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Abstract: Accurate State-of-Charge estimation is crucial for applications that utilise lithium-ion batter-
ies. In real-time scenarios, battery models tend to present significant uncertainty, making it desirable
to jointly estimate both the State of Charge and relevant unknown model parameters. However,
parameter estimation typically necessitates that the battery input signals induce a persistence of
excitation property, a need which is often not met in practical operations. This document introduces
a joint state of charge/parameter estimator that relaxes this stringent requirement. This estimator
is based on the Generalized Parameter Estimation-Based Observer framework. To the best of the
authors’ knowledge, this is the first time it has been applied in the context of lithium-ion batteries. Its
advantages are demonstrated through simulations.
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1. Introduction

In the current energetic scenario, decarbonisation of the electrical grid is a primary
objective. In this context, energy storage plays a crucial role, as the use of Electric Vehi-
cle (EV) is spreading [1,2] and the penetration of renewable energy sources in the grids
increases [3]. While there are several Energy Storage System (ESS), lithium-ion batteries
(LIBs) are currently the most popular technology, as they are flexible, efficient and offer a
good trade-off between energy density and power density [4,5].

In real applications, Li-ion batteries need to be monitored to ensure that their operation
is within safety limits. Battery Monitoring System (BMS) ensure this objective by moni-
toring and managing several variables of the cell [6]. Among all these variables, the most
important one is the State of Charge (SoC), which can be defined as the relation between
the remaining capacity of the battery compared to the nominal capacity. The knowledge of
SoC allows system monitoring to occur while providing the users with information about
how much energy is stored in the battery, facilitating the decision-making process. Simple
examples of this can be the range of an EV or the charging/discharging management of
a battery connected to a microgrid. A more concrete example is the charging process of
a battery, in which SoC is crucial to set limits that prevent battery degradation. In this
sense, fast charging [7–9] drastically approaches this limit, and it is in this application that
a guaranteed estimation of SoC can ensure its viability.

However, the SoC cannot be easily measured by any common sensor. For this reason,
the SoC estimation is a popular topic in the literature. The most traditional methods of
SoC estimation are Open Circuit Voltage (OCV) measurement and Coulomb counting. The
OCV measurement relies on directly measuring this variable and using an explicit function
that relates the OCV and SoC to infer the value of the SoC. Nonetheless, as the OCV can
only be directly measured when the battery is used in open-circuit conditions, this method
is impractical in most applications [10–12]. On the other hand, if OCV was measurable,
it can easily be associated with SoC, as can be seen in Section 2.2. Coulomb counting is
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based on computing an integration of the exchange current entering or leaving the cell over
time, thus providing a measure of the total extracted energy. This method requires precise
knowledge of the capacity of the battery, as well as an initial SoC. If these parameters
could be known beforehand, Coulomb Counting would surpass any other methods, but
the impossibility of this, as well as the changes in capacity due to battery ageing, make
the use of other options desirable. Moreover, the errors in the measurement and capacity
are accumulated over the full process of integration. In [13], these issues—as well as other
sources of errors associated with Coulomb counting methods—are described. Clearly, the
limitations of these methods have motivated alternative methods to estimate the battery
SoC. In this context, data-driven methods rely on data to predict the behaviour of the battery,
linking the measurable information to key indicators including SoC. However, training
and a large data set are required to obtain such a model; this often involves using machine
learning algorithms such as Artificial Neural Network (ANN) or Support Vector Machine
(SVM), among many others. ANN, a neural network model inspired by human brain
structure, excels in capturing complex relationships within data. On the other hand, SVM,
a robust classification and regression technique, is adept at handling high-dimensional data
and finding optimal decision boundaries. Both ANN and SVM contribute to enhancing
the predictive capabilities of models, but their effectiveness depends on the quantity and
quality of the available SoC data [14]. Alternatively, one can utilise observers [15] to
estimate the SoC by means of a model of the battery dynamics. In this approach, the
Kalman Filter (KF) and its many variations are popular and widely used, among many
other observer families that serve this purpose. Observers can be linear, e.g., Extended
Kalman Filter (EKF) [16,17] or H∞ observer [18], or non-linear. The latter category contains
estimators such as Unscented Kalman Filter (UKF) [19,20], particle filtering [21], Sliding
mode observer (SMO) [22–24], High Gain Observer (HGO) [25], Adaptive Observer [26,27]
or circle-criterion Observer [28], among other observers that can be used for this purpose.
We refer to our previous work [29], in which all these observers were briefly reviewed.
More information about SoC estimators can be found in the reviews provided by [30]
based on lithium-ion batteries, or [31,32] for other electrochemical ESS such as redox flow
batteries.

