incorporates a multi-forgetting factor recur-
sive least square algorithm and an improved adaptive cubature Kalman filter for online
estimating of the model parameters and SOC of LIBs. The VFFLS algorithm is used for
model parameter identification, which replaces the single forgetting factor in the classical
FFRLS with multiple forgetting factors, so as to deal with the issue that it is difficult for
the traditional FFRLS algorithm to make a trade-off among accuracy, convergence rate,
and stability of parameter identification. The UR decomposition is introduced to be a
substitute for the Cholesky decomposition used in the traditional CKF so that the filter can
always work well no matter whether the error covariance matrix is positive or non-positive
definite. To assess the efficacy of the proposed method comprehensively, experiments are
carried out under a set of typical driving cycles and temperatures with both positive and
non-positive definite error covariance matrices. The proposed method provides an effective
solution for online estimating of battery model parameters and SOC under highly dynamic
operating conditions.

The remainder of this paper is structured as follows: Section 2 introduces the battery
equivalent circuit model and the parameter identification method. Section 3 details the
improved ACKF algorithm based on UR decomposition for SOC estimation. Section 4 intro-
duces the experimental setup. Section 5 presents the experimental results and discussion.
Finally, the paper is concluded in Section 6.

2. Battery Model and Parameters Identification
2.1. Battery Model

In order to realize SOC estimation using the Kalman filter algorithms, an EECM is
requisite. Since the first-order RC model can reconcile the accuracy and efficiency, revealing
superiority over other EECMs [47], it is applied to simulate the battery dynamic behaviors in
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this paper. The first-order EECM is illustrated in Figure 1, where Uoc stands for open circuit
voltage, Rp and Cp are polarization resistance and capacitance, respectively, Ro is ohmic
resistance, IL indicates load current, and Ut represents terminal voltage. In this paper, load
current, IL, is supposed to be positive during discharging and negative during charging.
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Figure 1. The first-order RC battery model.

Based on Kirchhoff’s law and the characteristics of capacitance, the state-space equa-
tions of the first-order RC battery model can be formulated as:{

Ut = Uoc(SOC)−Up − Ro IL.
Up = − 1

RpCp
Up +

1
Cp

IL
(1)

where Up stands for the terminal voltage of Cp, with
.

Up representing its first derivative
with respect to time; Uoc changes with SOC, so it is written as Uoc (SOC).

Since the recorded voltage and current data are generally discrete values, the contin-
uous state-space equation in Equation (1) is not applicable. As a result, Equation (1) is
discretized into:{

Ut,k = Uoc(SOCk)−Up,k − IL,kRo

Up,k = Up,k−1 exp(− Ts
CpRp

) + IL,k−1Rp[1− exp(− Ts
CpRp

)]
(2)

where Ts is the sampling period. Considering the limited data recording capacity of the
battery test system and the processing capacity of the BMS based on the microprocessor,
the sampling period is set to be one second in this paper.

2.2. Model Parameter Identification Using VFFLS

In order to accurately obtain battery model parameters with different varying rates,
an improved VFFLS method is employed. The specific process of the VFFLS algorithm is
detailed below.

In order to apply the VFFLS method on the battery model in Figure 1, an auto re-
gressive exogenous (ARX) model needs to be constructed. For this purpose, the transfer
function of the battery model is expressed as:

G(s) =
Ut(s)−Uoc(s)

IL(s)
=

Rp

1 + τs
+ Ro (3)

where τ = RpCp is the time constant of the RC branch. Then, using the bilinear transform
rule in Equation (4) discretizes the system transfer function Equations (3)–(5).

s =
2
Ts

1− z−1

1 + z−1 (4)

G(z−1) =
Ud(z−1)

It(z−1)
=

a2 + a3z−1

1− a1z−1 (5)
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where 
a1 = 2τ−Ts

2τ+Ts

a2 =
RpTs+2Roτ+RoTs

2τ+Ts

a3 =
RpTs−2Roτ+RoTs

2τ+Ts

(6)

After discretization, the time domain difference equation of Equation (5) is rewritten as:

Ut,k −Uoc,k = a1(Ut,k−1 −Uoc,k−1) + a2 IL,k + a3 IL,k−1 (7)

Assuming that the sampling time interval Ts is very small, which is 1 s in this paper,
the OCV can be considered constant within a sampling interval, i.e., Uoc,k−1 = Uoc,k. As a
result, Equation (7) can be rewritten as:

Ut,k = a1Ut,k−1 + a2 IL,k + a3 IL,k−1 + (1− a1)Uoc,k−1 (8)

Because Uoc,k−1 is unmeasurable, its offline calculation process will inevitably intro-
duce large errors, so it is also regarded as a parameter to be identified in this paper.

