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Abstract: The processing and extraction of critical metals from black mass is important to battery re-
cycling. Separation and recovery of critical metals (Co, Ni, Li, and Mn) from other metal impurities
must yield purified metal salts, while avoiding substantial losses of critical metals. Solvent extraction in
batch experiments were conducted using mixed metal sulphates obtained from the leach liquor obtained
from spent and shredded lithium-ion batteries. Selective extraction of Mn2+, Fe3+, Al3+ and Cu2+ from
simulated and real leached mixed metals solution was carried out using di-2-ethylhexylphophoric acid
(D2EPHA) and Cyanex-272 at varying pH. Further experiments with the preferred extractant (D2EPHA)
were performed under different conditions: changing the concentration of extractant, organic to aque-
ous ratio, and varying the diluents. At optimum conditions (40% v/v D2EPHA in kerosene, pH 2.5,
O:A = 1:1, 25 ◦C, and 20 min), 85% Mn2+, 98% Al3+, 100% Fe3+, and 43% Cu2+ were extracted with losses
of only trace amounts (<5.0%) of Co2+, Ni2+, and Li+. The order of extraction efficiency for the diluents
was found to be kerosene > Exxal-10 >>> dichloromethane (CH2Cl2) > toluene. Four stages of stripping of
metals loaded on D2EPHA were performed as co-extracted metal impurities were selectively stripped,
and a purified MnSO4 solution was produced. Spent extractant was regenerated after Fe3+ and Al3+ were
completely stripped using 1.0 M oxalic acid (C2H2O4).

Keywords: black mass; critical metals; extractants; diluents; separation; stripping

1. Introduction

Globally, the discussion about climate change and the transition to clean energy is of
high importance in academic and research activities. Recently, there has been an exponential
increase in the demand for electric vehicles, plug-in electric charging stations, and consumer
electronics, all of which require portable batteries [1,2].

State-of-the-art cathode chemistries of lithium-ion batteries have developed signifi-
cantly in the last few years. Although nickel-manganese-cobalt (NMC) in general remains
dominant, popular trends show an increase in the nickel content of the cathode. For in-
stance, NMC 622, NMC 811, and possibly NMC 955, are preferable to NMC 333 or NMC 433
due to higher energy densities. Lithium-iron-phosphate (LFP) batteries are becoming pop-
ular again, especially in China, due to increased safety, cost, and ease of recycling. Some
lithium nickel-cobalt-aluminum oxide (NCA) batteries continue to be used as well, while
lithium-ion manganese oxide (LMO) batteries are no longer widely used in vehicles due to
their short life span [2]. It is noteworthy that several of the materials used in these batteries,
such as lithium, nickel, cobalt, manganese, aluminum, graphite, and silicon, have been
declared critical because of their supply risk [2,3].

The demand for lithium in 2020 reached 429,000 metric tons. If the current policies to
meet the International Energy Agency (IEA’s) sustainable development goals are rigorously
pursued, Li demand is estimated to increase to about 1 million metric tons in 2030 [4]. In
2021, the global demand for nickel amounted to some 2.86 million metric tons and is forecast
to reach 3.61 million metric tons worldwide in 2023, representing a 14% increase from the
estimated demand in 2022 [5]. Despite the turbulence in cobalt demand experienced in

Batteries 2023, 9, 549. https://doi.org/10.3390/batteries9110549 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9110549
https://doi.org/10.3390/batteries9110549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-7653-3554
https://doi.org/10.3390/batteries9110549
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9110549?type=check_update&version=1


Batteries 2023, 9, 549 2 of 15

2022, cobalt prices grew 13%, reaching a production of 187,000 metric tons. The cobalt
market prospects remain robust as demand is set to double by 2030. In this context, cobalt,
nickel, and lithium remain major critical metals for battery production. Other elements
such as manganese, copper, iron, aluminum, and phosphorus, are still needed to improve
various properties of the battery [6]. Moreso, the use of nickel in cathode material has
been increased recently, based on a consensus within the industry to reduce or phase out
cobalt in cathode materials due to its fragile supply chain, price volatility, and legislation
on mining [7].

