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Abstract: Current Li battery technology employs graphite anode and flammable organic liquid
electrolytes. Thus, the current Li battery is always facing the problems of low energy density and
safety. Additionally, the sustainable supply of Li due to the scarce abundance of Li sources is another
problem. An all-solid-state Mg battery is expected to solve the problems owing to non-flammable
solid-state electrolytes, high capacity/safety of divalent Mg metal anode and high abundance of
Mg sources; therefore, solid-state electrolytes and all-solid-state Mg batteries have been researched
intensively last two decades. However, the realization of all-solid-state Mg batteries is still far off. In
this article, we review the recent research progress on all-solid-state Mg batteries so that researchers
can pursue recent research trends of an all-solid-state Mg battery. At first, the solid-state electrolyte
research is described briefly in the categories of inorganic, organic and inorganic/organic composite
electrolytes. After that, the recent research progress of all-solid-state Mg batteries is summarized and
analyzed. To help readers, we tabulate electrode materials, experimental conditions and performances
of an all-solid-state Mg battery so that the readers can find the necessary information at a glance. In
the last, challenges to realize the all-solid-state Mg batteries are visited.

Keywords: magnesium battery; solid electrolyte; ceramic electrolyte; polymer electrolyte; all-solid-state
Mg battery

1. Introduction

Since the Li-ion battery (LIB) was commercialized in 1991, its application in portable
electronic devices, such as laptop computers and mobile phones, has been widely achieved,
significantly affecting our daily lives [1,2]. As the most successful battery technology, LIBs
possess several advantages, including high energy density, no memory effect, good capacity
retention, etc., overcoming the last generation lead-acid and nickel–hydrogen batteries [3,4].
Current LIBs rely on the intercalation mechanism. The energy density of LIBs has reached
240 Wh kg−1 and 670 Wh L−1 at the cell level due to the innovation and development
of materials and cell design in these two decades [5,6]. However, the inherent limitation
in the theoretical capacity of current graphite-based anodes makes it almost impossible
for LIBs to meet the increasing demand for energy density [7]. Li metal anode is an ideal
anode material due to its ultimate high theoretical capacity (Table 1), which can improve
the energy density of the batteries. Typically, Li-LMO cells (LMO means Li transition
metal oxides) have revealed a high energy density of ~440 Wh kg−1 [8]. However, the
dendric growth of Li metal and the scarce abundance of Li sources have hindered the
commercialization of the Li metal anode.

Solid-state electrolytes, which are solid-state ion conductors, can suppress dendrite
growth due to their high mechanical strength [9]. In addition, their inflammable nature
and wide electrochemical window can improve the safety and energy density of LIBs.
Therefore, solid-state electrolytes and all-solid-state Li batteries have been researched
intensively, especially in the last decade [10]. Regarding the low abundance of Li, it is
considered that high-abundance elements, such as Na, K, Mg, Ca, Zn and Al, are employed
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as charge carriers instead of Li. Particularly, metal anodes of multivalent ions (Mg2+,
Ca2+, Zn2+, Al3+) possess higher volumetric capacities than a monovalent Li metal anode.
Table 1 summarizes the representative properties of metal anodes. As anode materials,
a low redox potential and high specific capacity are desired to achieve the high energy
density of batteries. Additionally, a small ionic radius ensures fast ion migration, leading
to a high-power density. Mg is in high abundance in the earth’s crust and has a high
volumetric capacity and a relatively low redox potential. Mg metal was believed to not
form the dendrite. Even though a Mg dendrite formation was found in 2017 [11], Mg
metal is less prone to the dendrite formation compared to Li and other metals, which
has been verified in both experimental and theoretical studies [12,13]. The self-diffusion
barrier of Mg is lower than that of Li, which leads to a uniform Mg metal deposition and
tends to low dendrite formation. These features make Mg metal an ideal anode material.
Therefore, research on an all-solid-state Mg battery and Mg2+-ion conductive solid-state
electrolytes has been intensively carried out recently [14,15]. Usually, the research on solid
electrolytes has been conducted by testing their chemical (crystal structure, crystallinity,
glass transition temperature, etc.) and electrochemical properties (ionic conductivity,
electrochemical window, transference number, etc.). The electrochemical properties are
examined using blocking electrodes (Pt, Au, etc.) or metal anodes (Mg metal). Additionally,
their compatibility with electrodes is characterized in all-solid-state batteries.

Solid-state electrolytes are categorized into the following three groups: organic, inor-
ganic and organic–inorganic composite [16]. Organic solid-state electrolytes are typically
flexible and easy to process for large-scale production. On the contrary, inorganic solid-state
electrolytes commonly possess a high ionic conductivity, a high transference number and a
wide electrochemical window. The organic–inorganic solid-state electrolytes are proposed
and developed to address the defects of organic and inorganic solid-state electrolytes, which
can combine the advantages of the flexibility and easy processing of organic solid-state
electrolytes and the high conductivity of inorganic solid-state electrolytes [17]. Some good
review articles focusing on solid-state electrolytes have been published recently [18,19],
while research on all-solid-state Mg batteries has yet to be reviewed.

Therefore, in this review article, we focus on the recent research on all-solid-state Mg
batteries, especially in the five years (2018~). At first, solid-state electrolyte research is
described briefly in the categories of inorganic, organic and inorganic–organic composite
electrolytes. After that, the recent research progress of an all-solid-state Mg battery is
summarized and analyzed. To help readers, we tabulate electrode materials, experimental
conditions (electrolyte and temperature) and performances (initial capacity and cyclability)
of all-solid-state Mg batteries so that the readers can find the necessary information at a
glance. Lastly, challenges to realize the all-solid-state Mg batteries are visited.

Table 1. Properties of various metal anodes [20].

Li Na K Mg Ca Zn Al

Standard redox potential
(E vs. SHE) −3.04 −2.71 −2.93 −2.37 −2.87 −0.76 −1.66

Volumetric capacity
(mAh/cm3) 2062 1128 591 3883 2073 5851 8046

Specific capacity
(mAh/g) 3861 1166 685 2205 1337 820 2980

Abundance (%) 0.002 2.7 2.4 2.08 5 0.008 8.2
Ionic radius (Å) 0.76 1.02 1.38 0.72 1.00 0.74 0.535

Relative atomic mass 6.94 22.98 39.1 24.31 40.08 65.39 26.98
Mass to charge 6.94 22.98 39.1 12.16 20.04 32.7 8.99
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2. Solid Electrolytes for Mg Battery
2.1. Inorganic Electrolyte
2.1.1. Oxides

Na+ super ion conductor (NASICON), Na1+xZr2P3-xSixO12, is well-known for permit-
ting the fast migration of the Na+ ion due to the well-ordered three-dimensional network
structure [21]. By the successful application of the NASICON structure to a Li+ ion con-
ductive ceramic electrolyte, such as LiZr2(PO4)3 [22,23], Li1+xAlxTi2−x(PO4)3 [24,25] or
Li1+xAlxGe2−x(PO4)3 [26,27], it has been highly interested in developing NASICON-type
multivalent ion conductors [28,29]. The oxide-based solid electrolytes are usually prepared
via calcination of raw materials followed by sintering.

The first report on NASICON-type Mg2+ ion conductors was MgZr4(PO4)6 (MZP)
in 1987 [30]. The ionic conductivity was 2.9 × 10−5 and 6.1 × 10−3 S cm−1 at 400 and
800 ◦C, respectively. MZP was assigned as the rhombohedral structure first, but later it was
ascribed to the monoclinic structure, which is like β-Fe2SO4. Nakayama et al. simulated
Mg2+ migration energy of 0.63 and 0.71 eV in the rhombohedral and monoclinic structures,
respectively [31]. Thus, heteroatom doping into the Zr4+ site to stabilize the rhombohedral
structure has been carried out [32,33]. Contrary, another strategy, the introduction of Hf4+

into the Mg2+ site has also been attempted [34]. However, all results exhibited too low Mg2+

ion conductivity, ~10−5 S cm−1, even at 500 ◦C. Those cannot be applied for an all-solid-state
Mg battery operated at ambient temperature. It is noted that some promising results were
reported by Mohamed’s group. They reported σ = 3.97 × 10−4 S cm−1 at room temperature
in Mg1.05Zn0.4Al0.3Zr1.3(PO4)3. However, this material demonstrated almost the same
conductivity, 5.82 × 10−4 S cm−1 at 500 ◦C [35]. The extremely low activation energy of
0.039 eV was about one order of magnitude lower than that of typical Li+ ion conductive
ceramics. They also estimated the Mg2+ ion transference number by the Bruce method to
0.84 [33]. This implies that 16% of electric charge is carried by an anion, i.e., oxygen ion. In
addition, they measured the electrochemical window of Mg0.5Si2(PO4)3 to 3.21 V; however,
as shown in Figure 1, it seems the decomposition of electrolyte commences below 2 V [36].
We need to re-check their results.
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Figure 1. Linear sweep voltammogram of Mg0.5Si2(PO4)3. Reproduced with permission [36]. Copy-
right 2016, Elsevier.