Assuming a4 = (1− a1)Uoc,k−1 yields:

Uk = a1Uk−1 + a2 IL,k + a3 IL,k−1 + a4 (9)

Finally, the model in Equation (9) can be rewritten in the ARX form:

yk = ϕT
k θk (10)

With 
yk = Uk
θk = [a1,k, a2,k, a3,k, a4,k]

T

ϕk = [Ut,k−1, IL,k, IL,k−1, 1]T

where yk represents the system output, ϕk stands for the data vector, and θk is the parameter
vector to be identified.

The parameter vector θk can be resolved by the FFRLS algorithm, which is formulated as:
ek = yk − ϕT

k θk−1

Kk =
Pk−1 ϕk

λ+ϕT
k Pk−1 ϕk

θk = θk−1 + Kkek
Pk =

1
λ (Pk−1 − Kk ϕT

k Pk−1)

(11)

where yk stands for the actual observation value at the current moment; θk−1 indicates the
estimated parameter value at the previous time; ϕT

k θk−1 is the predicted value; ek is the
prediction error; Kk is the gain coefficient, and the product of the prediction error and the
gain coefficient is the correction of the predicted value at this time; Pk is the covariance
matrix; and λ is the forgetting factor.

Based on Equation (11), it is clear that the covariance matrix is divided by the forgetting
factor at each iteration of identification, lowering its decay rate, and thus the FFRLS can
remain a good track capability to system parameters. Typically, a single fixed forgetting
factor between 0 and 1 is configured to adjust the weights of old history and new data.
It is known that the smaller the forgetting factor is, the greater the weight of new data
is, and the better the tracking ability is, but the lower the stability and convergence rate
are. In contrast, the larger the forgetting factor is, the greater the weight of the old history
data is, and the better the stability and convergence rate are, but the lower the tracking
ability is. Consequently, if we can achieve both the fast convergence rate caused by a large
forgetting factor and the fast tracking due to a small forgetting factor, the performance
of the algorithm will be improved; however, this cannot be achieved by using a single
forgetting factor [38,48].
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It has been demonstrated that when the input data have poor dynamics, the single
forgetting factor will forget the old history data completely. In this case, if there is no new
dynamic data inputting the system, then the covariance matrix will increase exponentially,
resulting in very high sensitivity of the FFRLS algorithm to noise [49]. In addition, it is very
difficult for a single forgetting factor to accommodate multiple parameters with different
ranges and change rates. For example, the OCV varies gradually with a SOC in the range
of about 2 V, Ro is nearly constant in the moderate SOC range while changing a few mΩ at
both a low and high SOC, and Cp changes hundreds or even thousands of F which is highly
dependent on the dynamics of driving cycles. These different dynamic features necessitate
deploying multiple forgetting factors in the parameter identification. Nevertheless, it is
clear from Equation (11) that the classical FFRLS considers that each component of the
parameter vector varies at similar rates. Consequently, if there is a divergence in estimating
one parameter, the same correction will be applied to all the other parameters, causing
estimation overshoot or undershoot [36].

In summary, it is very difficult for a single forgetting factor to achieve accurate estima-
tion for every parameter of the battery model. Aiming for this, an improved VFFLS method
is employed, which is an effective solution to keep different-dynamic-rate parameters on
track simultaneously.

Unlike the traditional FFRLS algorithm using a single forgetting factor, the VFFLS
method uses multiple forgetting factors in a vector form as follows:

λ =
[
λ1 λ2 λ3 λ4

]
(12)

where λ1, λ2, λ3, λ4 represent the forgetting factor corresponding to the parameters to be
identified. In this paper, the multiple forgetting factors are set to be [0.985 0.990 0.998 0.985].