When these devices reach their end of life, tons of waste batteries are generated [8,9]
and recycling of the critical metals from this waste will be necessary to meet demand,
use resources efficiently, bolster supply chains, and safeguard the environment. Lithium-
ion batteries can be processed in one of four ways, via direct recycling, pyrometallurgy,
hydrometallurgy, and bio metallurgy [10–17].

Direct recycling is the most cost-efficient technique as it involves direct reuse of
materials without disruption to their structure. However, this method has faced serious
drawbacks due to loss of lithium (>20%) and recycled cells exhibiting parasitic reactions,
causing higher cell impedance and shifts in the electrode potential [18,19]. Direct recycling
also produces large volumes of wastewater containing high concentrations of critical metals
which may require further downstream processing. It is important to note that these
issues can vary depending on the battery type and the intrinsic value of certain cathode
chemistries, which may affect the feasibility of direct recycling in high labor-cost countries.

Pyrometallurgy involves roasting, smelting, and refining at high temperature. It is
capable of processing large amounts of waste but is the most energy-intensive and has
difficulty producing high purity materials. It is perhaps the least environmentally benign.
There is also a substantial loss of valuable metals in the slag [18].

Bio metallurgy is an emerging technology that involves the uses of micro-organisms
to solubilize the metals. It is considered a green method, but it suffers from extremely slow
kinetics and time-consuming processes [20–22].

Hydrometallurgy uses solution chemistry for leaching, purification, and metal recov-
ery. It offers a high recovery rate, high purity products, low energy consumption, and no
gas emissions [23]. The only identified drawback is wastewater generation, and there has
been significant improvement in recent years [24].

The preliminary stage of hydrometallurgy involves chemical dissolution of the target
metals from “black mass” (crushed, shredded, and processed spent battery cells). This is
not always selective, thereby resulting in generation of mixed metal leach solutions which
are too complex for simple ion-exchange and precipitation methods to process. Various acid
lixiviants, chloride media [25–28], nitrate media [16,29], sulphate media [30–32], and mixed
organic and inorganic acids [33], have all been studied for leaching of critical metals from
end-of-life battery materials. Some studies reported combining pyro-and hydrometallurgy in
which samples are roasted, followed by water and sulfuric acid leaching, respectively [34–36].
Sulfuric acid leaching produced a mixed metals solution that required further separation and
purification [37].

In this paper, liquid–liquid extraction is examined because it is a proven separation
and purification method for aqueous metals that is cost effective, environmentally friendly,
and yet can handle large feeds and yields high purity products. Solvent extraction of critical
metals from spent lithium-ion batteries leached using different extractants and diluents
have been reported in the literature, although most studies were performed using only two
or three metals of interest [13,27,38–40].

Since these are ideal cases when dealing with mixed end-of-life batteries, more work
is needed to complement further study reported on the extraction of critical metals from
metal impurities, which can behave differently with extractants. Moreover, separation of
Co2+ from solution that contains Mn2+ and Al3+ is known to be complicated in practice, and
it is reported to be advisable to remove them prior to critical metals separation [37]. There-
fore, this paper focuses on the sequential extraction of Mn2+ and then subsequent metal
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impurities (Al3+, Fe3+, Cu2+) from a sulfate leached liquor of spent lithium-ion batteries to
produce raffinates rich in Li+, Co2+, and Ni2+. The study also examines the performance of
different diluents and proposed flowsheets for the extraction and stripping steps.