In other research, although magnesium phosphate (Mg2.4P2O5.4) [37], magnesium sili-
cate (Mg0.6Al1.2Si1.8O6) [38] and magnesium tungstate (MgHf(WO4)3) [39] are researched, a
significant improvement of conductivity is still needed. Indeed, all-solid-state Mg batteries
using oxide-based solid electrolytes have not been reported yet.

2.1.2. Chalcogenides

Although chalcogenide-based Li+ ion conductive ceramics like sulfides have suc-
ceeded greatly [40], chalcogenide-based Mg2+ ion conductive ceramics were not researched
intensively. Only one paper was published about the MgS-P2S5 system in 2014 [41]. How-
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ever, since Canepa et al. reported trinary spinel chalcogenides with a high Mg2+ ion
mobility in 2017 [42], research on the chalcogenide-based Mg2+ ion conductive ceramics has
been activated. They predicted the least migration energy of the Mg2+ ion that appeared in
MgY2S4, MgY2Se4 and MgSc2Se4, and the values were 360, 361 and 375 meV, respectively
(Figure 2); however, only MgSc2Se4 has been successfully synthesized so far. The Mg2+

ion conductivity of MgSc2Se4 was estimated to be ~1 × 10−4 S cm−1, comparable to Li+

ion conductive ceramic electrolytes (garnet-type and NASICON-type) [43]. Unfortunately,
electronic conductivity was also relatively high, about 4 × 10−8 S cm−1. Thus, Fichtner et al.
synthesized Se-excess, Ti4+, Ce4+-doped MgSc2Se4 to reduce the electronic conductivity,
but the electronic conductivity was not drastically lowered [44]. Based on this, they used
MgSc2Se4 as a cathode material for a Mg battery using liquid electrolytes. Kundo et al.
studied the electronic conduction mechanism of MgSc2Se4 and found that the electronic
conductive layer was formed on the surface of particles during the ball milling process [45].
In fact, the electronic conductivity was reduced by avoiding the ball milling process. In
addition, the ionic and electronic conductivities of MgSc2Se4 were largely influenced by
the sintering process, particularly the cooling process. Indeed, the field-assisted synthesis
could sinter MgSc2Se4 in a very short time, leading to a low electronic conductivity of
≈10−11 S cm−1 [46]. Lowering the electronic conductivity of MgSc2Se4 is a critical issue to
apply for all-solid-state Mg batteries. Advanced sintering techniques, which can provide
rapid heating/cooling rates and short heat treatments, such as spark plasma sintering
(SPS) [23], flash sintering [47], microwave sintering [48] and ultrafast high-temperature
sintering [49], should be applied for sintering MgSc2Se4.
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The electrochemical window of MgSc2Se4 has not been studied yet, but Au/MgSc2Se4/
Au cell was stable during 3 V of applied voltage [46]. Therefore, MgSc2Se4 would possess a
reasonable electrochemical window for all-solid-state Mg battery application.

The development of MgSc2Se4 has the following two directions: electrolytes and
electrodes. The electronic conductivity of MgSc2Se4 must be lowered for electrolytes while
it is maintained for electrodes. The all-solid-state Mg battery composed of MgSc2Se4-based
electrodes and MgSc2Se4-based electrolytes should have an intimate electrode/electrolyte
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interface due to the similar chemical composition and structure, resulting in high and
stable performances.

Properties of oxide- and chalcogenide-based electrolytes are summarized in Table 2.

Table 2. Properties of various oxide- and chalcogenide-based solid electrolytes.

Electrolyte σtotal
(S cm−1) Temperature (◦C) Activation

Energy (eV)
Electrochemical

Window (V) Ref.

Oxides

MgZr4(PO4)6
2.9 × 10−5 400

0.868 - [30]
6.1 × 10−3 800

Mg0.5Zr2(PO4)3
1.1 × 10−6 30

0.0977 ~2.5 [50]
7.1 × 10−5 500

MgZr4(PO4)6 7.23 × 10−3 725 0.84 - [51]

MgZr4(PO4)6 + Zr2O(PO4)2 6.9 × 10−3 800 1.41 - [52]

Mg0.7(Zr0.85Nb0.15)4(PO4)6 5.71 × 10−3 800 0.95 -

[32]Mg1.4Zr4P6O24.4 + 0.4Zr2O(PO4)2 6.89 × 10−3 800 1.41 -

Mg1.1(Zr0.85Nb0.15)4P6O24
+ 0.4Zr2O(PO4)2

9.53 × 10−3 800 1.28 -

Mg1.1Zr3.4Nb0.6P6O24.4 + Zr2O(PO4)2 9.53 × 10−3 800 1.26 - [53]

Mg0.9Zr1.2Fe0.8(PO4)3
1.25 × 10−5 RT

0.14 - [33]
7.2 × 10−5 500

Mg0.5Ce0.2Zr1.8(PO4)3 3.8 × 10−7 200 0.307 - [54]

Mg1.05Zn0.4Al0.3Zr1.3(PO4)3
3.97 × 10−4 RT

0.039 - [35]
5.82 × 10−4 500

Mg0.35(Zr0.85Nb0.15)2(PO4)3 1.1 × 10−6 350 1.18 - [55]

Mg0.5ZrSn(PO4)3 2.47 × 10−5 500 0.79 - [56]

Mg0.7Zr3.4Nb0.6(PO4)6
7.7 × 10−4 600

0.954 - [57]
3.7 × 10−3 750

Mg0.6Zr1.8Fe0.2(PO4)3 thin film
1.8 × 10−7 25 0.141 < 175 ◦C

0.511 > 175 ◦C
- [58]

2.3 × 10−6 200

Mg0.625Si1.75Al0.25(PO4)3 1.54 × 10−4 RT - 2.51 [59]

Mg0.5Si2(PO4)3 1.83 × 10−5 - ~3.21 [36]

Mg0.105Hf0.95Nb(PO4)3 1.2 × 10−4 600 0.639 - [34]

Mg2.4P2O5.4 ALD 1.6 × 10−7 500 1.37 - [37]

Mg0.6Al1.2Si1.8O6 2.3 × 10−6 500 1.32 - [38]

MgSO4-Mg(NO3)2-MgO 2.2 × 10−6 RT 0.17 - [60]

MgHf(WO4)3 2.5 × 10−4 600 0.835 - [39]

Chalcogenides

80(0.6MgS 0.4P2S5) 20MgI2 2.1 × 10−7 200 - - [41]

MgSc2Se4 9.2 × 10−5 RT - - [44]

MgSc2Se4 ~1 × 10−4 25 0.38 [42]

MgSc2Se4 8 × 10−5 RT - - [45]

MgSc2Se4 1.78 × 10−5 RT - - [46]



Batteries 2023, 9, 570 6 of 29

2.1.3. Hydrides

In 2012, Matsuo et al. reported possible Mg conduction in Mg(BH4)2 based on an
FPMD simulation [61]. Later, Higashi et al. experimentally proved Mg ion conduction of
Mg(BH4)2 and Mg(BH4)(NH2) [62]. Since then, Mg(BH4)2-based electrolytes have been
researched the most intensively among the inorganic solid electrolytes. The Mg(BH4)2-
based solid electrolytes are usually prepared by mechanical milling without sintering.
Also, an all-solid-state Mg battery with inorganic electrolytes has been fabricated by us-
ing only Mg(BH4)2-based electrolytes (Chapter 3.1). Although the ionic conductivity of
Mg(BH4)(NH2) is 1 × 10−6 S cm−1 at 150 ◦C [62], it is influenced by the synthetic pa-
rameter, for example, the ionic conductivity of 3 × 10−6 S cm−1 at 100 ◦C was obtained
in a glass-ceramic like Mg(NH4)(NH2) [63]. As other strategies, the modification of BH4
ligands [64,65], partial oxidation [66], compositing with ceramic oxides such as MgO, YSZ,
TiO2 and Al2O3 [67–70] have been attempted, and all achieved an improvement of Mg
ion conductivity to 10−5~10−6 S cm−1 at ambient temperature, which is slightly lower
than those of Li and Na ion conductive inorganic solid electrolytes [10]. Additionally, they
exhibited a stable Mg plating/stripping behavior (Figure 3). However, the modification
narrowed the electrochemical window to about 1.2~1.4 V. This restricts the choice of cath-
ode materials and decreases the energy density of all-solid-state Mg batteries. Although the
moderate ionic conductivity and stability against the Mg metal anode of Mg(BH4)(NH2)-
based inorganic solid electrolytes are desirable, the improvement of anodic stability must
be considered. Properties of hydride-based electrolytes are summarized in Table 3.
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Table 3. Properties of hydride-based solid electrolytes.

