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Abstract: Determining both the average temperature and the underlying temperature distribution
within a battery system is crucial for system design, control, and operation. Therefore, thermal battery
system models, which allow for the calculation of these distributions, are required. In this work, a
generic thermal equivalent circuit model for commercial battery modules with passive cooling is
introduced. The model approach can be easily adopted to varying system designs and sizes and is
accompanied by a corresponding low-effort characterization process. The validation of the model
was performed on both synthetic and measured load profiles from stationary and marine applications.
The results show that the model can represent both the average temperature and the occurring
temperature spread (maximum to minimum temperature) with deviations below 1 K. In addition
to the introduced full-scale model, further simplifying assumptions were tested in order to reduce
the computational effort required by the model. By comparing the resulting simplified models with
the original full-scale model, it can be shown that both reducing the number of simulated cells and
assuming electrical homogeneity between the cells in the module offer a reduction in the computation
time within one order of magnitude while still retaining a high model accuracy.

Keywords: batteries; stationary energy storage; marine; thermal modeling; system modeling;
temperature distribution

1. Introduction

Large-scale lithium-ion-based battery systems have become an established element of
modern energy systems within the last decade. Common applications range from mass
markets such as automotive and stationary up to, as of now, niche uses such as electrified
marine powertrains [1–5]. Concerning these large-scale battery systems, both investigations
on the laboratory scale and the experience obtained from the field have shown that their
thermal behavior is crucial over the entire life span. Regarding operational safety, failure
cases such as overheating, thermal runaway, and thermal propagation have all proven to
be of the highest relevance [6–11]. Furthermore, even with below-critical conditions, the
temperature still heavily influences important characteristics of Li-ion batteries, such as the
impedance behavior or the aging progress [12–15].

Regarding large-scale battery systems, which comprise multiple cells connected in
series and parallel, in addition to the average temperature, the temperature distribution
between the individual cells must also be considered. Temperature deviations can be
caused by uneven heat generation, as well as by deviating heat capacities or varying heat
dissipation from the individual cells to their surroundings [16,17]. Due to the tempera-
ture dependency of the battery impedance, temperature gradients cause variations in the
current or voltage for cells in parallel or series connections. The influence of temperature
differences on the current distribution in parallel connections was investigated by various
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researchers [18–21]. Among those, Fill et al. [16] further discussed the occurring positive
feedback loop between the electrical and thermal behavior, since current differences in-
tensify existing temperature differences in the system due to the negative temperature
coefficient of the battery impedance.

In addition, and as a result of electrical variations, uneven temperature distributions
further trigger deviations in the aging progress. Generally, the dependence of aging on
the cell temperature is assumed to be of an exponential nature following the Arrhenius
law [22]. Zilberman et al. [23] used simulations to investigate the influence of different
temperature deltas on the aging rate. The generally negative influence indicated by the
results was also verified by several experimental studies, such as those of Chiu et al. [24]
and Paul et al. [25]. Within this context, a maximum deviation of 5 K is often given as a
rule of thumb in order to avoid severely increased aging [20,26]. The influence of different
cooling strategies and cell arrangements is also an ongoing subject of research, as shown by
Ji et al. [27] and Cao et al. [26]. Apart from deviating cell temperatures, inhomogeneous
temperature distributions within the cells might also influence their behavior, as shown,
among others, by Werner et al. [28]. Both inter- and intracell temperature variations relate
to the broader topic of cell-to-cell variations (CtCVs) and their influence on the system
behavior [17,29,30].

With both the average temperature and the temperature distribution within a battery
system being of high relevance for its operation, thermal system modeling has become
a major topic in research and development ever since. Thermal battery models are used,
among others, for battery design and the optimization of operating regimes. In addition,
live applications such as model-predictive control or model-based predictive maintenance
are also relevant use cases [31]. The key requirements for suitable models for such applica-
tions are accuracy and spatial–temporal resolution, as well as computational demand and
easy parameterization for different system structures.

The foundation of a thermal battery system model is the battery cell model. Cell mod-
els can represent different degrees of cell internal inhomogeneity. The most common are
so-called 0D lumped parameter models as used, among others, by Shadman Rad et al. [32],
which assume equal temperature and electrothermal characteristics within the entire battery
cell. Models including 1D models [33,34], 2D models [35], or 3D models [36,37] increase the
geometrical complexity accordingly and are used, among others, during the geometrical
dimensioning of a cell or the investigations of cell internal defects such as nail penetration.
Scaling these cell models to the system level requires the representation of the thermal
interaction with other cells, passive components such as the system housing, and the
environment. This can be achieved by using highly resolved computational fluid dynamics
(CFDs) models [26,38,39]. These models allow for a precise representation of the system’s
geometry and the calculation of complex phenomena such as heat convection. However,
in return, they require extensive knowledge about the system’s geometrical structure and
used materials, thus rendering the parameterization challenging. Also, the resulting models
are usually very demanding during computation, thus hindering an effective usage in live
model applications.

Another approach is given by so-called thermal equivalent circuit models (T-ECM),
which represent the thermal interactions in the system through electrical components such
as resistors and capacitors. Thermal equivalent circuit models can incorporate different
degrees of spatial resolution, ranging from complex 3D models as given, among others,
by Kleiner et al. [29] up to highly simplified models incorporating 0D cell models as
given, among others, by Gan et al. [40] and Murashko et al. [41]. A comparative study on
the influence of the model complexity on accuracy and computational effort is given by
Lechermann et al. The authors in [42] tested various levels of order reduction for a 3D
thermal module model, as well as implemented artificial neural networks as surrogate
models [42]. In general, thermal equivalent circuit models enable a considerably faster
computation in exchange for often limited accuracy and resolution. However, they usually
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still require an extensive parameterization and often do not allow for live computation
when applied to large-scale systems consisting of thousands of individual battery cells.

Following this conflict of interests, the present work intends to contribute the following
aspects to the state of the art of thermal battery system modeling:

1. A thermal battery system model for a commercial Li-ion battery module with a focus
on computational simplicity and easy adaptation to other module geometries.

2. A corresponding parameterization approach, which allows for the rapid determi-
nation of all of the required parameters without causing irreversible damage to the
module.

3. An analysis of further simplifying assumptions, which reduces the model’s resolution
and accuracy in exchange for faster computation.

The resulting modeling approach intends to extend the electrical model proposed
in [43] through a thermal perspective providing a holistic tool chain for the electro thermal
modeling of large-scale battery systems.

In order to enable a meaningful evaluation of the proposed thermal battery model,
reference indications for the model accuracy and computational cost are necessary. For this
purpose, quantitative excerpts taken from existing publications are presented in the follow-
ing. It must be mentioned, however, that the complexity of the system under investigation
strongly influenced the achievable model accuracy, hence limiting the comparability with
different modeling approaches. Regarding the computational performance, deviations of
the model depth and the performance of the executing system and solver algorithm further
hindered comparisons between different modeling approaches. Therefore, a quantitative
comparison can always only serve as an indication for the evaluation of a model.

Regarding single cell models, the published results often exhibit maximum model
errors of around 1 K, e.g., 1.5 K in [34] and 1.35 K in [35]. At the module or pack level,
errors of up to 3.3 K [38], or 5 % of the measured temperature [40], can be found. Higher
accuracies are, among others, given by Lechermann et al. [42] and Kleiner et al. [29] with
maximum errors below 1 K and 0.5 K, respectively. In terms of the computational effort,
the published results vary to an even higher degree. The highly spatially resolved model
proposed by Trady et al. [36] requires beyond 1000 s per hour of simulated profile. On
the other end of the spectrum, Lechermann et al. [42] describe various model designs
achieving below 1 s per hour profile time, although these do not include initialization and
postprocessing [42].