Finally, the model parameters at the kth iteration, including Ro,k, Rp,k, Cp,k, and Uoc,k,
can be calculated according to the obtained parameter vector, θk = [a1,k, a2,k, a3,k, a4,k],
as follows: 

Ro,k =
a2,k−a3,k
1+a1,k

Rp,k =
2(a1,ka2,k+a3,k)

1−a2
1,k

Cp,k =
(1+a1,k)

2

4(a1,ka2,k+a3,k)
Uoc,k =

a4,k
1−a1,k

(13)

Generally, these model parameters vary at different rates under the same operating
conditions such as SOC, current patterns, temperature, and aging. To improve the identi-
fying accuracy of these parameters, this paper will deploy different forgetting factors for
them, and mainly consider the impacts of the first three operating conditions, while that of
the aging will be considered in future work.

3. SOC Estimation Based on IACKF
3.1. SOC Definition

Before estimating the SOC of the LIBs, the expression for calculating the SOC needs
to be determined first. In this paper, it is defined based on the ampere-hour integration
principle, which is formulated as follows:

SOC(t) = SOC(t0)−
∫ t

t0
η IL(t)dt

Cn
(14)

where Cn indicates the nominal capacity of the LIB; η stands for the coulombic efficiency,
which is ignored in this paper, meaning that it is taken as 1; SOC(t0) and SOC(t) represent
the SOC value at time steps of t0 and t, respectively.
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3.2. State-Space Equations of the Battery Model

To estimate the SOC of the lithium-ion battery using Kalman filters, the battery state-
space model needs to be constructed first. By discretizing Equation (14) and incorporating it
with Equation (2), the state-space equations of the first-order RC battery EECM in Figure 1
can be obtained as follows.

a. State equation:

{
Up,k = Up,k−1 exp(− Ts

CpRp
) + IL,k−1Rp[1− exp(− Ts

CpRp
)]

SOCk = SOCk−1 −
IL,k−1

Cn

(15)

b. Measurement equation:

Ut,k = Uoc(SOCk)−Up,k − IL,kRo (16)

Assuming x(= [SOC, Up]T), u(= IL) and y(= Ut) separately are the immeasurable state
vector, the input vector, and the observed output vector, it is easy to rewrite Equations (15)
and (16) as: {

xk = Ak−1xk−1 + Bk−1uk−1 + wk−1
yk = h(xk, uk) + vk

(17)

where


Ak−1 =

(
1 0
0 exp

(
− 1

Rp,k−1Cp,k−1

) )

Bk−1 =

( 1
Cn

Rp

(
1− exp

(
− 1

Rp,k−1Cp,k−1

)) )
h(xk, uk) = Uoc(SOCk)−Up,k − IL,kRo + vk

, with wk−1 and vk being the pro-

cess nose and measurement noise, respectively.

3.3. Adaptive CKF Algorithm

Based on the constructed nonlinear state-space model in Equation (17), the cubature
Kalman filter (CKF) can be employed to estimate the battery’s inner SOC. The CKF was
originally raised to achieve the optimal state estimation of nonlinear systems. Generally,
for iterative operation online using the CKF, the state and measurement equations of a
nonlinear system are required to be expressed in discrete form, as follows:{

xk = f (xk−1, uk−1) + wk
yk = h(xk, uk) + vk

(18)

where f (.) and h(.) represent the nonlinear state transition function and measurement
function, respectively.

The process noise covariance matrix Q and measurement noise covariance matrix
R both have a high impact on the accuracy of the SOC estimation based on Kalman
filters. In the standard CKF algorithm, Q and R are considered constants and need to be
specified in advance [50]. However, in an actual battery system, their values may vary
randomly with the external sensor disturbances and internal parameter uncertainties of
the battery. Therefore, this paper introduces an adaptive CKF (ACKF) for improving the
performance of the CKF when the system suffers from uncertainly random noises. In
the ACKF method, the Sage–Husa maximum posterior estimator is applied to update
the process and measurement noise covariances [51]. The specific steps of the ACKF are
introduced simply as follows.