Electrolyte σtotal
(S cm−1) Temperature (◦C) Activation Energy

(eV)
Electrochemical

Window (V) Ref.

Mg(BH4)2 1 × 10−9 150 - -
[62]

Mg(BH4)(NH2) 1 × 10−6 150 - 3
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Table 3. Cont.

Electrolyte σtotal
(S cm−1) Temperature (◦C) Activation Energy

(eV)
Electrochemical

Window (V) Ref.

Mg(en)1(BH4)2
5 × 10−8 30

1.6 1.2 [64]
6 × 10−5 70

Mg(BH4)(NH2) glass ceramics 3 × 10−6 100 1.3 - [63]

Mg(BH4)2 1.6NH3-75 wt.% MgO 1.2 × 10−5 RT 1.12 1.2 [69]

Oxidized Mg(BH4)2 7.89 × 10−6 RT - - [66]

Mg(BH4)2 1.5THF-75 wt.% MgO
9.8 × 10−7 30

1.4 1.2 [70]
1.7 × 10−4 70

Mg(BH4)2(NH3BH3)2 1.3 × 10−5 30 1.47 1.2 [65]

Mg3(BH4)4(NH2)2 4.1 × 10−5 100 0.84 1.48 [71]

Amorphous Mg(BH4)2 2NH3 5 × 10−4 75 1.99 1.4 [72]

Mg(BH4)2 1.5NH3-60 wt.% YSZ 3 × 10−4 50 - 1.3
[67]

Mg(BH4)2 1.5NH3-60 wt.% TiO2 1.12 × 10−3 50 0.87 -

Mg(BH4)2 1.6NH3-67 wt.% Al2O3 2.5 × 10−5 22 0.56 1.2 [68]

2.1.4. MOF (Metal–Organic Framework)

MOFs are crystalline solids composed of metal ions coordinated by multifunctional
organic molecules with a three-dimensional porous structure. The composition and struc-
ture of MOFs can be easily adjusted via the rational selection of the metal ion and organic
molecules [73]. Due to the porous structure, diffusivities of guest ions in the pores would
be similar to those in a molten salt state [74]; therefore, MOFs have been studied as ionic
conductors. To introduce guest ions, pores of MOFs are filled with liquid electrolytes. Thus,
MOF-based solid electrolytes would be categorized into liquid–solid composite electrolytes.

Compared to MOF-based Li+ ion conductive electrolytes, the studies on Mg2+ ion
conductors are still few, only eight papers have been published so far. The conductivity
of MOF-based Mg ion conductive electrolytes ranges from 10−4 to 10−6 S cm−1. Since
MOF-based solid electrolytes contain liquid electrolytes, the transference number of Mg2+

ions should be studied, as well as their electrochemical window. Only three papers re-
ported those, 0.25~0.49 of transference number and about 3 V vs. Mg/Mg2+ of oxidative
stability [75–77]. On the contrary, stable Mg plating/stripping behavior was observed in
four papers (Figure 4) [75–78]; therefore, a Mg metal anode can be applied for the MOF-
based electrolytes. Typically, MOF-based Mg ion conductive electrolytes contain around
45~55 wt.% of solvent, which is comparable to gel-polymer electrolytes [79]; however,
their conductivities and mechanical properties are not inversely proportional. Hassen et al.
reduced the liquid content in MOFs to around 20 wt.% and reported that ionic conductivity
was not primarily affected [75]. Also, the same group found conductivity enhancement by
treatment of MOF at 150 ◦C for 24 h, probably due to the removal of coordinated water.

The MOF-based electrolytes are likely to be stable for a Mg metal anode, a relatively
high anodic stability, ~3 V, and a high conductivity, which makes them a good candidate
for all-solid-state Mg batteries; however, there are still a lot of unknowns. Particularly, the
correlation of the pore structure and the composition of a liquid electrolyte (salt, solvent, and
salt concentration) with chemical/electrochemical properties must be clarified. Properties
of MOF-based solid electrolytes are summarized in Table 4.
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2022, Wiley-VCH GmbH.

Table 4. Properties of MOF-based solid electrolytes.

MOF Liquid Electrolyte σtotal
(S cm−1) Temperature (◦C) Activation

Energy (eV) Ref.

Mg2(dobpdc)

Mg(TFSI)2/triglyme 1.3 × 10−4 RT

0.11~0.19 [79]Mg(OPhCF3)2
+ Mg(TFSI)2/triglyme 2.5 × 10−4 RT

MIT-20 MgBr2/PC 8.8 × 10−7 RT 0.37 [80]

Cu4(ttpm)2·0.6CuCl2
MgCl2/THF 1.2 × 10−5 RT 0.32

[81]
MgBr2/THF 1.3 × 10−4 RT 0.24

MOF-74 Mg(TFSI)2/MgCl2/DME 3.17 × 10−6 RT 0.53 [78]

Mgbp3dc α-Mg3(HCOO)6/DMF 3.8 × 10−5 RT 0.669 [75]

UiO-66 Mg(TFSI)2/[EMIM][TFSI] 5.8 × 10−5 RT 0.67 [76]

MOF-177 Mg(TFSI)2/diglyme 1.6 × 10−5 RT 0.33 [77]

MIL-101 Mg(TFSI)2 + MeCN vapor 1.9 × 10−3 25 0.18 [82]

2.2. Organic Electrolyte

Organic electrolytes, namely, polymer electrolytes, are composed of polymer hosts and
Mg salts (solid polymer electrolytes, SPEs). In some cases, fillers and plasticizers are added
to improve the properties. SPEs have been reported the most, while SPEs with plasticizers
are most widely employed for all-solid-state Mg batteries. Herein, recent research on
organic electrolytes is briefly summarized. Recently, novel organic electrolytes, i.e., organic
crystal electrolytes, have been developed. Organic crystal electrolytes are introduced at
the end of this section. For Mg2+ ion conductive electrolytes, only inorganic fillers are
employed. Therefore, filler-added polymer electrolytes are reviewed in the next Section 2.3
“Organic-inorganic composite electrolytes”.
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2.2.1. Solid Polymer Electrolytes

SPEs are composed of host polymers and Mg salts. The Lewis-base moieties of host
polymers allow the dissociation of Mg salts, resulting in an emerging Mg2+ ion conduction.
Accordingly, the host polymers contain atoms with lone-pair electrons, such as oxygen,
fluorine and nitrogen atoms. Figure 5 depicts the structures of various host polymers. SPEs
are prepared by the solution-casting method. Polymer hosts and Mg salts are dissolved
into a solvent and then cast onto a substrate to obtain SPE films.
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Common host polymers, such as PEO, have been used in Mg2+-ion conductive
SPEs [83,84]. Different from Li+ ion conductive SPEs, water-soluble polymers like PVP
and PVA are also used [85–88]. Such polymers allow the use of water as a solvent, facili-
tating preparation processes and reducing production costs. The ionic conductivities of
SPEs using the water-soluble polymer hosts are comparable (10−5~10−6 S cm−1) to the
conventional polymer hosts; however, other properties like the electrochemical window
are seldom studied. Studies on the other properties must be carried out to clarify the
applicability of the water-soluble polymer hosts.

Solvents used for polymer casting would influence the properties of SPEs. Unfor-
tunately, direct research on the influence of solvents has not been performed. Organic
and inorganic solvents have been usually employed for synthetic and natural polymers,
respectively. A large performance difference by solvents was not confirmed among organic
and inorganic solvents.