2. Experimental Setup
2.1. System under Investigation and Experimental Setup

During the investigations, a lithium-ion battery module manufactured by LG En-
ergy Solution was used. The module comprises 28 64 Ah NMC pouch cells with a maximum
load rating of ±2.45C in a 14s2p configuration. Within the module, the cells are grouped
into two 1D cell stacks with 14 cells each, which are separated by an isolation pad (see
Figure 1). The applied cell numbering indicates each cell’s serial position along rising elec-
trical potentials. The individual cells are electrically interconnected by copper connection
plates and geometrically separated by aluminium spacers. The interconnections between
the two submodules, as well as between the sub-modules and the power terminals, are
achieved via solid copper busbars. The entire module is housed in an aluminium casing
with additional steel elements at supporting positions.

During the measurements, the module was connected to a Scienlab SL/80/100/8BT6C
battery tester with an additional SL/U/MCM16C unit for the individual measurement
of all 14 cell voltages. In total, current and voltage were measured with an accuracy of
±0.1 mV and 0.05% · I ± 20 mA, respectively. All measurements were conducted in an
ATT DM340T climate chamber. In order to measure the temperature distribution inside
the module, 14 type K thermocouples were inserted into every second aluminium spacer
(see Figure 1). The temperatures recorded by these sensors are, in the following, referred
to as cell temperatures Tcell. Additional thermocouples were placed onto the housing
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(Thousing) and the positive and negative terminal (Tpos. pole, Tneg. pole), as well as inside the
climate chamber in order to record the ambient temperature (Tambient). The sensors were
integrated via two PEAK Systems MU-Thermocouple1 CAN modules. In order to quantify
the resulting accuracy, the entire sensor chain was compared to a Lufft XP100 reference
sensor. For this purpose, five thermocouples and the reference sensor were inserted into a
distilled waterbath and tempered to 10, 20, 30, and 40 ◦C. The measurements resulted in a
mean deviation of −1.12 K compared to the reference sensor with a maximum deviation of
0.37 K between the individual sensors. The determined mean error was not compensated
in the following but was taken into account during the model validation.
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Figure 1. Depiction of the battery module under investigation with its aluminium housing partially
disassembled. The cells are arranged in a 1D structure within two separated submodules.

2.2. Analytical Investigations

Some of the characteristics that are relevant to the following model parameterization
can be obtained without conducting actual electrothermal test procedures. In the first step,
the elements of the module housing were disassembled and weighed in order to calculate
the corresponding heat capacities derived from the literature values. By disassembling the
rear cover of the module, one of the aluminium spacers was also accessed and weighed.
All weighing was conducted with a Kern PNS 3000-2 laboratory scale. The resulting masses
m and heat capacities Cth are given in Table 1. A potential nondestructive approximation to
this process would be to calculate the housing mass from the total module weight and the
cell masses given by the data sheet.

Table 1. Weighed masses and calculated heat capacities of the module housing and spacers.

Housing
(Perimeter) Housing (Front) Housing (Rear) Spacer

Material Al6063 Alloyed steel Alloyed steel Al6063
m/kg 5.39 1.06 1.00 0.074

Cth/J/K 5 073.6 520.2 491.0 69.8

In order to determine the thermal resistances of the copper busbars interconnecting
the submodules and the module terminals, the Wiedemann–Franz law was applied. The
Wiedemann–Franz law (Equation (1)) describes the relation between the electrical conduc-
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tivity σ and thermal conductivity κ in metals as proportional to the temperature T with the
constant L0 [44].

κ

σ
= L0 · T (1)

L0 = 2.44 · 10−8 WΩK−2 (2)

Using this relationship, the determination of the thermal resistance for complicated
geometries can be substituted by the relatively simple measurement of the electrical resis-
tance. Busbar 1 connects the positive pole and the first submodule, while busbar 2 connects
the negative pole to the second submodule. Busbar 3 interconnects the two submodules.
All electrical resistances RDC were measured with a Gossen Metrawatt Metra Hit H+E CAR.
The resulting thermal resistances Rth for a reference temperature of 25 ◦C are given in
Table 2. In addition to the busbars, the thermal resistance of the isolation pad between
the two submodules was analytically determined from the thickness of the pad and the
material properties of expanded polystyrol (EPS).

Table 2. Measured electrical resistances and derived thermal resistances of the busbars and the
submodule isolation.

Busbar 1 Busbar 2 Busbar 3 Isolation Pad

Material Copper Copper Copper EPS
RDC/mΩ 0.043 0.252 0.153 -
Rth/K/W 5.91 34.64 21.03 11.06

2.3. Steady-State and Cooling Curve Measurements

While some characteristics can be obtained by direct measurement or analytical calcu-
lation, most of the thermal properties of the battery module must be obtained via specific
experiments if the process is meant to be nondestructive. Consequently, various steady-
state–cooling curve (SSCC) experiments have been conducted for this study [45]. During
the steady-state tests, the module was continuously stressed by alternating 5 s current
pulses. The corresponding losses in the form of irreversible heat generation, also called
Joules heat generation Q̇Joules, heated the module until a steady state was reached. During
these experiments, the steady state was defined by a temperature change below 0.05 K/h.
The reversible heat due to entropy changes Q̇entropy can be neglected, since it changes sign
with the current and, therefore, does not, on average, account for additional heating. In
the steady state, the heat dissipated to the environment equals the heat generated from
the pulses. Figure 2 shows the module current Imodule and the corresponding average
cell voltage Vcell,avg for a 20 h heating period with a load of 2C/3. All experiments were
conducted at a state of charge (SoC) of 50%.

Figure 3a depicts the resulting temperatures of the cells and the housing at an ambient
temperature set point of 20 ◦C. The experiment was repeated at four different loads between
C/2 and 1C (see Figure 3b).

Since the heat generation can be attributed to the electrical losses, its value can be
calculated from the module current Imodule, the average overvoltage ∆Vcell,avg, and the
number of cell pairs in series ns:

Q̇Joules = Imodule · ∆Vcell,avg · ns (3)

In theory, ∆Vcell,avg can be determined by subtracting the initial average open circuit
voltage (OCVavg) measured before the experiment from the measured voltage during the
heating period. However, this only holds as long as the battery remains in the electrical
steady state i.e., no changes in the SoC occur. As shown in Figure 2, this assumption was
not valid for the conducted experiments. The visible drift in the measured voltage indicates
a SoC change, which is most likely due to imprecise current measurement and control.
Investigating the OCV before and after the heating phase allows for the determination of
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the occurring SoC drift, which amounts to just below 1% for the 2/3C profile. In order to
account for this effect, the OCV curve (dashed yellow line) was calculated as the linear
interpolation between the initial OCV and the OCV after the heating period.

Figure 2. Voltage and current curves during steady-state and cooling curve experiments. The depicted
curves show the electrical behavior for an alternating load of 2C/3.
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Figure 3. Temperature curves obtained during the steady-state and cooling curve experiments.
(a) Cell, housing and ambient temperature, during the 2C/3 test. (b) Average cell temperatures for
all conducted tests.

By measuring the temperature difference ∆T between the cells, the housing, and
the environment, the equivalent thermal resistance Rth can be calculated according to
Equation (4) using the mean heat generation Q̇Joules,avg in the steady state. Table 3 lists the
measured temperature deltas between the cells and the environment (C2A), between the
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cells and the housing (C2H), and between the housing and the environment (H2A), as well
as the calculated heat generations and resulting thermal resistances.