2. Experimental
2.1. Materials

Black mass samples were collected from an authorized supplier of waste materials. The
black mass was dried and ground into powder using a mortar and pestle. The ground sample
was characterized with XRD for mineralogical phase identification of the metals, as presented in
Figure 1. After digestion of the powdered sample with aqua regia (1 HNO3:3 HCl), the metal
contents in the digest solution were analyzed using ICP-OES (Agilent 5110), as presented in
Table 1. A simulated solution matching the exact concentration of metals in the digested solution
was prepared using analytical grade metal sulfate salts (Aldrich, 99% purity). At the same time,
real mixed metal leach liquor was generated via acid leaching of the black mass. The extractants
di-2-ethylhexylphosphate (D2EPHA) and dialkyl phosphinic acid (Cyanex-272) were supplied
by CYTEC Solvay, Princeton, NJ, USA. The diluents used for the extraction (kerosene, toluene,
Exxal-10, and dichloromethane) were purchased from Fischer chemical.
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Table 1. Metal content of powdered black mass.

Metal Ni Co Li Mn Cu Al Fe

Conc. (g/L × 100) 1.21 0.89 0.31 0.57 0.101 0.102 0.14

2.2. Leaching Procedure

Acid leaching with homogenized black mass was carried out using different con-
centrations of sulfuric acid (H2SO4). The leaching experiments were carried out using
three-necked glass reactors on a temperature and speed controlled hot-plate under magnetic
stirring at 100 rpm, and a thermometer was coupled to the reactor. The effects of H2SO4
concentration on the leaching efficiency of metals were studied when the solid/liquid ratio
(S/L), temperature, and time were kept constant. The metal content in the pregnant leach
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liquor was determine using ICP-OES (Agilent 10), and the percentage extraction of each
metal was calculated according to Equation (1) reported elsewhere [41].

Leaching (%) = (1000 × Cm)/(P × Xm) (1)

where Cm = concentration of metals in the leached solution in grams per litre (g/L).
P = Pulp density of black mass to lixiviant (%), i.e., g/100 mL.
Xm = Metal content in the black mass (%).

2.3. Liquid–Liquid Extraction Procedure

Batch experiments first focused on extraction of metal impurities (Cu2+, Fe3+, Al3+)
from the leach solution to produce solutions containing only Ni2+, Co2+, and Li+. Initial
experiments were conducted using D2EPHA and Cyanex-272 as extractants in kerosene at
varying pH values. Further experiments were conducted with D2EPHA, which showed a
higher affinity towards the metal impurities and left the critical metals (Ni2+, Co2+, and
Li+) in the raffinate. Extractions were performed by mixing an equal amount of organic (O)
and aqueous (A) in a 100 mL graduated plastic vial. After mixing long enough to attain
equilibrium (20 min), the two phases were separated using a separatory funnel, and the
aqueous phase was collected for metal analyses. The metal concentration in the aqueous
solution was measured by ICP-OES, and the extraction efficiency (E%) as a function of pH,
concentration of the extractant, and the ratio of organic to aqueous solution was calculated
using Equation (2).

The performance of D2EPHA in different diluents was also investigated. The spent
organic extractant was stripped using different strippants. The stripping efficiency (S%),
distribution ratio (D), and separation factor (Sf), were calculated based on Equations (3)–(5)

E% =
Ci − Ce

Ci
× 100 (2)

S% =

(
Cst

Ci − Ce

)
×

(
Vs

Vst

)
× 100 (3)

D =

(
Ci − Ce

Ce

)
(4)

Sf =
Dim
Dom

(5)

where Ci (g/L) is the initial concentration of metal in the aqueous phase, Ce (g/L) is
the equilibrium concentration in aqueous phase, Cst is the concentration of metal in the
stripping solution, Vs is the volume of strippant, Vst is the volume of the stripping solution,
Dim is the distribution ratio of interested metal, and Dom is the distribution ratio of other
metals. Based on optimized results obtained using a simulated solution, further extraction
was performed with real leached liquor using D2EPHA in kerosene.

3. Results
3.1. Leaching

In the hydrometallurgy process, leaching is a primary step of the utmost importance
that involves the dissolution of soluble metals from ore or materials, while the insoluble
parts known as residue are used for other purposes. In this study, the black mass obtained
from the industry was directly leached with sulfuric acid without treatment or addition
of oxidant.