Natural polymers are also used as host polymers for Mg2+ ion conductive SPEs [89–104].
Natural polymers are attractive in terms of environmental friendliness and resource abun-
dance. Natural polymer-based SPEs exhibit better conductivity, around one order of
magnitude higher than synthetic polymer-based SPEs. Notably, SPEs composed of potato
starch and Gellan gum reveal a high ionic conductivity of ~10−2 S cm−1 [92], which is
comparable to Li10GeP2S12 and even liquid electrolytes [105]. In addition, these SPEs
possess high flexibility and are promising for all-solid-state Mg batteries. However, their
application to all-solid-state Mg batteries has yet to be reported. The environmental friend-
liness of natural polymers means that natural polymers will decompose naturally in the
long term. Thus, the long-term stability of natural polymer-based SPEs must be tested.

To improve the properties of SPEs, a polymer blend, namely, a mixture of two host
polymers, was also studied [106–116]. By the blending, the ionic conductivity increases
by one order of magnitude, 10−3~10−4 S cm−1, which is applicable to all-solid-state Mg
batteries. Recently, the blend of natural and synthetic polymers emerged as a new research
trend in SPEs [117–120]. For example, in the blend of methyl cellulose (MC) and PVA,
the hydrogen bond forms between MC and PVA, stabilizing the polymer blend [119]. In
addition, rich-oxygen atoms in MC facilitate the dissociation of Mg salts. As a result, the
ionic conductivity increased to ~10−4 S cm−1, which is applicable to all-solid-state Mg
batteries [121].
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Regarding the Mg salts, in addition to commonly used metal salts in LIBs like TFSI,
ClO4-salts, more cost-effective MgSO4, Mg(NO3)2, MgCl2, etc., are used. Thus, water-
soluble polymers, such as PVA and PVP, are used for these salts. The ionic conductivity
was not influenced by the Mg salts. Aziz et al. added LiFSI into PEC-Mg(TFSI)2 SPE [122].
The ionic conductivity was improved by one order of magnitude by the addition. Also, the
Li-contained SPE demonstrated stable Mg stripping and plating. The usage of mixing salt
is a new concept for the SPEs. In this system, the contribution of Li-ion conduction must be
considered to estimate the ionic conductivity. However, characterization techniques to ex-
tract only Mg2+ ion conduction have not been developed yet; therefore, the characterization
of the system should be given extra consideration.

Many types of polymers and Mg salts are studied for Mg2+-ion conductive SPEs. Most
studies focus on the ionic conductivity, however, other properties, such as electrochemical
window, transference number and compatibility with electrodes, are also important for
application of all-solid-state batteries. Thus, studies on SPEs should be performed more
comprehensively. Properties of SPEs are summarized in Table 5.

Table 5. Properties of SPEs.

Polymer Mg Salt Solvent σtotal
(S cm−1) Temp. (◦C) Ea (eV) Window

(V vs. Mg/Mg2+) t+ Ref.

PEO Mg(TFSI)2 ACN 1.8 × 10−6 0 0.68 - - [83]
1.6 × 10−4 50

PEO Mg(ClO4)2 methanol 1.42 × 10−6 RT - - - [84]

PVP MgCl2 DI water 1.42 × 10−5 RT - - - [85]

PVP MgSO4 DI water 1.05 × 10−5 RT - - - [86]

PVA MgSO4 DI water 1 × 10−9 27 0.37 - - [87]

PVA MgCl2 DI water 5 × 10−7 35 - - - [88]

Potato starch MgCl2 methanol 3.2 × 10−2 RT 0.002 4.6 - [89]

Sodium alginate Mg(NO3)2 DI water 4.58 × 10−3 RT - 3.5 0.31 [90]

MC Mg(NO3)2 DI water 1.02 × 10−4 RT - 3.23 - [91]

Gellan gum Mg(ClO4)2 DI water 1.06 × 10−2 RT - 2.86 0.33 [92]

Natural rubber Mg(Tf)2 THF 4.9 × 10−3 30 - 2.5 - [93]

I-Carrangeenan Mg(NO3)2 DI water 6.1 × 10−4 30 0.17 - - [94]

Agarose Mg(NO3)2 DMSO 1.48 × 10−5 RT 0.044 3.57 - [95]

CA Mg(NO3)2 DMF 9.19 × 10−4 RT - 3.65 0.35 [96]

K-Carrageenan MgCl2 DI water 4.76 × 10−3 30 - 1.94 0.26 [97]

Chitosan Mg(Tf)2
1% acetic
acid aq. 9.58 × 10−5 RT 0.36 - - [98]

K-Carrageenan Mg(NO3)2 DI water 7.05 × 10−4 RT - 4.42 0.32 [99]

Methyl cellulose Mg(CH3COO)2 DI water 2.6 × 10−5 RT - 3.47 - [100]

I-carrageenan Mg(ClO4)2 DI water 2.18 × 10−3 RT 0.05 - 0.313 [101]

Chitosan MgCl2
1% acetic
acid aq 4.6 × 10−4 - - - - [102]

Pectin Mg(NO3)2 DI water 7.7 × 10−4 RT - 3.8 0.29 [103]

Pectin MgCl2 DI water 1.14 × 10−3 RT - 2.05 0.301 [104]

PEO-PVDF MgTFSI DMF 1.2 × 10−5 25 - - - [105]

PEO/PVDF-HFP MgBr2 DMF 3.9 × 10−4 RT 0.26 1.86 - [106]

PVA-PAN Mg(ClO4)2 DMF 2.94 × 10−4 RT 0.21 3.65 0.27 [107]

PVDF-HFP + PVAc Mg(ClO4)2 THF 1.60 × 10−5 30 0.33 3.5 - [109]

PVP-PVA Mg(NO3)2 DI water 3.8 × 10−5 30 0.475 - - [110]

PVA-PAN MgCl2 DMF 1.01 × 10−3 RT 0.07 3.66 - [111]

Poly(VdCl-co-AN-co-MMA) Mg(NO3)2 THF 1.6 × 10−4 RT 0.19 3.2 0.36 [112]
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Table 5. Cont.

Polymer Mg Salt Solvent σtotal
(S cm−1) Temp. (◦C) Ea (eV) Window

(V vs. Mg/Mg2+) t+ Ref.

PEO/PO Mg(TFSI)2 ACN 1.5 × 10−5 30 - - - [113]

PCL-PTMC Mg(TFSI)2 ACN 2.52 × 10−8 25 - - - [114]

PVA-PAN Mg(NO3)2 DMF 1.71 × 10−3 RT 0.36 3.4 0.30 [115]

PVDF-HFP + PVAc Mg(ClO4)2 THF 3.85 × 10−5 30 3.37 3.68 - [116]

CS + MC MgCl2
1% acetic
acid aq 2.75 × 10−3 30 - 3.86 - [117]

Corn silk + PVA MgCl2 DI water 1.28 × 10−3 RT - 2.11 0.32 [118]

Methyl cellulose-PVA Mg(NO3)2 Not mention 3.25 × 10−4 27 - 2.62 - [119]

PEO-Starch MgBr2 methanol 7.8 × 10−9 RT - - - [120]

PEC Mg(TFSI)2 ACN 2.3 × 10−6 80 - 2.0 - [122]

Polysaccharide Mg(ClO4)2 DI water 5.66 × 10−4 RT 0.09 3.93 0.43 [123]

PEC Mg(ClO4)2 ACN 5.2 × 10−5 90 - - - [124]

PAGE Mg(TFSI)2 THF 4.1 × 10−4 90 - - - [125]

2.2.2. Polymer Electrolytes with Plasticizers (Gel-Polymer Electrolytes)

In general, plasticizers are used to soften a material, to increase its plasticity and to
decrease its viscosity. In polymer electrolytes, plasticizers lower Tg (glass-transition temper-
ature) and activate the segmental motion of polymer chains, enhancing ionic conductivity.
Studies on all-solid-state Mg batteries have been performed using GPEs the most.