Rth =
∆T

Q̇Joules,avg
(4)

Following the 20 h heating phase, the pulsing terminated and the module cooled
down to ambient temperature (see Figure 3). During cooling, heat from the cell stack was
dissipated via the housing to the environment. Equation (5) approximates the temper-
ature trajectory Tcell,avg(t) using the starting temperature Tcell,avg,0 and the thermal time
constant τth.

Tcell,avg(t) = (Tcell,avg,0 − Tambient) · e
− t

τth + Tambient (5)

By fitting this equation to the measured curves, the thermal time constant can be deter-
mined. When applying this method, the entire cell stack is considered as a homogeneous
heat capacity with equal temperature. Inhomogeneous temperature distributions may
result in distortions of the pure exponential trajectory. Since the remaining mean absolute
error during fitting was found to be below 0.02 K, this assumption was considered uncriti-
cal. With the thermal time constant being the product of the cell stack heat capacity Cth,stack
and the thermal resistance Rth,C2A, the corresponding heat capacity can be determined. The
results are given in Table 3.

Table 3. Results of the steady-state and cooling curve experiments conducted at four loads.

Q̇Joules
/ W

∆TC2A
/ K

∆TC2H
/ K

∆TH2A
/ K

Rth,C2A
/ K/W

Rth,C2H
/ K/W

Rth,H2A
/ K/W

τth
/ s

Cth,stack
/ kJ/K

0.5 C 19.14 4.54 2.18 2.36 0.237 0.114 0.123 10 190 42.93
0.66 C 31.46 7.12 3.76 3.36 0.226 0.120 0.107 10 314 45.56
0.833 C 46.25 10.13 5.38 4.75 0.219 0.116 0.103 10 472 47.82

1 C 63.29 13.43 7.34 6.09 0.212 0.116 0.096 10 476 49.36
Average - - - - 0.224 0.117 0.107 - 46.42

C2A: Cells to ambient. C2H: Cells to housing. H2A: Housing to ambient.

2.4. Entropy Variation Measurements

During the operation of a Li-ion-based battery system, the entropy variation ∆S
as a function of the SoC must also be considered as a relevant characteristic due to its
corresponding heat generation Q̇entropy, which is given by Equation (6) using Faraday’s
constant F:

Q̇entropy = Tcell ·
∆S(SoC)

F
· Icell = Tcell ·

∂OCV
∂T

(SoC) · Icell (6)

Various potentiometric and calorimetric methods for the determination of the entropy
heat coefficient (EHC) i.e., ∂OCV/∂T(SoC), have been proposed by researchers. The
method applied in this work is a dynamic calorimetric approach introduced by Damay
et al. [46]. It is able to determine a high-resolution entropy curve in a comparably short
time by recording the temperature development during a full charge and discharge cycle
under a constant current–constant voltage (CC-CV) regime. By calculating the temperature
gradient dT/dt from the recorded temperature curves and multiplying it by the stack
heat capacity Cth,stack, the heat balance Q̇gen − Q̇diss can be derived. Using the thermal
resistance Rth,C2A, the dissipated heat Q̇diss can be calculated. The remaining total heat
generation Q̇gen can be understood as the sum of the irreversible Joules heat Q̇Joules and
the entropy heat Q̇entropy. While the entropy heat changes sign with the current, the Joules
heat is always positive, i.e., heating. Therefore, the difference between the two total heat
generations equals the sum of the entropy heat generations in charging and discharging
direction. This derivation is accurate assuming a negligible current dependency of the
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internal resistance. The resulting entropy curve obtained during a C/2 CC-CV cycle is
given in Figure 4. The dashed lines mark the regions during which the constant voltage
regime was active. These regions cannot be used to determine the EHC with the given
method, since the current was no longer equal in charging and discharging direction. The
curve was, therefore, held on the last valid point during these sequences.

Figure 4. Entropy curve of the battery under investigation obtained via a dynamic calorimetric
approach. The boundaries marked by the dashed lines indicate regions where a CV regime was active.

3. Modeling
3.1. Electrical System Modeling

As shown in Section 2, the calculation of the heat generation in a battery cell requires
information from the electrical domain, such as the SoC and the Joules losses. For this reason,
a thermal battery model is usually directly coupled with a corresponding electrical model that
is able to calculate these values. The thermal model used in this work was coupled with the
electrical battery system model described in [43]. The underlying electrical cell model consists
of an SoC calculation via Coulomb counting and an ECM with a serial resistor and two RC
elements. The open-circuit voltage includes a linear zeroth-order hysteresis model, while the
overvoltage was calculated in dependence of the SoC and cell temperature.

In order to scale the electrical cell model to the system level, the cell model was
instantiated separately for every physical cell in the system and interconnected according to
the actual cell topology (see Figure 5). Every instance of the cell model was parameterized
with its own resistance and capacity deviation, ∆R and ∆C, respectively, as well as its
individual initial state of charge SoCinit, thereby allowing for the calculation of the voltage
distribution within the system. The influence of the cell connector resistances is not
considered within the electrical model. The total connection resistance can be determined
from the difference between the module voltage measured at the terminals and the sum
of the cell voltages under load. Calculating the connection resistance from the entropy
variation test data resulted in total resistance of 0.37 mΩ, which can be neglected compared
to the sum of the cell resistances.

The electrical system model is fully implemented in the object-oriented Modelica model-
ing language using its open-source distribution OpenModelica. The model parameterization
used in this work was taken from [43]. It was experimentally obtained for the same battery
module as was used for this work.
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Cell [1,1] Cell [2,1] Cell [m,1]

Cell [1,2] Cell [2,2] Cell [m,2]

Cell [1,n] Cell [2,n] Cell [m,n]

Figure 5. Electrical system model introduced in [43]. Every instance of the cell model was parameter-
ized with individual parameter deviations in order to determine the resulting voltage distribution.

3.2. Thermal System Modeling

In the thermal domain, each cell is modeled as a 0D heat capacity Cth,cell by approximat-
ing a uniform temperature within the entire cell. This assumption is regularly considered
acceptable due to the high internal thermal conductivity compared to the heat transfer to
the environment [47]. The internal heat generation Q̇gen,cell of each cell is calculated from
the sum of the power losses at the resistive elements Ri in dependence of the current IR,i
and the entropy heat according to Equation (7). Further heat sources such as the heat of
mixing are usually considered negligible and are therefore not included [34]. For a more
detailed investigation of the individual contributions of different heat generation terms to
the total heat generation, the reader is referred to [48,49].

Since every cell model was individually parameterized with ∆C, ∆R, and SoCinit, the
Joules losses were also calculated cell specifically. The entropy curve used in the cell-specific
calculation of the entropy heat was assumed to be equal for each cell.

Q̇gen,cell =
3

∑
i=1

Ri(SoCcell, Tcell) · I2
R,i + Tcell ·

∂OCV
∂T

(SoCcell) · Icell (7)

In order to aggregate the single cell model instances into a thermal system model, they
were connected to each other, as well as to the housing and the environment, via various
thermal resistors. The resulting thermal equivalent circuit model for the battery module
is shown in Figure 6. The module housing was approximated as a uniform heat capacity
Cth,housing. This assumption is expected to be valid due to the high thermal conductivity of
the metallic housing and the comparably small temperature deviations between the single
cells. Each cell was connected to the housing via a thermal resistor Rth,C2H, which can be
individually parameterized for every instance. The cell-to-housing resistors represent both
the heat transfer via the adjacent surfaces and the convective transmissions of the cells to
the housing. The housing heat capacity was further connected to the ambient potential
Tambient via a thermal resistor Rth,H2A(Thousing), whose value was set in dependence to the
housing temperature. This dependency represents the variable convective flow conditions,
among others, induced by the speed of the main fan in the climate chamber, which increases
at higher heat losses of the module to the environment.