The results obtained show that the leaching efficiency of metals increased with in-
creases in the concentration of H2SO4 from 0.5 to 4.0 M (Figure 2). It is shown that 81%
Li+ was leached out of the sample, when the leaching efficiency of other metals is <40%
using a mild acid (0.5 M H2SO4). This is an indication that selective leaching of Li from
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other metals is achievable with this black mass. High leaching efficiency of Li+, Co2+, Ni2+,
Mn 2+, and Al3+ was achieved using 4.0 M of H2SO4 without the use of an oxidant or
reagent. Similar results were reported in the literature [32,42,43]. This is because metals in
this specific black mass exist in their oxide form (Figure 1), thereby allowing a facile reaction
with sulfuric acid (H2SO4) and producing a pregnant leach liquor of nickel, manganese,
cobalt, and lithium sulfates [42].
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Based on the weight difference of the residue after leaching, and the black mass before
digestion, it is estimated that 53.5 and 59% of the black mass was dissolved in 2.0 and 4.0 M
of H2SO4, respectively.

3.2. Liquid Liquid Extraction
3.2.1. pH Studies

One of the most important variables is pH, which directly affects the solvation, stability,
and the oxidation state of metal ions in the solution. More importantly, pH affects the
performance, charge, and selectivity of the extractants. The selectivity of D2EPHA and
Cyanex- 272 using mixed metal sulfate solutions at different pH was studied, and the
results are presented in Figure 3. Extractions at pH 2.0 using Cyanex-272, Na-Cyanex-
272, and D2EPHA removed all Fe3+ (100%). It is interesting to note that Al3+ (40%) was
partially removed using 20% v/v Cyanex-272 at pH 4, but more Al3+ (49.8%) was removed
when the pH was increased to 5.0 (Figure 3a). With 20% Na-Cyanex-272, the extraction
efficiency increased as the pH increased from 1 to 5. The extraction of Al3+, Cu2+, and
Mn2+ were higher compared to Co2+ while co-extraction of Ni2+ and Li+ was extremely
low but increased as pH increased from 2.5. Further experiment was performed with 40%
v/v D2EPHA at pH 2.5 and the results showed that Mn2+ (85%), Al3+ (98%), Fe3+ (100%)
and Cu2+(43%) were extracted at pH 2.5. Interestingly, only small amounts (<5.0%) of Co2+,
Ni2+, and Li+ were trapped or co-extracted (Figure 3c).

In summary, the results with Na-Cyanex-272 show that selectivity towards the metals
of interest (Co2+, Ni2+, and Li+) is difficult to achieve starting from a real-world mixed
metal system. Extraction of Fe3+ from leach solutions with Cyanex-272 prior to D2EPHA
extraction (for Mn2+, Al3+, and Cu2+) would be viable for this mixed metal solution. As
reported in the literature, extraction of metals of interest co-existing with impurities has
been problematic [44]. For instance, Al3+ was difficult to strip as it remained with Co2+
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in the product; similar results were found with Mn2+ [44,45]. Therefore, these elements
must be removed before separation of Co2+, Ni2+, and Li+. Precipitation is not viable
due to additional steps, equipment, and cost, as well as possible losses of the valuable
metals. The economical and best approach is to selectively remove the impurities by
alternate extractants, since they can be reused. Therefore, we studied other parameters
using D2EPHA for the extraction of Mn2+, Al3+, Fe3+, and Cu2+ to produce a raffinate rich
in Ni2+, Co2+, and Li+.
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(b) 20% v/v Na-Cyanex-272, (c) 40% v/v D2EHPA. Conditions: 100 g black mass sulfate leachate
(containing Ni-0.72, Co-0.60, Mn-0.31, Li-0.15, Cu-0.101, Al-0.075, and Fe-0.055 g/L), 25 ◦C, mixed
20 min, centrifugation-1000 rpm, saponification of Cyanex-0.02 g NaOH).

3.2.2. Diluent’s Efficiency

The choice of diluent is very important in solvent extraction as it dramatically affects
the extraction performance. However, in liquid–liquid extraction, diluents should have
some specific quality before they can be used in conjunction with an extractant, and
such properties include good selectivity, inflammability, solubility, good resistance to
degradation, non-toxicity, and being commercially available, among others [46]. Here,
we show interesting effects of the diluent on the separation efficiencies using D2EPHA in
kerosene, toluene, Exxal-10, and dichloromethane (ClCH2Cl), as potential diluents.