As Li+-ion conductive polymer electrolytes, low molecular weight solvents and ionic
liquids have been used as plasticizers (Figure 6). Because plasticizers soften SPEs, the
optimum amount of plasticizers must be found to balance the ionic conductivity and me-
chanical properties of GPEs. The optimum amount of plasticizers varies significantly by the
plasticizers used. In the GPE using PYR14TFSI ionic liquid, the highest ionic conductivity
was obtained at 10 wt.% of plasticizers [126]. Contrarily, the plasticizer amount of 200 wt.%
was reported in the TEGDME system [127]. In such high plasticizer content, it is questioned
whether the ionic conduction is mainly caused by the segmental motion of the polymer or
dissolved Mg salt in the liquid part.
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In GPEs, synthetic polymers are mostly studied. Their conductivity ranges from 10−4

to 10−3 S cm−1, which can be applied for all-solid-state batteries. Gupta et.al. reported a
high ionic conductivity of 2 × 10−2 S cm−1 in [PVdF-HFP(30 wt.%)-EMIMBr(70 wt.%)]
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(30 wt.%)-[PC-Mg(ClO4)2 (0.3 M)] (70 wt.%) system [128]. However, cell data were not
reported although the high ionic conductivity is promising. Mixed plasticizers like EC-
SN [129] and EC-DEC [130] have also been studied, but they did not significantly improve
properties compared with single plasticizers.

The inorganic magnesium aluminum chloride complex (MgCl2-AlCl3, MACC) has
been studied in liquid electrolytes [131]. With the addition of AlCl3, the dissociation of
MgCl2 is promoted, increasing the solubility of the MgCl2 and Mg2+-ion concentrations. As
a result, Mg stripping/plating over potential can be drastically decreased [132]. Wang et al.
applied this concept to GPEs for the first time [133]. The ionic conductivity of their
PVDF-HFP-based GPEs containing a MgCl2-AlCl3 salt and a TEGDME plasticizer was
4.7 × 10−4 S cm−1. Although this value was comparable to other GPEs, the reversibility of
Mg stripping/plating was drastically improved. In polymer electrolyte research, the effect
of Mg salt has not been studied intensively. Their results clearly show the importance of
Mg salt on the performance of all-solid-state Mg batteries.

In another important study, a single-ion conductive polymer electrolyte was reported
by Schaefer et al. [134]. In the single-ion conductive polymer electrolyte, the anion part of
Mg salt was polymerized with host polymers. Thus, the mobility of the anion is zero; in
other words, the cation transference number is 1. Therefore, undesired side reactions caused
by anions can be avoided completely. The authors prepared a P(PEGDMA)-P(TFSI) [poly
(ethylenglycol) dimethacrylate- poly styrensulfonyl (trifluoromethylsulfonyl)] network
(Figure 7). In this structure, TFSI moiety is involved in the polymer chain, resulting in the
immobilization of anion. This type of polymer generally shows a low ionic conductivity
due to the low segmental motion of the polymer chain. Thus, the DMSO plasticizer
was added, and the Mg2+-ion conductivity was increased to 8.8 × 10−4 S cm−1. It is
noted that the high conductivity was achieved by only Mg2+-ion transportation. Some
other studies reported higher conductivities; however, the conductivities contain anion
transportation. Therefore, the high Mg2+-ion conductivity of single-ion conductive polymer
is very attractive. Unfortunately, cell data were not reported.
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In GPEs, mixed salts like MACC and the single-ion conductive polymer are studied.
Such studies have been carried out only in GPEs. Their superior properties are promising
to apply for all-solid-state Mg batteries. This concept should be investigated intensively
and used in other polymer electrolytes, such as organic–inorganic composite electrolytes.
Properties of GPEs are summarized in Table 6.
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Table 6. Properties of GPEs.

Polymer Mg Salt Plasticizer σtotal
(S cm−1)

Temp.
(◦C)

Ea
(eV)

Window
(V vs. Mg/Mg2+)

Transference
Number Ref.

P(PEGDMA)-P(STFSI) DMSO 8.8 × 10−4 30 - 1.5 (1.0) [134]

PVDF Mg(SO3CF3)2 TEGDME 4.6 × 10−4 55 0.62 1.0 0.74 [135]

PEO Mg(Tf)2 PYR14TFSI 3.7 × 10−4 RT - - 0.40 [126]

PEO Mg(Tf)2 EMIM-BF4 9.4 × 10−5 RT 0.26 4.0 0.22 [136]

PVdC-co-AN Mg(TFSI)2 EC + SN 1.9 × 10−6 RT 0.04 3.8 0.59 [129]

PVdC-co-AN Mg(TFSI)2 SN 1.6 × 10−6 RT 0.09 3.2 - [137]

PVDF-HFP Mg(ClO4)2 EDiMIMBF4 8.4 × 10−3 RT 0.33 - - [138]

PVDF-HFP Mg(ClO4)2 EMIMBr, PC 2.0 × 10−2 RT 0.02 - - [128]

PEC Mg(TFSI)2 TEGDME 5.2 × 10−6 80 - - - [139]

PECH-OH MgCl2 TEGDME 6.2 × 10−5 30 0.25 3.2 0.79 [127]

PVDF-HFP Mg(Tf)2 SN + EMITf 4 × 10−3 26 0.104 4.1 - [140]

Poly(VdCl-co-An-co-MMA) MgCl2 SN 1.4 × 10−3 RT 0.26 3.3 0.31 [141]

c-PTHF Mg(TFSI)2 TEGDME 4.5 × 10−5 30 - - - [142]

CS Mg(CH3COO)2 glycerol 1.1 × 10−4 RT - - - [143]

k-carrageenan Mg(NO3)2 EC 7.3 × 10−3 30 - 4.59 0.39 [103]

PVDF-HFP/PVAc Mg(ClO4)2 EMITF 9.1 × 10−4 30 0.28 3.59 - [144]

Hydroxy propyl Mg(TFSI)2 TEGDME 1.73 × 10−3 25 - - - [145]

PVDF-HFP Mg(Tf)2 EC-DEC 2.4 × 10−4 70 - 5.0 0.42 [130]

PVDF Mg(ClO4)2 PC 1.5 × 10−3 RT - 5.0 0.47 [146]

PVDF-HFP Mg(ClO4)2 TEGDME 9.8 × 10−4 RT - 4.6 - [147]

PTHF MgBOR 2.0 × 10−3 25 - 2.57 0.3 [148]

PVA Mg(Tf)2 EMITf 1.2 × 10−3 RT - - - [149]

PVDF-HFP Mg(ClO4)2 PC 1.6 × 10−3 RT - 5.5 - [150]

PAN Mg(ClO4)2 PC 3.3 × 10−3 30 0.1 4.6 0.6 [151]

PVDF-HFP MgCl2-AlCl3 TEGDME 4.7 × 10−4 25 - 3.1 - [133]

PEO Mg(Tf)2 PC-DEC 3.0 × 10−5 RT 0.14 3.5 0.32 [152]

CS:Dextran Mg(CH3COO)2 Glycerol 1.2 × 10−6 RT - 1.5 - [153]

2.2.3. Organic Crystal Electrolytes

Recently, Moriya’s group reported a new type of organic electrolyte, organic crystal
electrolytes. They are composed of organic molecules and Mg salts and possess ion con-
duction paths in the crystal lattice (Figure 8). The paths are precisely controlled by organic
molecules and Mg salts. Only two Mg ion conductive organic crystal electrolytes have
been reported so far [154,155]. In both cases, their room temperature conductivities were
higher or comparable to Mg(BH4)2-based inorganic electrolytes, and the cation transference
number was higher than that of polymer-based electrolytes. These properties would be
improved by adjusting the ion conduction paths. Unfortunately, cell data using the organic
crystal electrolytes are not available at the moment. There is still a lot of room to develop
organic crystal electrolytes. Properties of organic crystals are summarized in Table 7.

Table 7. Properties of organic crystals.

Crystal σtotal
(S cm−1)

Temp.
(◦C)

Ea
(eV)

Transference
Number Ref.