The thermal interconnection of the cells via the aluminium spacers was modeled by
an additional heat capacity Cth,spacer and two corresponding thermal resistances Rth,C2S.
The resistors represent both the direct conduction via the adjacent surfaces and the heat
conduction via the copper cell connectors. The combination of the cell and spacer with their
corresponding thermal resistances forms a repeatable unit within the model. In addition to
the spacers, the two submodules were separated by a thermal resistor Rth,isopad representing
the isolation pad in the center of the module. As introduced in Section 2.1, the cells in
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the front, rear, and center were also interfaced by three copper busbars, which were each
modeled via a thermal resistor Rth,busbar 1−3. The temperatures measured at the terminal
poles of the module were introduced as the temperature potentials Tpos. pole and Tneg. pole
and form the model boundary. Since these temperatures are usually not measured during
the operation of commercial battery modules, the thermal interconnection between different
modules via the terminal poles must also be considered when investigating installations on
the rack, pack, or system level.

......

Repeatable unit

Figure 6. Depiction of the thermal equivalent circuit model used for the calculation of the tempera-
tures in the module. The schematic structure of the physical module is underlaid.

The introduced thermal equivalent circuit model can be easily adapted for different
2D geometries consisting of cuboid cells, such as pouch or prismatic cell types. Cylindrical
cells, which can be arranged in different geometries, require a further adaption of the model.
Also, active air or liquid cooling systems are not represented by the given model approach
as of now. In order to include such systems, an additional set of thermal resistances would
need to be included, which would connect the cells to the thermal potential of the cooling
stream. The relevance and implications of this expansion are further discussed in Section 6.

The battery-system model described in Sections 3.1 and 3.2, as well as the correspond-
ing parameterization introduced in the following section, are publicly available for use by
other researchers. For access details, refer to the data availability statement.

3.3. Parameter Generation

In order to determine the parameters of the thermal battery system model, the experi-
ments described in Sections 2.2–2.4 were used. The heat capacities Cth,spacer and Cth,housing,
as well as the resistances Rth,busbar 1−3 and Rth,isopad, were directly obtained through the
measurements described in Section 2.2. The cell heat capacity Cth,cell was determined
by subtracting the heat capacity of all of the spacers in the module from the stack heat
capacity Cth,stack (see Table 3) and dividing the result by the number of cells in the stack.
The resulting heat capacity of the single cell was calculated to be 1587 J/K. At a data-sheet
cell weight of 1163 g, this results in a specific heat capacity of 1364 J/gK. When compared
to the literature values as aggregated by Steinhardt et al. [50], this value falls slightly above
usual values, which is most likely due to the consideration of the cell connectors within
the cell heat capacity. For the thermal resistance Rth,H2A(Thousing), the results of the SSCC
experiments given in Table 3 were used as a temperature-dependent lookup table.
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While the majority of the parameters can be determined directly from the SSCC exper-
iments, the cell-specific cell-to-housing resistances Rth,C2H and the cell-to-spacer resistances
Rth,C2S require further analysis, since the distribution of the total heat flow Q̇Joules to the
individual surfaces cannot be determined without direct measurement. Therefore, numeri-
cal optimization was chosen for the determination of the remaining parameters. For this
purpose, the introduced thermal equivalent circuit model and the measured temperatures
Tmeas,i taken from the steady-state experiments (see Figure 3) were used. Since the steady
state is concerned, all of the heat capacities within the equivalent circuit can be neglected.
Furthermore, the above-introduced thermal resistances and the heat generation were given
as known parameters. Using the resulting model, a set of simulated temperatures Tsim,i can
be calculated and compared to their measured counterparts. By minimizing the resulting
sum of squared errors (SSEs), the optimal parameter set can be determined:

minimize f (x) =
14

∑
i=1

(Tsim,i(~x)− Tmeas,i)
2

with respect to ~x =

(
Rth,C2S

Rth,C2H,k

)
subject to ~x > 0

(8)

In theory, the given optimization allows for the determination of an individual Rth,C2H,k
parameter for each cell k in the module. However, in order to achieve stable fits, the number
of degrees of freedom must be significantly reduced. Therefore, the value for Rth,C2H was
assumed to be equal for all of the cells apart from the cells directly at the front and rear of the
module. This corresponds to the equal perimeter housing surface adjacent to each cell. By
employing this simplification, four parameters remained as the degrees of freedom during
the optimization. The results of the optimization with the differential evolution algorithm [51]
are given in Table 4 for all of the four SSCC experiments, as well as the average values,
which were further used for the model parameterization. Even though they were clearly
within distinct ranges, the results still show a visible deviation present in the four SSCC
experiments. This relates to the simplifications made during the model design, especially
the likely temperature dependency of the thermal resistances used to model the heat transfer
between the cells in the housing and the heat transfer via the busbars.

Table 4. Results of the model parameter determination via numerical optimization.

Rth,C2S
/ K/W

Rth,C2H,front
/ K/W

Rth,C2H,rear
/ K/W

Rth,C2H,perimeter
/ K/W

0.5C 0.0197 0.262 0.404 5.55
0.66C 0.0289 0.408 0.687 4.69

0.833C 0.0268 0.396 0.647 4.65
1C 0.0212 0.345 0.557 5.08

Average 0.0242 0.353 0.574 4.99

4. Validation

In order to quantify its accuracy, the model was tested against three different load
profiles taken from different applications. Their corresponding key parameters are given
in Table 5. The results obtained during the validation are given in Table 6 and shown in
Figures 7, A1, and A2. Within the figures, the subplots labeled as (a) depics the load profile
and the corresponding SoC trajectory. The subplots labeled as (b) show the corresponding
measured temperatures of the cell stack, the housing, and the environment. All of the
validation measurements were preceded by a full CC-CV charging procedure and conse-
quent discharge to the initial SoC. Prior to commencing the measurements, both thermal
and electrical relaxation were achieved via a waiting time of 24 h. The comparison of the
average measured and simulated temperatures and the resulting error values are given in
the subplots labeled as (c). The average was derived from the temperature of the 14 thermo-
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couples both in the measurement and simulation, where the temperatures of the spacer heat
capacities were taken as a suitable substitute. In order to further quantify the representation
of the temperature distribution, the temperature spread ∆T(t) = Tcell,max(t)− Tcell,min(t)
was used. The subplots labeled as (d) show the occurring spread during both the measure-
ment and simulation. The temperature spread was chosen as a quality criterion, because
it is a good indicator for the potential consequences of the temperature deviation in the
module and allows for simple interpretation. The validation data recorded during the
testing of the synthetic profile is publicly available for use by other researchers. For access
details, refer to the data availability statement.