(1) Initialization.
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Appropriately set the initial posterior values for process noise covariance Q0 and
measurement noise covariance R0. Meanwhile, a randomly selected state vector x0 is used
to calculate the initial state mean x0 and error covariance P0.

x0 = E[x0] (19)

P0 = E[(x0 − x0)(x0 − x0)
T ] (20)

(2) Time update.

a. Factorizing the previous error covariance Pk−1:

Sk−1 = chol(Pk−1) (21)

where chol(·) represents the Cholesky decomposition, namely,

Pk−1 = Sk−1ST
k−1 (22)

b. Calculating the cubature points:

x(i)k−1 = Sk−1ξ(i) + x̂k−1 (23)

where ξ represents a set of standard cubature points, which can be determined by:

ξ(i) =

{ √
n[1](i) i = 1, 2, . . . n

−
√

n[1](i) i = n + 1, n + 2, . . . 2n
(24)

In Equation (24), [1](i) stands for the ith column vector of the identity matrix with i =
1, 2, . . ., 2n, where n represents the dimension of the state variable.

c. Propagating cubature points via the state process equation:

χ
(i)
k = f (x(i)k−1, uk−1) (25)

d. Calculating the predicted state value via the cubature points:

xk =
1

2n

2n

∑
i=1

χ
(i)
k (26)

e. Calculating the propagated covariance based on the cubature points and the
predicted state values:

Pk =
1

2n

2n

∑
i=1

(
χ
(i)
k − xk

)(
χ
(i)
k − xk

)T
+ Qk−1 (27)

where Qk−1 represents the process noise covariance matrix.

(3) Measurement update.

a. Factorizing the current error covariance matrix Pk:

Sk = chol(Pk) (28)

b. Recalculating the cubature points:

x(i)k = Skξ(i) + x̂k(i = 1, 2, · · · , 2n) (29)

c. Propagating the cubature points via the measurement equation:

y(i)k = h
(

x(i)k , uk

)
(30)

d. Calculating the predicted measurement values via cubature points:

yk =
1

2n

2n

∑
i=1

y(i)k (31)
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e. Calculating the estimated covariance:

Pyy
k =

1
2n

2n

∑
i=1

(
y(i)k − yk

)(
y(i)k − yk

)T
+ Rk−1 (32)

Pxy
k =

1
2n

2n

∑
i=1

(
xi

k − xk

)(
yi

k − yk

)T
(33)

where Rk−1 represents the measurement noise covariance matrix.

f. Calculating the Kalman gain according to the estimated covariance:

Kk = Pxy
k

(
Pyy

k

)−1
(34)

g. Updating state prediction using predicted values and Kalman gain:

x̂k = xk + Kk(yk − yk) (35)

h. Updating the error covariance:

Pk = Pk − KkPk
yyKk

T (36)

(4) Adaptive adjustment of Q and R

When k < L, k = 1, 2, 3 · · · ,{
Qk = (1− dk)Qk−1 + dkKFkKT

Rk = (1− dk)Rk−1 + dkFk
(37)

While k ≥ L; k = L + N × S, N = 1, 2, 3 · · · ,{
Qk = (1− dk)Qk−1 + dk(KFkKT + Pk − Pk|k−1)

Rk = (1− dk)Rk−1 + dk(Fk − Py
k|k−1)

(38)

where dk = 1− b/(1− bk+1) is a weight factor to adjust the process noise covariance matrix
and the measurement noise covariance matrix, with a forgetting factor of b ranging from
0.9 to 1; Fk = ekeT

k is the voltage residual squared error with ek standing for the voltage
residual; L is the time when the biased estimator is changed into the unbiased estimator;
and S represents the step length. In this paper, we select b = 0.98, L = 10, and S = 100.

It can be seen from the above analysis that in the standard CKF algorithm, the Cholesky
transformation is required to factorize the square root of the error covariance matrix P
before calculating cubature points, that is:

P = SST (39)

where S is a lower triangular matrix.