Mg(TFSA)2(CPME)2 2 × 10−7 30 0.72 0.74 [154]

[N1122][Mg(η2-TFSA)2(µ2-η1-η1-TFSA)] 2.5 × 10−6 40 1.21 0.46 [155]
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2.3. Organic–Inorganic Composite Electrolytes
2.3.1. Solid Polymer Electrolytes with Fillers

In the Li+ ion conductive polymer electrolytes, various types of fillers, such as or-
ganic/inorganic fillers and active/passive (Li+ ion conductive/non- Li+ ion conductive)
fillers are researched. Contrarily, in the Mg2+ ion conductive polymer electrolytes, only
inorganic passive fillers, especially metal oxides, are studied. In addition, only nano-
particle morphology, not nano-wire, nano-sheet, etc., is employed. Among the studies, the
highest conductivity was obtained in filler contents of 3~7 wt.% regardless of the fillers.
An interesting study was carried out by Jayanthi et al. in which the ferroelectric material,
BaTiO3, was added to PVDF-HFP/MgTf polymer electrolyte as a filler [156]. The presence
of ferroelectric domains in the polymer electrolyte facilitates salt dissociation and helps
the amorphization of the polymer, enhancing ionic conductivity. A similar study was
reported in Na+ ion conductive polymer electrolyte [157]. In this case, K0.5Na0.5NbO3
(KNN) was used as a ferroelectric filler, and it decreased the ionic conductivity of polymer
electrolytes, while the stability against the Na metal anode was improved. As a result, a
better performance of an all-solid-state Na battery was obtained. This is a good result that
electrolyte performance is determined by conductivity and interface properties between
electrodes and electrolytes. Thus, electrolyte study must include the construction and
evaluation of an all-solid-state battery. Unfortunately, studies on only solid electrolytes
have been reported much more than all-solid-state batteries. Properties of SPEs with fillers
are summarized in Table 8.

Table 8. Properties of SPEs with fillers.

Polymer Mg Salt Filler σtotal
(S cm−1) Temp. (◦C) Ea (eV) Window

(V vs. Mg/Mg2+)
Transference

Number Ref.

PVA/PVP MgCl2 CuS 4.3 × 10−6 RT - - - [158]

MC MgCl2 ZnO 1.2 × 10−4 RT - - - [159]

PVDF Mg(NO3)2 MgO 1.0 × 10−4 RT 0.32 - - [160]

PEG Mg(CH3COO)2 CeO2 3.4 × 10−6 RT - - - [161]

PMMA Mg(Tf)2 TiO2 1.8 × 10−6 RT - - - [162]

CS Mg(NO3)2 MnO2 1.2 × 10−3 30 - 1.7 - [163]

PVDF-HFP Mg(Tf)2 BaTiO3 4.1 × 10−4 RT - - - [156]

PEO Mg(Tf)2 MgO 1.6 × 10−4 25 0.14 - - [164]

PVDF Mg(NO3)2 Al2O3 9.5 × 10−6 RT - - - [165]

PVDF Mg(NO3)2 ZnO 5.2 × 10−5 RT 0.29 - - [166]
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Table 8. Cont.

Polymer Mg Salt Filler σtotal
(S cm−1) Temp. (◦C) Ea (eV) Window

(V vs. Mg/Mg2+)
Transference

Number Ref.

PEO MgCl2 B2O3 7.2 × 10−6 25 - - - [167]

PVDF-
HFP/PVAc Mg(ClO4)2 MgTiO3 5.8 × 10−3 30 0.25 4.0 0.34 [168]

CS MgCl2 V2O5 1.4 × 10−3 RT - 1.7 - [169]

PVDF-HFP MgClO4 ZrO2 6.6 × 10−2 30 - - - [170]

PVDF-HFP MgCl2 ZnO 1.3 × 10−5 RT - - - [171]

Table 9. Properties of SPEs with plasticizers and fillers.

Polymer Mg Salt Plasticizer Filler σtotal
(S cm−1)

Temp.
(◦C)

Ea
(eV)

Window
(V vs. Mg/Mg2+)

Transference
Number Ref.

CS/MC Mg(CH3COO)2 Glycerol Ni 1.0 × 10−4 RT - 2.48 - [172]

PEO Mg(ClO4)2 EMIMFSI SiO2 5.4 × 10−4 RT 0.36 4.0 - [174]

CS Mg(CH3COO)2 Glycerol Ni 1.1 × 10−5 RT - 2.4 - [175]

PVDF-HFP Mg(Tf)2 EC-PC MgAl2O4 4.0 × 10−3 RT - - 0.66 [173]

PVDF-HFP Mg(ClO4)2 PTR14RFSI TiO2 1.6 × 10−4 30 0.13 - 0.23 [176]

PVDF-HFP Mf(TFSI)2 TEGDME SiO2 8.3 × 10−4 RT - - - [177]

PTHF Mg(BH4)2-
LiBH4

diglyme TiO2 4.2 × 10−4 40 0.003 - 0.5 [178]

2.3.2. Solid Polymer Electrolytes including Plasticizers and Fillers

In this system, polymer electrolytes contain both inorganic fillers and plasticizers. As
mentioned, low molecular weight solvents and ionic liquids are employed as plasticizers.
Contrarily, metal oxides are used as fillers. Aziz et al. used Ni metal nanoparticles as
fillers [172]. Metal fillers have not been applied to Mg2+-ion conductive polymer electrolytes
except in this paper. To clarify the effect of metal filler, more research is needed. Sharma
et al. added EC-PC and MgAl2O4 into PVDF-HFP/Mg(Tf)2 polymer electrolytes [173]. This
system revealed a high transference number of 0.66, which is one of the highest transference
numbers in Mg2+-ion conductive polymer electrolytes.

The ionic conductivity of filler/plasticizer-containing polymer electrolytes ranges from
10−5 to 10−3 S cm−1. These values are comparable to other types of polymer electrolytes.
Thus, the benefits of using both plasticizers and fillers cannot be emphasized. Currently,
the individual effect of plasticizers and fillers on the properties of polymer electrolytes has
yet to be fully understood. Thus, the individual effects of plasticizers and fillers must be
clarified first. Then, more a complicated system, i.e., polymer electrolytes containing both
plasticizers and fillers, should be developed based on the individual effect. Properties of
SPEs with plasticizers and fillers are summarized in Table 9.

3. All-Solid-State Mg Battery
3.1. Inorganic Electrolyte

Research on all-solid-state Mg batteries using oxide-based electrolytes is not reported.
The Mg2+-ion conductivity of the oxide electrolytes is 10−6~10−7 S cm−1 at room tempera-
ture. This is too low to support ion conduction in all-solid-state batteries operated at room
temperature. Thus, an improvement of room temperature ionic conductivity to at least
10−4 S cm−1 level is needed first. In the case of MgSc2Se4-related materials, although they
possess a high Mg2+-ionic conductivity, their electronic conductivities are also high. Thus,
these materials are not studied for electrolytes for all-solid-state batteries.

All-solid-state Mg batteries using inorganic electrolytes are reported only in borohy-
dride electrolytes, i.e., Mg(BH4)2-related materials. The materials are usually prepared by
mechanical milling, and all-solid-state cells are constructed by pressing Mg metal anodes
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and cathodes onto the solid electrolyte pellets. While these materials demonstrate good Mg
stripping/plating behaviors [62,64,65,67,69], only two papers reported that with respect
to full cell configurations. In both cases, TiS2 was used as a cathode, and electrochemical
tests were carried out above room temperature (55 and 75 ◦C) to obtain reasonable capacity.
The obtained discharge capacity was about 100 mAh/g, although the C rate was low
(141 mAh/g at 0.05 C at 75 ◦C). Also, capacity decay occurs rapidly (31% capacity retention
at the 25th cycle). TiS2 cathode exhibits large (>100 mAh/g) and stable (>100 cycles) capaci-
ties at room temperature and a reasonable C rate (1~2 C) in liquid electrolytes [131]. Thus,
the low performance of an all-solid-state battery would be caused by a low conductivity of
solid electrolytes and a high impedance/low stability of the cathode/electrolyte interface.
Indeed, the interface impedance increased with the cycle number [72].

As mentioned, an improvement of room temperature ionic conductivity is needed
to realize all-solid-state Mg batteries using inorganic electrolytes. Additionally, various
cathode materials and properties of the electrode/electrolyte interface must be tested
and characterized, respectively. In summary, all-solid-state Mg batteries using inorganic
electrolytes are still far from realization.

3.2. MOF

In the all-solid-state Mg batteries using MOF-based electrolytes, since MOFs are used
to support liquid electrolytes, they can be said “Quasi-solid electrolytes”. Although stable
Mg stripping/plating is observed, only one paper reported it in the full cell configuration.
The full cell using PTCDA (Perylenetetracarboxilic dianhydride) cathode demonstrates a
small discharge capacity of 36 mAh/g at 1 mAh/g at 60 ◦C. The capacity fade was also
large; only 61% of capacity remained in the 3rd cycle. The PTCDA cathode is employed
for Na and K batteries [179,180] and reveals a good performance. However, it has not
been applied for Mg batteries, even including liquid electrolytes. Therefore, the poor
performance of all-solid-state Mg batteries using MOF-based quasi-solid electrolyte has
been attributed to some factors, such as the cathode itself, the cathode/electrolyte interface,
the electrolyte itself and so on. The usage of common cathode materials like MoS6 can
reduce the factors, facilitating the evaluation of all-solid-state Mg batteries. Consequently,
the common cathode materials should be used for the MOF-based quasi-solid electrolytes
at this moment.