Table 5. Key parameters of the load profiles used during model validation.

tprofile/h Ipeak Iabs,avg SoC

Marine
profile 3.4 1.56C 0.50C 20–85% Figure 7

Synthetic
profile 5.5 1.25C 0.63C 13–45% Figure A1

Stationary
profile [52] 24 0.9C 0.14C 5–95% Figure A2

Regarding the average temperature, the validation confirms that the model can rep-
resent the measurement accurately with maximum absolute errors of ca. 1 K in the worst
case and a 0.28 K mean absolute deviation across all of the profiles. Upon comparing the
three profiles, the model proved to be more precise in relative terms for higher loads. This
relates to the increasing impact of the entropy heat component at low loads compared to the
Joules heat component. Since the entropy heat coefficient is usually only within the range
of hundreds of microvolts per Kelvin and, therefore, requires highly accurate measurement
devices and conditions, its determination is susceptible to inaccuracies. As can be seen, the
stationary and marine profiles in particular showed significant decreases in accuracy when
neglecting the entropy heat due to the comparably low loads applied and the quadratic
nature of the Joules heat component.

Regarding the temperature spread, a maximum deviation of about 2 K can be observed
for the marine profile with increasing spreads at higher average temperatures. During
simulation, it can be seen that, while matching the overall course, the simulation fell
consistently below the measured curve. This offset error relates to the sensor accuracies
described in Section 2.1, with the five thermocouples tested showing an internal deviation
of 0.37 K. This was not replicated by the model, which caused the initial temperature spread
to subside fairly quickly before the distribution originating from the actual load developed.
The same behavior can also be observed for the stationary profile (Figure A2), thereby
indicating a steady offset error of ca. 0.5 K. In this context, the observed maximum sensor
deviation of 0.37 K is also expected to increase when testing larger samples of sensors.

While the marine and the stationary profiles both showed a trajectory comparable
to the measurement with a distinct offset error, the synthetic profile (Figure A1) requires
further interpretation. Although the initial drop in the temperature spread associated
with the sensor deviation is clearly visible, the simulated curve surpassed the measured
reference during both of the load phases. This effect most likely relates to the heat transfer
via the terminal busbars. During the test procedure, the terminals surpassed temperatures
of 50 ◦C. Since, in the model, the terminals are directly coupled to most of the inner and
outer cells via two thermal resistors, even incurring small inaccuracies while determining
the value of the said resistors can lead to comparably large temperature increases. This
effect is especially visible for the synthetic profile, since it incorporated the highest average
load of the three profiles.
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Figure 7. Validation results for the marine load profile. (a) Current and SoC. (b) Measured tem-
peratures. (c) Measured and simulated average cell temperatures. (d) Measured and simulated
temperature spread in the module.

Table 6. Results of the model validation for three different load profiles.

Marine Profile εMAE/K εabs,max/K εRMSE/K

Average temperature 0.40 1.1 0.53
- without entropy 0.81 2.0 0.93

Temperature spread 0.30 0.51 0.31
- without entropy 0.33 0.58 0.36

Synthetic profile

Average temperature 0.24 0.79 0.31
- without entropy 0.42 1.1 0.50

Temperature spread 0.37 1.1 0.46
- without entropy 0.37 1.1 0.46

Stationary profile

Average temperature 0.21 0.68 0.26
- without entropy 0.51 2.2 0.72

Temperature spread 0.52 0.65 0.52
- without entropy 0.55 0.91 0.57

εMAE: Mean absolute error. εabs,max: Maximum absolute error. εRMSE: Root-mean-square error.
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5. Model Simplification

The model as hitherto presented requires about 660 s of computation time for running
the synthetic 5.5 h load profile in a secondwise resolution on a performant desktop PC.
While 120 s/h can be considered acceptable for running few simulations on a single battery
module, a potential live simulation of a large-scale system consisting of hundreds of
modules would require tremendous computational power and would, therefore, cause
significant costs for the operator. In order to enable such applications, a simplification
approach for the presented model is introduced in the following. The objective is the
reduction of the computational effort while retaining the model quality of the original
full-scale model.

5.1. Derivation

In order to derive a simplified model version, the original cell-discrete model was con-
verted into a continuous model. As shown in Figure 8, the battery module was considered
to consist of two homogeneous thermal masses separated by the isolation pad. Both of
the thermal masses hold a temperature distribution T(x, t) in dependence of the longitudi-
nal position x and independent of the lateral position. Within the homogeneous thermal
mass, a vertical slice of length dx comprises the heat capacity dCth and the position- and
time-dependent heat generation dQ̇gen(x, t). The heat capacity includes the heat capacities
of the cells, as well as the spacers, and is considered to be equally distributed along the
module length.

Figure 8. Derivation of the continuous description for the thermal battery module model.

The individual increments were further interconnected by the thermal resistance
dRth,C2C and connected to the housing via the thermal resistance dRth,C2H(x). In assuming
a homogeneous thermal mass, dRth,C2C is independent of x. In contrast, the cell-to-housing
resistance must be considered as variable over x in order to represent the increased heat
transfer at the front, i.e., the rear as well, of the module. The given description can also be
formulated as Equation (9) according to Fourier’s law of thermal conduction:

dCth ·
dT(x, t)

dt
= dQ̇gen +

1
dRth,C2C

· dx2 · d2T(x, t)
dx2 −

T(x, t)− Thousing(t)
dRth,C2H

(9)
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To solve Equation (9), the model must be discretized along the x axis, with the number
of increments determining the resulting computational effort and accuracy of the model.
Simulating the model in 28 increments corresponds to the full-scale model presented in
Section 3 with merged spacer and cell heat capacities. In the following, the effects of
reducing the number of discrete increments on the achievable computation time and model
accuracy were tested. During this process, the additional elements apart from the cell stack
(housing, isopad, and copper busbars) were implemented according to the full-scale model.

5.2. Verification

For the verification of the derived simplified model, its performance was compared
to the reference model results given in Section 4. Figure 9 shows the increase in the
mean absolute error εMAE for the average temperature (a) and the temperature spread
(b) over the achievable simulation time normalized to a one hour profile time. Data point
1 shows the reference model with 28 cells, while points 2–6 show the the results for the
model simplification discretized in 28, 20, 14, 8, and 4 increments. The results indicate
the expected conflict of objectives between simulation duration and additional error, with
the error increasing significantly for low numbers of increments. It can also be seen
that the temperature spread was much more susceptible to the reduction in increments,
which almost doubled the original mean absolute error of the full-scale model for the
four-increment simplification. In investigating the underlying sensitivity, the required
computation time can be plotted over the number of increments. The resulting curve shows
a strong quadratic relationship, thus suggesting the O(n2) complexity of the problem in
asymptotic notation.

In addition to reducing the number of increments, the computational speed can also
be increased by changing the nature of the electrothermal model coupling. In the full-scale
model, every thermal cell model is coupled with an individual electrical cell model, thus
enabling a cell-specific calculation of Q̇gen and the consideration of a cell-specific T(x, t)
within the electrical model. Simplifying this approach by only calculating an average
electrical behavior using the average temperature T(x, t) as an input and an average heat
generation Q̇gen as the output allows for a further reduction in the computation time.
Figure 9 shows the results of this electrically homogeneous approach. It can be seen that,
for the same number of increments, the computation time was severely reduced, while the
error increase was comparably low for large numbers of increments. This corresponds to
the comparably small influence of the electrical behavior deviations on the temperature
distribution. However, it can still be seen that, even for the reference model, assuming
electrical homogeneity induced a distinct model error. Further reducing the number of
increments did not initially affect the error significantly. This is due to the fact that the
error resulting from the electrical homogeneity and the error resulting from the reduction
in increments annul each other. Going further towards eight or four increments, the effect
of the reduction in increments surpassed this effect and caused a significant increase in the
model error.