3.4. Improved ACKF Based on UR Decomposition

A square matrix P of degree n is called positive definite when it meets xTPx > 0 for
any non-zero vectors x. According to the definition and properties of a positive definite
matrix, if all the eigenvalues of matrix P are positive, then P is considered positive definite,
otherwise it is a non-positive definite. It is notable that the Cholesky decomposition used
in the standard CKF algorithm can only factorize a positive definite matrix. In real-world
applications, however, the discretization and rounding operation in hardware may cause a
cumulative error, leading to non-positive definite noise covariance matrices. In this case,
the CKF no longer works properly [43]. In view of the fact that the UR decomposition can
factorize both positive and non-positive definite matrices, in this paper it is introduced as a
substitute for the Cholesky decomposition, thus enhancing the stability and convergence
of the ACKF.
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Using UR decomposition, the error covariance matrix P can be factorized as:

P = UR (40)

where U is a column-vector normalized unitary matrix, and R is an upper triangular
matrix. Before computing the cubature points, weighting factors are required for U and R.
According to our previous study [46], the infinite norm r of P is served as the weighting
factor. Therefore, the square root of the error covariance matrix P can be expressed as:

√
P = S =

R√
r

(41)

In summary, when calculating cubature points through the UR decomposition, the
corresponding formulas are as follows:

[qk−1,rk−1] = qr(Pk−1) (42)

lk−1 = norm(Pk−1, inf) (43)

Sk−1 =
rk−1√

lk−1
(44)

x(i)k−1 = Sk−1ξ(i) + x̂k−1 (45)

where qr means UR decomposition, norm is the norm operation of the matrix, and inf means
calculating the infinite norm of the matrix.

Finally, the overall flowchart of the proposed SOC estimation method is summarized
in Figure 2. First, the first-order RC model parameters are identified online using the VFFLS
algorithm in Section 2.2. Then, based on the parameter-updated state-space equations
in Equation (15), the battery SOC is estimated using the improved ACKF algorithm in
Equations (19)–(45).
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4. Experiments

To successfully simulate the dynamics of LIBs under actual complex working condi-
tions, a battery dataset, including the Beijing Dynamic Stress Test (BJDST) [52], the Federal
Urban Driving Schedule (FUDS), and the Dynamic Stress Test (DST) at 0 ◦C, 25 ◦C, and
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45 ◦C, was employed for evaluating the efficacy of the proposed SOC estimation method.
The corresponding voltage and current profiles under the three driving cycles are plotted
in Figure 3. The tested 18,650 lithium-ion battery has a nominal capacity of 2.0 Ah, and
its lower discharging cut-off voltage is 2.5 V. The data sampling period is 1 s. Both the
VFFLS and UR decomposition-based improved ACKF algorithms are programmed in
MATLAB R2021a.
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5. Validation Results and Discussion
5.1. Model Parameter Identification Results

In this section, the model parameter identification results at 25 ◦C will be presented
and discussed. The parameters of first-order EECM are affected by many factors during
charging and discharging, so in this paper, they are identified online by the improved
VFFLS introduced in Section 2.2. The model parameter vector θ is initialized as [1 × 10−2
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2 × 10−2 1 × 10−2 4], the multiple forgetting factors are [0.985 0.990 0.998 0.985], and the

initial error covariance matrix P(0) is set as


1× 105 0 0 0

0 1× 105 0 0
0 0 1× 105 0
0 0 0 1× 105

.

Parameter identification results of the first-order RC model are illustrated in Figure 4.
It can be seen that the model parameters obviously vary at the end of discharging, i.e., at
the range of high depth of discharging. To better quantify the accuracy of model parameter
identification, herein, the measured battery terminal voltages are served as referenced
values. Figure 5 presents the estimated terminal voltages from the battery model with
the identified parameters in Figure 4, the reference terminal voltages, and the errors
between them.

Table 1 lists the statistical results of the estimated terminal voltage errors, including
the mean absolute error (MAE) and the root mean square error (RMSE). The MAE can
avoid the cancellation between positive and negative errors, so it is usually employed to
indicate the actual model error. The RMSE is applied to quantify the deviation between
the estimated voltage and the referenced voltage. The MAE and RMSE can be formulated
as follows:

MAE =
1
N

n

∑
i=1
|xi − x̂i| (46)

RMSE =

√√√√√ N
∑

i=1
(xi − x̂i)

2

N
(47)

where xi is the reference value, and x̂i represents the estimated value.
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Table 1. The errors between the estimated and reference terminal voltage.