The results presented In Figure 4 show that metal extractability by D2EPHA is bet-
ter in kerosene and Exxal-10 compared to dichloromethane and toluene. Quantitative
extraction of Fe3+ was seen using D2EPHA in kerosene, while only a slight decrease in
Fe3+ extraction (~98%) was seen using D2EPHA in toluene, dichloromethane, and Exxal-
10. There was lower extraction efficiency of Mn2+, Al3+, and Cu2+ using D2EPHA in
toluene, dichloromethane, and Exxal-10. In summary, the order of extraction efficiency is
Kerosene > Exxal-10 > CH2Cl2 > toluene.

This behavior is due to the different physicochemical properties (polarity index, dipole
moment, viscosity, density, and solubility parameters exhibited by the diluents [47–50] and
is supported by several authors that have made use of kerosene as a diluent in the solvent
extraction of metals [51,52].

3.2.3. Extractant Concentration

The D2EPHA concentration varied from 20 to 80% v/v, and extraction was performed
at pH 2.5, with other conditions kept constant. The results of these experiments are
presented in Figure 5, showing that recovery efficiency of Al3+, Mn2+, and Cu2+ increased
as the concentration of D2EPHA increased. It was observed that 100% Fe3+ removal is
possible at 20% v/v D2EPHA, while higher extraction efficiency for Al3+, Mn2+, and Cu2+

was noticed when the concentration reached 40% v/v. However, only a slight increase in
the extraction efficiency was noticed when the concentration was further increased. Most
importantly, unwanted co-extraction of Co2+, Ni2+, and Li+ also slowly increased when
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the D2EPHA concentration reached 60% v/v and above. Based on these results, a second
extraction stage with D2EPHA using 40% v/v D2EPHA at pH 2.5 would ensure that the
remaining Cu2+ and Mn2+ are extracted, leaving behind a solution that is rich in Co2+, Ni2+,
and Li+.
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20 min, centrifugation-1000 rpm).

3.2.4. Extractant Ratio

The ratio of organic to aqueous phase is important to obtain the optimum extraction
efficiency. Here, the organic phase volume is kept constant while the aqueous phase was
varied, and metal extraction efficiencies are presented in Figure 6. Based on the plots of
different concentration of organic extractant, it was shown that extraction efficiency of
Mn2+, Fe3+, Al3+, and Cu2+ all proportionally decreased with increased aqueous volume.
Thus, using 20% v/v D2EPHA in kerosene, the optimum O:A ratio is 1:1. When the organic
ratio was higher, at 4:1 and 2:1, higher percentages of desired Ni2+, Co2+, and Li+ were
co -extracted. Lower ratios of O:A showed lower extraction of Ni2+, Co2+, and Li+. The
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extraction efficiency of Fe3+ and Al3+ was 100% and remained unchanged with an increase
in the O:A ratio and when the extractant concentration was increased from 20 to 40% v/v. It
was also observed that extraction efficiency of Mn2+ and Cu2+ decreased proportionately as
the O:A ratio increased. Notably, Ni2+, Co2+, and Li+ were only significantly co-extracted
using low O:A ratios and 40% v/v of D2EPHA to kerosene.
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Figure 6. Variation in the organic and aqueous ratio. (a) 20% v/v D2EPHA, and (b) 40% v/v D2EPHA;
Conditions: sulfate simulated solution (Ni-0.72, Co-0.60, Mn-0.31, Li-0.15, Cu-0.101, Al-0.075, and
Fe-0.055 g/L, condition: 25 ◦C, 20 min, centrifugation-1000 rpm).