While these results might suggest that assuming electrical homogeneity is a promising
tool to achieve fast computation, it must be noted that this approach does not allow for
an investigation of the electrical effects of large temperature spreads in the model. Also,
the induced error might be significantly increased as soon as systems with large electrical
CtCVs, e.g., aged systems, are simulated.
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Figure 9. Verification results for the model simplification discretized in various numbers of incre-
ments. (a) Additional average temperature error over normalized computation time. (b) Additional
temperature spread error over normalized computation time.

6. Discussion

The battery model introduced in this study offers an approach to thermal system
modeling, which is easily adaptable to various module structures and designs. The corre-
sponding parameterization procedure allows for the determination of all of the relevant
parameters using comparably simple electrothermal measurements conducted with stan-
dard battery testing equipment. Also, the parameterization process can be conducted
without disassembling the cell stack, i.e., opening the cell connectors, which would render
the module unusable for further testing. However, it is still necessary for both the parame-
terization and validation of the model to measure the temperature distribution within the
module, which was achieved by inserting additional temperature sensors into the module.
To what extent reducing the number of sensors used during the experiments affects the
quality of the resulting model parameterization is to be tested in further investigations.
Also, promising and completely noninvasive methods such as impedance-based tempera-
ture determination, as introduced, among others, in [53,54], must be assessed in order to
further simplify the parameterization process.

During validation, the general model quality was proven through the example of three
load profiles with different load characteristics. With maximum absolute errors significantly
below 1 K in almost all of the scenarios, the resulting model accuracy falls well within the
range of the existing literature models presented in Section 1. The results also show that
neglecting entropy-based heat generation causes significant model errors, especially for
low-current load profiles. This contradicts the repeatedly made assumption that entropy
effects can be neglected without inducing major model errors. Regarding the temperature
spread as the key quantity for assessing the system behavior, the model was generally able
to follow the measured trajectory. However, the offset induced by the sensor deviation was
identified as a relevant error source, which must be taken into account when applying the
model. Furthermore, the representation of the busbars connecting the cells to the module
terminal is also likely to have a large influence on the simulated temperature spread.

In its presented form, the model requires around 120 s per hour of profile time to com-
pute. In order to further reduce the computational effort, a continuous model description
was derived and discretized using varying numbers of increments. The comparison of the
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simplified model to the reference shows that the achievable reduction in computation time
and the additional induced error are in conflict. Nevertheless, significant reductions in
computation time were possible without major accuracy concessions. Also, the assump-
tion of electrical homogeneity proved to be highly effective in terms of the computation
time. However, it must be considered that this simplification eliminates the possibility to
investigate electrothermal interdependencies on a system level. In total, the achievable
computational performance places the model at the faster end of the models presented
in the recent literature, although, as detailed in Section 1, direct quantitative comparison
must be considered with caution. In any case, the prime advantage of the presented sim-
plification process is not to be found in the shortest possible computation time, but in the
identification of the multiobjective tradeoff between the computation time and the accuracy.
This allows for a use-case-specific tailoring of the model towards the given requirements.

A major drawback of the introduced model is the as of now lacking representation of
air- or liquid-cooled systems, since those cooling designs are very common across most
applications. To address this issue, an additional set of thermal resistances connecting the
cells to the thermal potential of the cooling stream (i.e., the coolant temperature) might be
introduced. In the case of parallel cooling streams for each cell, i.e., approximately equal
coolant temperatures, these resistors would share a common parameter, which could be
determined by comparing the temperatures in the steady state with and without coolant
flow. The resistance might also be set in dependence to the cell temperature in order to
represent, e.g., varying fan speeds. Apart from the representation of actively cooled systems,
the thermal interaction with other modules in a rack might also be addressed in future
model versions. This relates primarily to the terminal temperatures, which were considered
to be a boundary condition in the presented model. While both of the adjustments to
the model would certainly increase its complexity, it can still be stated that the described
simplification processes remain applicable to the model.

Realizing the outlined extensions to the current model is to be the subject of further
investigations. This also applies to its applications in live scenarios such as model-based
predictive maintenance. An exemplary implementation could include a live comparison
of the simulated temperature spread representing the healthy system to the temperature
spread measured in the physical system in order to detect increased internal and external
resistances or malfunctions in the cooling system. Through that approach, the early de-
tection of potentially hazardous faults would be possible, thereby significantly increasing
operational safety and system availability for the customer.
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C2A Cell-to-ambient
C2C Cell-to-cell
C2H Cell-to-housing
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CC-CV Constant current–constant voltage
CFD Computational fluid dynamics
CtCV Cell-to-cell variations
EHC Entropic heat coefficient
EPS Expanded polystyrol
H2A Housing-to-ambient
NMC Nickel manganese cobalt oxide
OCV Open-circuit voltage
RMSE Root-mean-square error
SSCC Steady-state–cooling curve
SSE Sum of squared errors
SoC State of charge
T-ECM Thermal equivalent circuit model

Appendix A. Additional Validation Results

Appendix A.1. Validation Results for the Synthetic Load Profile

Figure A1. Validation results for the synthetic load profile. (a) Current and SoC. (b) Measured
temperatures. (c) Measured and simulated average cell temperatures. (d) Measured and simulated
temperature spread in the module.
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Appendix A.2. Validation Results for the Stationary Load Profile

Figure A2. Validation results for the stationary load profile. (a) Current and SoC. (b) Measured
temperatures. (c) Measured and simulated average cell temperatures. (d) Measured and simulated
temperature spread in the module.

References
1. Hecht, C.; Spreuer, K.G.; Figgener, J.; Sauer, D.U. Market Review and Technical Properties of Electric Vehicles in Germany. Vehicles

2022, 4, 903–916. [CrossRef]
2. Wesselmann, M.; Wilkening, L.; Kern, T.A. Techno-Economic evaluation of single and multi-purpose grid-scale battery systems.

J. Energy Storage 2020, 32, 101790. [CrossRef]
3. Figgener, J.; Stenzel, P.; Kairies, K.P.; Linßen, J.; Haberschusz, D.; Wessels, O.; Angenendt, G.; Robinius, M.; Stolten, D.; Sauer,

D.U. The development of stationary battery storage systems in Germany—A market review. J. Energy Storage 2020, 29, 101153.
[CrossRef]

4. Kolodziejski, M.; Michalska-Pozoga, I. Battery Energy Storage Systems in Ships’ Hybrid/Electric Propulsion Systems. Energies
2023, 16, 1122. [CrossRef]

5. Bach, H.; Bergek, A.; Bjørgum, Ø.; Hansen, T.; Kenzhegaliyeva, A.; Steen, M. Implementing maritime battery-electric and
hydrogen solutions: A technological innovation systems analysis. Transp. Res. Part D Transp. Environ. 2020, 87, 102492. [CrossRef]

6. Mallick, S.; Gayen, D. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems—A critical review. J.
Energy Storage 2023, 62, 106894. [CrossRef]

7. Shahid, S.; Agelin-Chaab, M. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries. Energy
Convers. Manag. X 2022, 16, 100310. [CrossRef]

8. Wei, D.; Zhang, M.; Zhu, L.; Chen, H.; Huang, W.; Yao, J.; Yuan, Z.; Xu, C.; Feng, X. Study on Thermal Runaway Behavior of
Li-Ion Batteries Using Different Abuse Methods. Batteries 2022, 8, 201. [CrossRef]