Driving Cycles RMSE (mV) MAE (mV)

BJDST 11.2 5.1
DST 10.9 4.8
FUDS 10.1 3.6

It is clear from Table 1 that the MAE of the terminal voltage estimated by the first-order
RC battery model with online parameter identification is lower than 5.1 mV, and the RMSE
is within 11.2 mV. Hence, it can be concluded that the first-order RC battery model with the
VFFLS-based online parameter identification has high accuracy and good adaptability to
different driving cycles.
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5.2. SOC Estimation Results
5.2.1. Results with Positive Definite Error Covariance Matrix

In this section, the SOC estimation at 25 ◦C is carried out with the configuration of
the positive definite error covariance matrix for comparing the accuracy of the CKF family
algorithms, including the CKF [53], ACKF [51], UR-CKF [46], and UR-ACKF. In actual
working conditions, the initial SOC error occurs easily because of the capacity recovery
of the battery, so it is important for the SOC estimators to have a high convergence speed
for correcting an initial error quickly. Herein, to assess the correction capability of the
algorithm to the initial SOC error, the initial SOC is set to 0.6, which is 0.2 lower than the
actual value of 0.8. The error covariance matrix P, process noise matrix Q, and measurement
noise matrix R are initially set in Equation (48).

P0 =

(
1× 10−4 0

0 1× 10−4

)
Q =

(
1× 10−6 0

0 1× 10−5

)
R = 0.01

(48)

The SOC estimation results with the aforementioned four algorithms are plotted in
Figure 6. It is worth mentioning that the referenced SOC values are calculated using the
ampere-hour integration method with accurate initial SOC and high-precision current
measurements. To make a comparative study on the accuracy of the four CKF algorithms
in more detail, the RMSE and MAE of the SOC estimation are calculated and the results are
visualized in Figure 7.

It is evident from Figures 6 and 7 that all the CKF algorithms can operate properly
under the condition of a positive definite error covariance matrix. Overall, the estimated
SOC can precisely track the variation of the reference values. Under the same working
conditions, the CKF and UR-CKF achieve very similar results, and the SOC estimation
results of the ACKF and UR-AUKF are also consistent with each other. Taking the BJDST
cycle as an example, the RMSEs of the UR-ACKF and ACKF are 1.14% and 1.17%, re-
spectively, which are almost the same, and the MAEs are 0.68% and 0.72%, respectively.
The reason is that, in theory, the factorizing results of a positive definite matrix with the
Cholesky decomposition are equal to that with the UR decomposition. However, their
actual factorizing results may be slightly different due to some reasons, such as random
data truncation caused by the limitation of computer character length.

In addition, it can be seen from Figure 6 that the adaptive algorithms converge faster
and the estimated SOC is more accurate compared with the non-adaptive algorithms, which
can also be observed clearly from the statistical error results in Figure 7. For example, under
the BJDST condition, the RMSE and MAE of UR-ACKF are 1.14% and 0.68%, respectively,
while those of UR-CKF are 1.59% and 0.80%, respectively. This indicates that the CKF
algorithms are unable to eliminate the impact of inaccurate initial parameters if the noise
covariance matrices are not self-corrected, resulting in disordered changes in the SOC
estimation error. Unlike the CKF, the ACKF algorithms present relatively orderly changes
in estimation error, and they perform better in following the variations of the referenced
SOC. Particularly, the proposed UR-ACKF algorithm achieves a RMSE of within 1.23% and
a MAE of under 0.88%.
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5.2.2. Results with Non-Positive Definite Error Covariance Matrix

In real-world applications, the situation of a non-positive definite error covariance
matrix is likely to occur because of rounding and discretizing operations in hardware.
Therefore, to simulate this situation, herein the error covariance matrix is initialized to be
non-positive definite, as shown in Equation (49), and other conditions are kept unchanged.
In this case, the Cholesky decomposition will fail to decompose the non-positive definite
matrix, thus the CKF-family algorithms based on Cholesky decomposition no longer work.
As a result, this section compares four different algorithms based on UR decomposition. To
better reveal the advantages of the proposed SOC estimation method, in addition to the
proposed VFFLS-ACKF, there is also the CKF based on the improved VFFLS parameter
identification (VFFLS-CKF), the ACKF algorithms based on FFRLS parameter identification
(FFRLS-ACKF) [25], and offline parameter identification (offline-ACKF). The forgetting
factor λ is set as 0.98 for the FFRLS, and the offline parameter identification refers to the
exponential fitting function method [54]. The comparative results of SOC estimation at
25 ◦C are shown in Figure 8, and the corresponding RMSE and MAE are visualized in
Figure 9. 