Since stable Mg stripping/plating was achieved at room temperature in MOF-based
solid electrolytes, they would be attractive for all-solid-state Mg battery applications;
therefore, studies on cathode side must be carried out intensively.

3.3. Organic Electrolyte

Although studies on SPEs (without fillers and plasticizers) are reported by many
groups, SPEs are not applied for all-solid-state Mg batteries. Some groups studied primary
Mg batteries using SPEs [90,94,101,103,104,108,115,117,119,123]. Since this review article
focuses on rechargeable all-solid-state Mg batteries, the studies on primary batteries are
not introduced here. The main reason for the lack of research on SPEs for rechargeable
all-solid-state Mg batteries is their relatively low ionic conductivity. The conductivity
of most SPEs ranges 10−5~10−7 S cm−1 at RT. An improvement of the conductivity to
10−3~10−4 S cm−1 is needed to achieve reasonable performance of all-solid-state Mg
batteries. Potato starch [89] and gellan gum [92]-based SPEs exhibit an extremely high
ionic conductivity of ~10−2 S cm−1. These are two orders of magnitude higher than other
SPEs. A close investigation on these SPEs, such as reproducibility and characterization
procedures, should be performed since such a very high conductivity of these SPEs cannot
be easily accepted.

Gel Polymer Electrolyte

Gel polymer electrolytes (GPEs) composed of post polymers, Mg salts and plasti-
cizers possess a higher conductivity, 10−3~10−4 S cm−1, than SPEs. Additionally, their
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high flexibility makes battery construction easy. Thus, all-solid-state Mg batteries using
GPEs are reported the most. The all-solid-state Mg batteries using GPEs can be operated
at room temperature [127,133,140,148]; however, in all cases, initial and steady-state ca-
pacities are low. Because stable Mg stripping/plating is observed in GPEs, the cathode
itself and the cathode/electrolyte interface would be the reason for the low performance.
Detail characterization and post-mortem analysis of the interface and cathode should be
carried out.

Ge et al. fabricates pouch cell-type all-solid-state Mg batteries for the first time [127].
Only this study reports the performance of a pouch cell-type all-solid-state Mg battery
with GPE. The pouch cell can reduce the weight of battery cases, resulting in a high energy
density. Additionally, the authors performed safety tests, such as cutting the pouch cell
and flammability tests of GPE and pouch cell. The study is meaningful in verifying the
possible application of pouch cell configuration for all-solid-state Mg batteries, although an
improvement in the performance of the pouch cells is needed.

Sheha et al. studied dual polymer/liquid electrolytes (Figure 9) [135]. The electrolyte
is composed of the following two layers: liquid electrolyte and GPE. Both electrolytes are
separated by a glass fiber membrane. The liquid electrolyte (APC, all phenyl complex) and
GPE are faced on the cathode and anode (Mg metal) sides, respectively. In the all-solid-
state battery, poor contact between a porous electrode and a solid electrolyte increases
the impedance of the battery and causes low performance. At the moment, an effective
solution for the contact issue has yet to be found. Their concept would be helpful in solving
the contact issue. Therefore, the dual electrolyte configuration is likely to be applied for
first-generation all-solid-state Mg batteries. The authors reported a high initial capacity
using the BaTiO3 cathode (557 mAh/g at 20 mA/g at 55 ◦C), but the capacity was rapidly
decayed within 15 cycles. The reason for a low cyclability is unclear since the cyclability of
the BaTiO3 cathode has not been tested in liquid electrolytes. The dual electrolytes should
be studied using common cathode materials at first. For safety, the usage of the flammable
liquid electrolytes must be minimized. The influence of the liquid electrolyte on the safety of
the batteries, the formation of CEI (cathode-electrolyte interphase) and the properties of the
new interface, i.e., the GPE/liquid electrolyte should be studied for successful application
of the dual electrolyte system (In fact, the battery is not pure all-solid-state Mg batteries
since the batteries contain a small amount of liquid electrolyte).
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Figure 9. Configuration of Mg battery using the dual GPE/liquid electrolyte (Mg/GPE/APC/BaTiO3

cathode). Reproduced with permission [135]. Copyright 2020, American Chemical Society.

In the GPE research, Mo6S8, which is the most commonly used cathode material,
is applied for the all-solid-state battery [127,148]. This facilitates the evaluation of the
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all-solid-state batteries since the performance of the cathode has been studied in liquid
electrolytes for a long time. Mo6S8 cathode provides a high capacity (130 mAh g−1 at 0.1 C
and 98 mAh g−1 at 0.5 C) in liquid electrolytes [181,182]. Contrarily, the all-solid-state
batteries using GPEs demonstrate about 70 mAh g−1 (68 mAh g−1 at 0.1 C [148] and
73 mAh g−1 at 0.3 C [127]) even though the same cathode materials are used. Because the
ionic conductivity of electrolytes would not largely influence battery performance at such a
low C rate, the high impedance at the cathode/electrolyte interface could be a reason for the
low performance. Common electrode materials should be used for all-solid-state batteries
more intensively. It is interesting to note that better battery performance was obtained in the
PECH-OH-based GPE compared to the PTHF-based GPE. As shown in Table 6, the PTHF-
based GPE revealed about two orders of magnitude higher Mg2+-ion conductivity than
the PECH-OH-based GPE. This is a good example that battery performance is determined
by not only the properties of electrolytes. GPE is the most promising for all-solid-state
Mg batteries at this moment. The ionic conductivity of GPEs is comparable to Li+-ion
conductive polymer electrolytes. Thus, compatibility with electrodes and properties of
the electrode/electrolyte interface would determine the performance of all-solid-state Mg
batteries. Many studies on GPEs are reported, while their application to all-solid-state Mg
batteries is not researched intensively. Such study is strongly required, not only simple
studies on properties of GPEs, to realize all-solid-state Mg batteries.

3.4. Organic–Inorganic Composite Electrolytes

Only three papers have been reported in terms of all-solid-state Mg batteries using the
organic–inorganic composite electrolytes recently [168,177,178]. Compared with GPEs, all-
solid-state Mg batteries with composite electrolytes demonstrate a better initial performance
and cyclability. Particularly, when SPEs contain both fillers and plasticizers, a very stable
cyclability was achieved, although only two papers were reported. Both papers exhibited
99% capacity retention at the 100th cycle [177] and 98% capacity retention at the 70th
cycle [178]. The compatibility of polymer electrolytes with electrodes, especially cathodes,
is likely to be improved by adding fillers. Wang et al. successfully prepared the pouch
cell-type all-solid-state Mg batteries [178]. The cell demonstrated excellent performance.
However, the solid electrolyte contained two salts, Mg(BH4)2 and LiBH4. The ratio of
Mg/Li is 0.1/1.5. Thus, it is unclear the influence of Li intercalation on observed capacity.

Despite fewer examples, fillers would improve the stability of all-solid-state Mg
batteries. The application of the organic–inorganic composite electrolytes for all-solid-state
Mg batteries must be studied more intensively. Although pouch cell-type all-solid-state
battery was reported, common coin cell configuration and cathode materials should be
adopted at this moment because the application of organic–inorganic composite electrolytes
for all-solid-state Mg battery is still infant stage. Properties of all-solid-state Mg batteries
are summarized in Table 10.
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Table 10. Properties of all-solid-state Mg batteries.

Electrolyte Cathode Initial Capacity Capacity Retention Temp. (◦C) Note Ref.