9. Li, A.; Yuen, A.C.Y.; Wang, W.; Weng, J.; Lai, C.S.; Kook, S.; Yeoh, G.H. Thermal Propagation Modelling of Abnormal Heat
Generation in Various Battery Cell Locations. Batteries 2022, 8, 216. [CrossRef]

http://doi.org/10.3390/vehicles4040049
http://dx.doi.org/10.1016/j.est.2020.101790
http://dx.doi.org/10.1016/j.est.2019.101153
http://dx.doi.org/10.3390/en16031122
http://dx.doi.org/10.1016/j.trd.2020.102492
http://dx.doi.org/10.1016/j.est.2023.106894
http://dx.doi.org/10.1016/j.ecmx.2022.100310
http://dx.doi.org/10.3390/batteries8110201
http://dx.doi.org/10.3390/batteries8110216


Batteries 2023, 9, 522 20 of 21

10. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A review of lithium-ion battery
safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [CrossRef]

11. Feng, X.; Ouyang, M.; Liu, X.; Lu, L.; Xia, Y.; He, X. Thermal runaway mechanism of lithium ion battery for electric vehicles: A
review. Energy Storage Mater. 2018, 10, 246–267. [CrossRef]

12. Alipour, M.; Ziebert, C.; Conte, F.V.; Kizilel, R. A Review on Temperature-Dependent Electrochemical Properties, Aging, and
Performance of Lithium-Ion Cells. Batteries 2020, 6, 35. [CrossRef]

13. Vidal, C.; Gross, O.; Gu, R.; Kollmeyer, P.; Emadi, A. xEV Li-Ion Battery Low-Temperature Effects—Review. IEEE Trans. Veh.
Technol. 2019, 68, 4560–4572. [CrossRef]

14. Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature effect and thermal impact in lithium-ion
batteries: A review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [CrossRef]

15. Leng, F.; Tan, C.M.; Pecht, M. Effect of Temperature on the Aging rate of Li Ion Battery Operating above Room Temperature. Sci.
Rep. 2015, 5, 12967. [CrossRef]

16. Fill, A.; Mader, T.; Schmidt, T.; Avdyli, A.; Kopp, M.; Birke, K.P. Experimental investigations on current and temperature
imbalances among parallel-connected lithium-ion cells at different thermal conditions. J. Energy Storage 2022, 51, 104325.
[CrossRef]

17. Baumann, M.; Wildfeuer, L.; Rohr, S.; Lienkamp, M. Parameter variations within Li-Ion battery packs – Theoretical investigations
and experimental quantification. J. Energy Storage 2018, 18, 295–307. [CrossRef]

18. Menner, S.; Siehr, J.; Buchholz, M. Investigation of current distributions of large-format pouch cells with individual temperature
gradients by segmentation. J. Energy Storage 2021, 35, 102300. [CrossRef]

19. Hosseinzadeh, E.; Arias, S.; Krishna, M.; Worwood, D.; Barai, A.; Widanalage, D.; Marco, J. Quantifying cell-to-cell variations of a
parallel battery module for different pack configurations. Appl. Energy 2021, 282, 115859. [CrossRef]

20. Klein, M.P.; Park, J.W. Current Distribution Measurements in Parallel-Connected Lithium-Ion Cylindrical Cells under Non-
Uniform Temperature Conditions. J. Electrochem. Soc. 2017, 164, A1893–A1906. [CrossRef]

21. Yang, N.; Zhang, X.; Shang, B.; Li, G. Unbalanced discharging and aging due to temperature differences among the cells in a
lithium-ion battery pack with parallel combination. J. Power Sources 2016, 306, 733–741. [CrossRef]

22. Schmalstieg, J.; Käbitz, S.; Ecker, M.; Sauer, D.U. A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J.
Power Sources 2014, 257, 325–334. [CrossRef]

23. Zilberman, I.; Schmitt, J.; Ludwig, S.; Naumann, M.; Jossen, A. Simulation of voltage imbalance in large lithium-ion battery packs
influenced by cell-to-cell variations and balancing systems. J. Energy Storage 2020, 32, 101828. [CrossRef]

24. Chiu, K.C.; Lin, C.H.; Yeh, S.F.; Lin, Y.H.; Huang, C.S.; Chen, K.C. Cycle life analysis of series connected lithium-ion batteries
with temperature difference. J. Power Sources 2014, 263, 75–84. [CrossRef]

25. Paul, S.; Diegelmann, C.; Kabza, H.; Tillmetz, W. Analysis of ageing inhomogeneities in lithium-ion battery systems. J. Power
Sources 2013, 239, 642–650. [CrossRef]

26. Cao, W.; Zhao, C.; Wang, Y.; Dong, T.; Jiang, F. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled
liquid flow. Int. J. Heat Mass Transf. 2019, 138, 1178–1187. [CrossRef]

27. Ji, C.; Wang, B.; Wang, S.; Pan, S.; Wang, D.; Qi, P.; Zhang, K. Optimization on uniformity of lithium-ion cylindrical battery
module by different arrangement strategy. Appl. Therm. Eng. 2019, 157, 113683. [CrossRef]

28. Werner, D.; Paarmann, S.; Wiebelt, A.; Wetzel, T. Inhomogeneous Temperature Distribution Affecting the Cyclic Aging of Li-Ion
Cells. Part I: Experimental Investigation. Batteries 2020, 6, 13. [CrossRef]

29. Kleiner, J.; Lechermann, L.; Komsiyska, L.; Elger, G.; Endisch, C. Thermal behavior of intelligent automotive lithium-ion batteries:
Operating strategies for adaptive thermal balancing by reconfiguration. J. Energy Storage 2021, 40, 102686. [CrossRef]

30. Feng, F.; Hu, X.; Hu, L.; Hu, F.; Li, Y.; Zhang, L. Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion
battery packs. Renew. Sustain. Energy Rev. 2019, 112, 102–113. [CrossRef]

31. Bhavsar, S.; Kant, K.; Pitchumani, R. Robust model-predictive thermal control of lithium-ion batteries under drive cycle
uncertainty. J. Power Sources 2023, 557, 232496. [CrossRef]

32. Shadman Rad, M.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P. Adaptive thermal modeling of Li-ion batteries.
Electrochim. Acta 2013, 102, 183–195. [CrossRef]

33. Kim, Y.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y. The Estimation of Temperature Distribution in Cylindrical Battery
Cells Under Unknown Cooling Conditions. IEEE Trans. Control. Syst. Technol. 2014, 22, 2277–2286. [CrossRef]

34. Forgez, C.; Vinh Do, D.; Friedrich, G.; Morcrette, M.; Delacourt, C. Thermal modeling of a cylindrical LiFePO4/graphite
lithium-ion battery. J. Power Sources 2010, 195, 2961–2968. [CrossRef]

35. Mesbahi, T.; Sugrañes, R.B.; Bakri, R.; Bartholomeüs, P. Coupled electro-thermal modeling of lithium-ion batteries for electric
vehicle application. J. Energy Storage 2021, 35, 102260. [CrossRef]

36. Tardy, E.; Thivel, P.X.; Druart, F.; Kuntz, P.; Devaux, D.; Bultel, Y. Internal temperature distribution in lithium-ion battery cell and
module based on a 3D electrothermal model: An investigation of real geometry, entropy change and thermal process. J. Energy
Storage 2023, 64, 107090. [CrossRef]