3.2.5. Separation Factor

This is a measure of the degree of selective separation of the metal(s) of interest
over other metals using a specific extractant. The results of these experiments show that
D2EPHA has a strong selectivity towards Fe3+, Mn2+, Al3+, and Cu2+, and the selectivity is
much higher than that for Co2+, Ni2+, and Li+ at the varying solution pH studied. Table 2
shows that Mn2+ has a higher separation factor relative to all metals except Fe3+ at a pH
of 2.0. Increasing the pH of the solution beyond 2.0 resulted in a higher separation factor
of Al3+ and Fe3+ over Mn2+. The best overall separation factor was obtained at pH 2.0,
as recovery efficiency and selectivity of D2EPHA towards Fe3+, Mn2+, Al3+, and Cu2+
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is higher. Therefore, the raffinate would be rich in Ni2+, Co2+, and Li+, which may be
further separated with other systems. In summary, the order of extraction efficiency of
metals studied is Fe3+ > Mn2+ > Al3+ >> Cu2+ >>>>> Co2+~Li2+~Ni2+ based on the results
presented in Table 2.

Table 2. Separation factor of metals using 40% v/v D2EPHA in kerosene at 25 ◦C in 20 min.

pH 2.0 2.5 3.0

Mn/Co 24 95 52
Mn/Ni 31 252 146
Mn/Li 80 389 65
Mn/Cu 6 6 6
Al/Mn 1 21 452
Fe/Mn 1376 252 1074

3.3. Extraction Using Real Leached Liquor

The performance of D2EPHA in kerosene for the extraction of manganese and metal
impurities from rich Ni, Co, and Li sulfate leached liquor was studied. This is important
because real liquor contains other trace impurities which might directly interfere with the
reaction, thereby affecting extraction efficiency. However, the extraction experiment was
performed using the optimized condition obtained from the extraction with the simulated
solution. The results presented in Figure 7 show that the extraction efficiency using D2EPHA
in kerosene for the real leached liquor and the simulated solution (Figure 5) is the same; it
increases with increases in the concentration of D2EPHA from 20 to 40% v/v. The optimum
concentration is 40% v/v, as a further increase in the concentration to 60% v/v resulted in a
slight increase in the co-extraction of critical metals (Co2+, Li2+, and Ni2+). At the optimum
condition, extraction efficiency of Mn2+ from the simulated solution was 81.5%, whereas 78.6%
was extracted from real leached liquor. A similar trend was observed with Al3+, and this is
because the concentration of metals Mn and Al were higher in the leached liquor. Almost the
same extraction efficiencies of Fe3+ and Cu2+ were obtained from both the simulated and real
leached liquor, and Li+, Co2+, and Ni2+ remained in the raffinate.
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3.4. Stripping

From an economic perspective, stripping metals from extractant is an important aspect
to maximize the extractant. In our study, selective stripping of metals from the loaded
extractant is critical to produce a concentrated metal solution needed in the crystallization
of a metal salt or to serve as a good electrolyte to produce a quality cathode metal. The
stripping of metals loaded into D2EPHA obtained using simulated mixed metals solution
was carried out. Different reagents were tested as strippants, with the objective of selectively
recovering Mn2+ as a concentrated MnSO4 solution. As shown in the results presented in
Figure 8, NaOH and NH4OH were noticed to be unsuitable for the stripping of metals from
D2EPHA. Meanwhile, highly diluted acid performed excellently for the removal of trace
Co2+, Ni2+, and Li2+ that was trapped or co-extracted unto D2EPHA. Interestingly, using
0.01M of H2SO4, although most (>80%) of the Co2+, Ni2+, and Li+ were stripped, a small
amount (<5.0%) of Mn2+ was also stripped. When the acid concentration was increased to
0.02 M, Co2+, Ni2+, and Li+ were stripped quantitatively, but Mn2+ (20%) and Cu2+ (51%)
were also stripped out.
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(b) stepwise stripping-stage 1: 0.01M H2SO4, stage 2: 0.75 M Na2S2O3, stage 3: 0.5 M H2SO4, stage 4:
1.0 M C2H2O4; conditions: O: A-1:1, 40% v/v D2EPHA, temperature-25 ◦C, time-20 min.
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When the stripping solution was changed to 0.05 M sodium thiosulfate (Na2S2O3),
Cu2+ (86%), Li+ (62%), Ni (53%), and Co2+ (24%) were stripped from D2EPHA. When the
concentration of Na2S2O3 was increased to 0.075 M, it was found that Cu2+ (98.5%), Li+