P0 =

(
1× 10−4 0

0 −1× 10−4

)
Q =

(
1× 10−6 0

0 1× 10−5

)
R = 0.01

(49)
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CKF family algorithms of different battery tests. (a,b) BJDST cycle; (c,d) DST cycle; (e,f) FUDS cycle.
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It is evident from Figures 8 and 9 that the UR decomposition-based CKF algorithms
can still operate normally even if the error covariance matrix is non-positive definite. In
general, the estimated SOC values are highly consistent with the reference ones. For the two
algorithms for online parameter identification, the VFFLS outperforms the FFRLS. For ex-
ample, under the DST condition, the RMSE and MAE of VFFLS-ACKF are about 1.27% and
0.92%, respectively, while those of FFRLS-ACKF are about 1.35% and 0.97%, respectively.

It is also clear from Figure 8 that the SOC values estimated by the algorithm based
on offline parameter identification deviate significantly from the references compared
with those using the online parameter identification and are subjected to more fluctuation.
Taking the BJDST cycle as an example, the RMSE and MAE of the VFFLS-ACKF are lower
at 1.18% and 0.68%, respectively, while those of the offline-ACKF reach 2.10% and 1.65%,
respectively, which are significantly larger than the former. This is because the internal
parameters of LIBs vary continuously in practical working conditions. The online parameter
identification can update the model parameters of LIBs correctly, so it can improve the
accuracies of the battery model and SOC estimation.

5.2.3. Validation at Different Temperatures

The above experiments are conducted at 25 ◦C. In EV applications, the LIBs may
operate under a wide range of temperatures, so it is important to evaluate the adaptability
of the proposed algorithm to different temperatures. Therefore, in this section, the proposed
method is further validated under BJDST conditions at 0 ◦C and 45 ◦C. The experiments
also consider both cases of positive and non-positive definite error covariance matrices. The
SOC estimation results are shown in Figure 10, while the RMSE and MAE are visualized in
Figure 11.

From the results in Figures 10 and 11, it can be concluded that under the BJDST
condition, the SOC estimation errors at 0 ◦C are higher than those at 45 ◦C. The reason is
that lithium-ion batteries may exhibit more complex nonlinear dynamic behavior at lower
temperatures, resulting in a decrease in the accuracy of the first-order RC battery EECM.
In addition, the RMSE remains within 1.62%, and the MAE remains within 1.27% at the
two temperatures, indicating that the proposed method performs good adaptability to a
wide temperature range.
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6. Conclusions

This paper has proposed a SOC estimation method for lithium-ion batteries by in-
corporating a vector forgetting factor least square (VFFLS) algorithm and an improved
adaptive cubature Kalman filter (ACKF). The VFFLS operation is implemented by substi-
tuting the single forgetting factor in the classical FFRLS method with multiple forgetting
factors, enabling it to balance multiple parameters that change at different time scales. The
Cholesky decomposition used in the standard CKF is substituted by the UR decomposition
so that the filter can work no matter whether the error covariance matrix is positive or
non-positive definite. In addition, an adaptive strategy for updating the noise covariances is
introduced to the CKF. Statistical analysis of the RMSE and MAE of the predicted terminal
voltage shows that the model parameters obtained by the VFFLS method can characterize
the battery dynamics accurately. Experiments under DST, BJDST, and FUDS driving cycles
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at 25 ◦C demonstrate that the proposed method can work normally under both conditions
of positive and non-positive definite error covariance matrices. Particularly, the RMSE is
within 1.27%, and the MAE is within 0.92%. Compared with other algorithms, including
the FFRLS-ACKF and offline-ACKF, the proposed method performs better in accuracy,
stability, and convergence speed. In addition, validation under the BJDST cycle at 0 ◦C and
45 ◦C shows that the proposed method exhibits good adaptability to temperature.

The SOC estimation accuracy of LIBs is highly influenced by many factors. This work
has provided a potential solution for the real-time battery management application of
electric vehicles. However, there is still some room for improvement. In the future, we will
further reveal the effect of battery aging on the efficacy of the proposed method. Moreover,
the strategies for adaptively updating the multiple forgetting factors, which are helpful to
the further efficacy improvement of the proposed method, are also worth investigating.
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