Borohydrides

Mg(BH4)(NH2) Pt - - - Mg plating on Pt [62]

Mg(BH4)(NH3BH3)2 Mo - - - Mg plating on Mo [65]

0.4Mg(BH4)2•NH3-
0.6Mg(BH4)2•2NH3@MgO Mg - - 60 Stable Mg stripping/plating more than 100

cycles at 0.25 mA cm−2 [69]

Mg(en)1(BH4)2 Pt - - 60 Stable Mg stripping/plating in 20 cycles at
10 mV s−1 [64]

Mg(BH4)2 1.5NH3-YSZ Mg - - 60 Stable Mg stripping/plating in 300 cycles
at 0.1 mA cm−2 [67]

Mg(BH4)·2NH3 TiS2 141 mAh/g at 0.05C 31% at 25th cycle 75 111 mAh/g at 0.2C, 72 mAh/g at 0.5C [72]

Mg(BH4)2·1.5THF-MgO TiS2 94 mAh/g at C/50 32% at 5th cycle 55 SS current collector was oxidized [70]

MOF

Mg(TFSI)2/MgCl2/DME
in MOF-74 Mg - - RT Stable Mg stripping/plating in 100 cycles

at 0.05 mA cm−2 [78]

Mgbp3dc in α-Mg3(HCOO)6/DMF Mg - - RT Stable Mg stripping/plating in 8 cycles at
0.1 µA cm−2 [75]

Mg(TFSI)2/[EMIM][TFSI] in UiO-66 PTCDA 36 mAh/g at 1 mA/g 61% at 3rd cycle 60 Stable Mg stripping/plating more than 200
cycles at 3.14 µA cm−2 [76]

GPE

PVDF-TEGDME-Mg(Tf)2 BaTiO3 557 mAh/g at 20 mA/g 12% at 15th cycle 55

• Full cell configuration:
Mg/SE/APC/Cathode

• Stable Mg stripping/plating more
than 25 cycles at 0.02 mA cm−2

[135]

PECH-OH-MgCl2-TEGDME Mo6S8 73 mAh/g at 0.3 C 84% at 100th cycle 30 Pouch cell data [127]

PVDF-HFP-Mg(Tf)2- SN + EMITf MnO2 40 mAh/g at 38 µA cm−2 12.5% at 8th cycle RT [140]

PTHF-MgBOR Mo6S8 68 mAh/g at 0.1 C 74% at 100th cycle 25 Stable Mg stripping/plating more than
1000 cycles at 0.1 mA cm−2 [148]
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Table 10. Cont.

Electrolyte Cathode Initial Capacity Capacity Retention Temp. (◦C) Note Ref.

PVDF/HFP-MgCl2/AlCl3-TEGDME MoS2 121 mAh/g at 40 mA/g 58% at 1700th cycle 25 Stable Mg stripping/plating more than 400
cycles at 1.0 mA cm−2 [133]

Filler

PVDF-HFP/PVAc-Mg(ClO4)2-MgTiO3 Mo6S8 120 mAh/g at 0.5 C 87% at 30th cycle RT [168]

SPE + filler + plasticizer

PVDF-HFP-Mg(TFSI)2-SiO2 TiO2 129 mAh/g at 50 mA/g 99% at 100th cycle RT Stable Mg stripping/plating more than 100
cycles at 0.2 mA cm−2 [177]

PTHF- Mg(BH4)2/LiBH4-Diglyme-
TiO2

TiS2 225 mAh/g at 0.5 C 98% at 70th cycle 22 Stable Mg stripping/plating more than 100
cycles at 0.1 mA cm−2 [178]
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4. Challenges

The all-solid-state Mg battery is a good option to replace LIBs due to high safety, energy
density and resource abundance. Thanks to the many efforts of researchers, technologies
for the all-solid-state Mg battery have progressed significantly. Despite the significant
progress, further research is still required to realize the all-solid-state Mg battery. Herein,
the challenges are summarized.

(1) Inorganic electrolytes

The Mg2+-ion conductivity of current ceramic electrolytes is 10−6~10−7 S cm−1 at
room temperature (except [33,35,59]). Even with hydride-based inorganic electrolytes, the
conductivity is ~10−5 S cm−1. For all-solid-state Mg batteries, the required conductivity
is >~10−4 S cm−1 at room temperature to ensure room temperature operation. Thus, an
improvement in ionic conductivity must be investigated in inorganic electrolytes. Some
groups have studied the Mg2+-ion conductivity of ceramic electrolytes intensively; how-
ever, an effective solution to enhance the conductivity is yet to be found at this moment.
Thus, thin film ceramic electrolytes would effectively compensate for the low conductivity.
Currently, only one paper is reported with respect to thin film ceramic electrolytes [58]. The
thin film ceramic electrolytes should be studied more intensively. Adding inorganic fillers
will likely improve the ionic conductivity in the hydride-based electrolytes [67,68]. The
effect of fillers should be a good research topic for further study.

(2) Study on Mg salts

Compared to inorganic electrolytes, organic polymer electrolytes are more promising
in the application of all-solid-state Mg batteries at this moment. Various polymer hosts
have been studied. On the other hand, a systematic study on Mg salts is not carried
out. Fichtner et al. reported the corrosion of the battery case and current collectors by
Cl-contained salt [148]. Although various types of Mg salts, such as MgSO4, MgCl2,
Mg(ClO4)2, Mg(TFSI)2, Mg(NO3)2 and Mg(Tf)2, have been employed so far, a suitable Mg
salt for the all-solid-state Mg battery is still under investigation. Therefore, the effect of
Mg salts on the properties of SPEs (and GPEs) and the performances of all-solid-state Mg
batteries should be studied systematically.

(3) Mechanical properties of solid electrolytes

High flexibility is one of the benefits of SPEs and GPEs, which facilitates the construc-
tion of the all-solid-state Mg battery. However, quantitative evaluation of the flexibility,
i.e., mechanical properties, has not been carried out yet. The mechanical properties of
solid electrolytes influence cell pressure, contact with electrodes, suppression of Mg den-
drite formation, etc., significantly. Consequently, both the electrochemical and mechanical
properties of SPEs and GPEs must be characterized precisely.

(4) Construction of all-solid-state Mg battery

As mentioned in a previous section, most research focuses on solid electrolytes and
only some papers try to fabricate all-solid-state Mg batteries. The compatibility of solid
electrolytes with an all-solid-state Mg battery cannot be evaluated by only ionic conductiv-
ity, electrochemical window, transference number, etc. Therefore, solid electrolytes must
be evaluated in all-solid-state batteries in addition to the above-mentioned properties.
Particularly, the properties of the electrode/solid electrolyte interface that largely affect the
performance of all-solid-state Mg batteries can be characterized only in the all-solid-state
battery configuration.

(5) Energy density

At the moment, the energy density of an all-solid-state Mg battery cannot be discussed
since the development is still in the infant stage. To improve the energy density, one good
strategy is a decrease in electrolyte thickness. A thin electrolyte can reduce the volume
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and weight of the all-solid-state battery, resulting in an enhancement of the energy density.
Therefore, the decrease in the thickness of electrolytes must be studied.

(6) Cathode materials

Some groups employ novel cathode materials for the all-solid-state Mg batteries. In
this case, the performance of the cathode material is unknown. Thus, it is impossible
to clarify the reason for the poor performance of the all-solid-state Mg battery, i.e., the
cathode itself or other components. Common cathode materials such as Mo6S8 and TiS2,
which are well characterized in liquid electrolytes, should be used to characterize and
evaluate the all-solid-state Mg batteries. After that, the development of cathode materials
for all-solid-state batteries would be carried out.

An all-solid-state Mg battery would replace current LIBs owing to high safety, energy
density and resource abundance, although the research is still infant stage. To realize the
all-solid-state Mg battery, above mentioned studies must be carried out intensively. Addi-
tionally, research on an Mg battery using liquid electrolytes should be referred to, especially
for the cathode selection. The following possible strategy is suggested: (1) Development of
polymer-based solid electrolytes (with/without plasticizers and fillers), (2) Investigation of
compatibility with cathode materials in all-solid-state batteries (common cathodes will be
used at first, then novel cathodes for all-solid-state batteries will be studied), (3) Decreas-
ing thickness of electrolytes and applying a pouch cell configuration to improve energy
density. The first-generation all-solid-state Mg battery would employ polymer-based solid
electrolytes because it would need more time to develop inorganic electrolytes. Most
probably, dual polymer/liquid electrolytes, as shown in Figure 9, would be employed to
solve poor contact between porous cathodes and solid electrolytes. Then, full all-solid-state
Mg batteries could be developed based on knowledge and experiences obtained in dual
polymer/liquid electrolytes. Ceramic electrolytes could be applied after the realization of
SPE and GPE-based all-solid-state Mg batteries.
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