(96%), Ni2+ (44%), and Co2+ (39%) were also stripped from D2EPHA. This result shows
that thiosulphate solution is a good strippant to remove Cu2+ and other impurities from
D2EPHA. Lastly, Li+ (40%) was stripped using 0.01 M sodium bisulfite (HNaO3S) while
traces of Ni2+, Co2+, and Li+ (34%) were removed with H2O without the presence of any
metals; and Li+ (71%) and Co2+ (15%) were stripped with 0.01 M HCl. In general, it was
observed that Al3+ and Fe3+ remained in the D2EPHA. This recalcitrant stripping of Fe3+

and Al3+ from D2EPHA has been reported [53,54]. However, the stripping of metals from
higher concentrated extractant (40% v/v D2EPHA) was investigated (Figure 8b). The
stripping results are presented in Figure 8b. In the first stage, 0.01 M H2SO4 was used to
remove trapped or trace co-extracted metals (Co2+, Ni2+, Cu2+ and Li+). It is shown that a
significant amount of Co2+, Ni2+, Cu2+, and Li+ were stripped with trace Mn2+. However,
further stripping was performed using 0.075 M Na2S2O3 and the remaining Co2+, Ni2+,
Cu2+, and Li was selectively stripped without Mn2+. Thus, recoverable impurities were
totally stripped from D2EPHA in two stages, retained Mn2+ was selectively stripped as
MnSO4 (92.1%) using 0.5 M H2SO4, and the MnSO4 solution is suitable for concentration
and crystallized as MnSO4 salt. The remnant impurities (Fe3+ and Al3+) were finally
stripped with 1.0 M oxalic acid, and D2EPHA was fully reconditioned for reuse.

3.5. Conceptual Flow Sheet

Based on the optimized parameters, the steps for the extraction of metal impurities
from sulphate leached liquor of a black mass using D2EPHA in kerosene are summarized
in the flow sheet below (Figure 9). The aqueous phase (simulated leach liquor) was
pumped through a solvent extractor compartment loaded with a proportion of organic
phase (D2EPHA in kerosene). Next, the loaded extractant was washed with dilute H2SO4,
and trapped or co-extracted Co2+, Li+, Ni2+, and Cu2+ were washed out. In the next stage,
Cu2+ was completely stripped with other impurities. In the third stage, Mn2+ retained in
the extractant was stripped using concentrated H2SO4, leaving behind Fe3+ and Al3+, which
were finally stripped using an oxalic acid solution. The spent extractant was reconditioned
with H2O and may be reused repeatedly.
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4. Conclusions

The extraction performance of D2EHPA, Cyanex-272, and Na-Cyanex-272 was first
compared to determine the most selective extractant to remove metal impurities from a
simulated critical metals leach solution. D2EPHA was preferred, and sequential extraction
of metal impurities (Fe3+, Al3+ and Cu2+) from critical metals (Co2+, Li+, Ni2+, and Mn2+)
using different diluents was achieved. The extraction efficiencies of metal impurities
were highest using D2EPHA in kerosene. Exxal-10 also showed high extraction efficiency,
except that significant amounts of Co2+, Li+, Ni2+, and Mn2+ were also co-extracted. The
extraction efficiencies decreased with increases in O:A ratios from 1:1 to 1:3. Four stages of
stripping were conducted, and selective stripping of Mn2+ as MnSO4 was accomplished
after co-extracted metal impurities (Fe3+, Al3+, and Cu2+) were removed. The extractant
was regenerated when the recalcitrant Fe3+ and Al3+ were finally stripped from D2EPHA
using oxalic acid. A proposed flow sheet for the sequential extraction of metal impurities
from critical metals rich solution was developed.
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