37. Ghalkhani, M.; Bahiraei, F.; Nazri, G.A.; Saif, M. Electrochemical–Thermal Model of Pouch-type Lithium-ion Batteries. Electrochim.
Acta 2017, 247, 569–587. [CrossRef]

http://dx.doi.org/10.1016/j.jechem.2020.10.017
http://dx.doi.org/10.1016/j.ensm.2017.05.013
http://dx.doi.org/10.3390/batteries6030035
http://dx.doi.org/10.1109/TVT.2019.2906487
http://dx.doi.org/10.1016/j.pnsc.2018.11.002
http://dx.doi.org/10.1038/srep12967
http://dx.doi.org/10.1016/j.est.2022.104325
http://dx.doi.org/10.1016/j.est.2018.04.031
http://dx.doi.org/10.1016/j.est.2021.102300
http://dx.doi.org/10.1016/j.apenergy.2020.115859
http://dx.doi.org/10.1149/2.0011709jes
http://dx.doi.org/10.1016/j.jpowsour.2015.12.079
http://dx.doi.org/10.1016/j.jpowsour.2014.02.012
http://dx.doi.org/10.1016/j.est.2020.101828
http://dx.doi.org/10.1016/j.jpowsour.2014.04.034
http://dx.doi.org/10.1016/j.jpowsour.2013.01.068
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.04.137
http://dx.doi.org/10.1016/j.applthermaleng.2019.04.093
http://dx.doi.org/10.3390/batteries6010013
http://dx.doi.org/10.1016/j.est.2021.102686
http://dx.doi.org/10.1016/j.rser.2019.05.042
http://dx.doi.org/10.1016/j.jpowsour.2022.232496
http://dx.doi.org/10.1016/j.electacta.2013.03.167
http://dx.doi.org/10.1109/TCST.2014.2309492
http://dx.doi.org/10.1016/j.jpowsour.2009.10.105
http://dx.doi.org/10.1016/j.est.2021.102260
http://dx.doi.org/10.1016/j.est.2023.107090
http://dx.doi.org/10.1016/j.electacta.2017.06.164


Batteries 2023, 9, 522 21 of 21

38. Gottapu, M.; Goh, T.; Kaushik, A.; Adiga, S.P.; Bharathraj, S.; Patil, R.S.; Kim, D.; Ryu, Y. Fully coupled simplified electrochemical
and thermal model for series-parallel configured battery pack. J. Energy Storage 2021, 36, 102424. [CrossRef]

39. Basu, S.; Hariharan, K.S.; Kolake, S.M.; Song, T.; Sohn, D.K.; Yeo, T. Coupled electrochemical thermal modelling of a novel Li-ion
battery pack thermal management system. Appl. Energy 2016, 181, 1–13. [CrossRef]

40. Gan, Y.; Wang, J.; Liang, J.; Huang, Z.; Hu, M. Development of thermal equivalent circuit model of heat pipe-based thermal
management system for a battery module with cylindrical cells. Appl. Therm. Eng. 2020, 164, 114523. [CrossRef]

41. Murashko, K.; Wu, H.; Pyrhonen, J.; Laurila, L. Modelling of the battery pack thermal management system for Hybrid Electric
Vehicles. In Proceedings of the 2014 16th European Conference on Power Electronics and Applications, IEEE, Lappeenranta,
Finland, 26–28 August 2014; pp. 1–10. [CrossRef]

42. Lechermann, L.; Kleiner, J.; Komsiyska, L.; Hinterberger, M.; Endisch, C. A comparative study of data-driven electro-thermal
models for reconfigurable lithium-ion batteries in real-time applications. J. Energy Storage 2023, 65, 107188. [CrossRef]

43. Reiter, A.; Lehner, S.; Bohlen, O.; Sauer, D.U. Electrical cell-to-cell variations within large-scale battery systems—A novel
characterization and modeling approach. J. Energy Storage 2023, 57, 106152. [CrossRef]

44. Yadav, A.; Deshmukh, P.C.; Roberts, K.; Jisrawi, N.M.; Valluri, S.R. An analytic study of the Wiedemann—Franz law and the
thermoelectric figure of merit. J. Phys. Commun. 2019, 3, 105001. [CrossRef]

45. Madani, S.; Schaltz, E.; Knudsen Kær, S. Review of Parameter Determination for Thermal Modeling of Lithium Ion Batteries.
Batteries 2018, 4, 20. [CrossRef]

46. Damay, N.; Forgez, C.; Bichat, M.P.; Friedrich, G. A method for the fast estimation of a battery entropy-variation high-resolution
curve—Application on a commercial LiFePO4/graphite cell. J. Power Sources 2016, 332, 149–153. [CrossRef]

47. Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A critical review of battery thermal performance and liquid based battery
thermal management. Energy Convers. Manag. 2019, 182, 262–281. [CrossRef]

48. Xiao, M.; Choe, S.Y. Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power
Li-polymer battery. J. Power Sources 2013, 241, 46–55. [CrossRef]

49. Chalise, D.; Lu, W.; Srinivasan, V.; Prasher, R. Heat of Mixing During Fast Charge/Discharge of a Li-Ion Cell: A Study on
NMC523 Cathode. J. Electrochem. Soc. 2020, 167, 090560. [CrossRef]

50. Steinhardt, M.; Barreras, J.V.; Ruan, H.; Wu, B.; Offer, G.J.; Jossen, A. Meta-analysis of experimental results for heat capacity and
thermal conductivity in lithium-ion batteries: A critical review. J. Power Sources 2022, 522, 230829. [CrossRef]

51. Storn, R.; Price, K. Differential Evolution - a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

52. Kucevic, D.; Tepe, B.; Englberger, S.; Parlikar, A.; Mühlbauer, M.; Bohlen, O.; Jossen, A.; Hesse, H. Standard battery energy storage
system profiles: Analysis of various applications for stationary energy storage systems using a holistic simulation framework. J.
Energy Storage 2020, 28, 101077. [CrossRef]

53. Ströbel, M.; Pross-Brakhage, J.; Kopp, M.; Birke, K.P. Impedance Based Temperature Estimation of Lithium Ion Cells Using
Artificial Neural Networks. Batteries 2021, 7, 85. [CrossRef]

54. Beelen, H.; Mundaragi Shivakumar, K.; Raijmakers, L.; Donkers, M.; Bergveld, H.J. Towards impedance—based temperature
estimation for Li–ion battery packs. Int. J. Energy Res. 2020, 44, 2889–2908. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.est.2021.102424
http://dx.doi.org/10.1016/j.apenergy.2016.08.049
http://dx.doi.org/10.1016/j.applthermaleng.2019.114523
http://dx.doi.org/10.1109/EPE.2014.6910774
http://dx.doi.org/10.1016/j.est.2023.107188
http://dx.doi.org/10.1016/j.est.2022.106152
http://dx.doi.org/10.1088/2399-6528/ab444a
http://dx.doi.org/10.3390/batteries4020020
http://dx.doi.org/10.1016/j.jpowsour.2016.09.083
http://dx.doi.org/10.1016/j.enconman.2018.12.051
http://dx.doi.org/10.1016/j.jpowsour.2013.04.062
http://dx.doi.org/10.1149/1945-7111/abaf71
http://dx.doi.org/10.1016/j.jpowsour.2021.230829
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1016/j.est.2019.101077
http://dx.doi.org/10.3390/batteries7040085
http://dx.doi.org/10.1002/er.5107

	Introduction
	Experimental Setup
	System under Investigation and Experimental Setup
	Analytical Investigations
	Steady-State and Cooling Curve Measurements
	Entropy Variation Measurements

	Modeling
	Electrical System Modeling
	Thermal System Modeling
	Parameter Generation

	Validation
	Model Simplification
	Derivation
	Verification

	Discussion
	Appendix A
	Appendix A.1
	Appendix A.2

	References