The use of observers requires the knowledge of a model that needs to describe the
behaviour of the battery. Battery modelling is also a widely discussed topic, with a variety
of models varying in complexity. The category of mechanistic models includes the models
that consider the electrochemical phenomena inside the cell, modelling diffusion of the
ions and electrolyte inside the cell. The Doyle-Fuller-Newman (DFN) model [33] is the first
and most popular of this kind of model, and it is characterised by modelling the diffusion
of lithium ions inside the battery using Fick’s laws of diffusion, as well as considering the
particles of the spherical electrodes. DFN is followed by a simplified version known as
Single Particle Model (SPM), which has the same basis but only considers one particle in
each electrode [34]. More details on these mechanistic models are provided by [35]. Up
to this point, a simple definition of SoC has been provided, as a proportion of the current
capacity against the maximum capacity of the battery. Such a simple definition is not
sufficient in electrochemical models, where the definition of SoC takes into account the
SoC at the bulk and at the surface of the battery [36], which is related to the concentration
of Lithium in the battery. Keeping this in mind, ref. [37] reviews the observers used to
estimate SoC considering these models.

Machine learning algorithms are also used in the context of battery modelling. A
common application is the use of machine learning to extract a model and combine it with
observers such as KF in order to estimate non-measurable states. Some remarkable exam-
ples are [38,39]. Finally, equivalent circuit models (ECM) are a third type of modelling with
high popularity in the literature. Two distinct subtypes can be identified. Electrochemical
ECMs employ a combination of electrical components along with Constant Phase Elements
to replicate the cell’s frequency response [40,41]. Phenomenological ECMs represent a
purely electric circuit that emulates the dynamic behaviour of the battery. Due to their
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simplicity and low computational demands, these models enjoy widespread popularity.
This document focuses on the latter type of model. More precisely, we propose an observer
to estimate the non-measurable OCV, and then use the relation between OCV and SoC to
infer the value of the SoC.

Besides selecting a proper observer structure that is coherent with the battery model
structure, observers usually require additional assumptions in order to properly estimate
the SoC. Some of these assumptions are related to the observability of the system; that is,
that the measured signals are sufficiently rich in information to infer the values of the states.
Most dynamic systems, in addition to states, contain parameters that must be adjusted.
This can be carried out offline [42], giving rise to an identification problem, or online [43].
Online parameter estimation requires that the input and output signals of the system satisfy
the so-called persistent excitation condition. The persistence of excitation is a condition
in which a system’s input or stimulus remains active for a sufficient length of time that
the presence of the unknown parameters produce a measurable effect on the system’s
behaviour, even after the input is removed [44]. The joint estimation of the states and
parameters of a dynamical system is a much more complex problem that usually requires
the simultaneous fulfilment of the properties of observability and persistent excitation.

In this document, we acknowledge the difficulty of having a properly tuned model and,
thus, we begin with an ECM of almost all unknown parameters. An adequate construction
of the model in the state space framework allows the unknown parameters to be treated as
states, thus allowing the joint estimation of unknown parameters and states. Following a
similar approach, in [45], the authors provided a similar state-space representation for an
ECM with the same objective of estimating the ECM. In [45] it was shown, by means of
the observability Gramian, that the OCV is observable without knowledge of the circuit
parameters, as long as the persistence of excitation is always satisfied. Observing OCV,
SoC can be indirectly computed. In this document, the authors generalise this result for the
ECM shown in Figure 1, which is currently more popular than the one shown in [45].

Additionally, in this work, we make the observation that the persistence of excitation
condition is not always satisfied in real applications of Li-ion batteries. For this reason,
and for the first time in the context of Li-ion batteries, we propose an estimation algorithm
that requires a less stringent observability assumption. More precisely, we observe that the
proposed state space model results in a linear time-varying system, which enables the use
of Generalized Parameter Estimation-based Observers (GPEBO), an algorithm introduced
in [46] that has never been applied, to the best of our knowledge, in LIBs. The major benefit
of this observer is that the persistence of excitation condition is relaxed, which solves a
major issue, as in many applications, this condition is not always met. The convergence
and stability of all the aforementioned observers are based on an underlying observability
assumption. In other words, if the system does not satisfy some minimal observability
property, the mentioned observers cannot guarantee a coherent and stable estimation. In
this sense, the GPEBO is able to guarantee an adequate estimation in scenarios where
the mentioned observers cannot, which is the low-observability scenario of absence of
persistent excitation. Consequently, there are some estimation problems that can be solved
by the GPEBO and not the other observers. The main drawback of the GPEBO is that
it can only be implemented in systems with a state-affine dynamics and linear output.
Nonetheless, as will be shown later, the battery model falls within this model structure.

The remainder of this article is organised as follows. Section 2 formulates the ECM in
state-space representation, describes the estimation objective and provides the theoretical
frame in which the estimation can be achieved. In Section 3, the architecture of the observer
used is described, defining its dynamics and formally establishing the conditions that allow
the relaxation of the persistence of excitation. In Section 4, the GPEBO is compared against
KF, estimating under different conditions the parameters of a battery (whose parameters
have been obtained from [47]). The cases of persistent and non persistent excitation have
been tested, as well as the presence of sensor noise. Finally, both observers have been
compared with a vehicle driving cycle as a profile, which allows them to be tested in an EV
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scenario. At the end of the document, Section 5 provides a summary of the results and the
conclusions of the work, as well as the future research directions on this topic.

2. Model Description and Problem Formulation

The development of Li-ion battery models encompasses a broad field of investigation,
involving various approaches to modelling. The choice of a model structure depends on
the degree of fidelity requirement relative to the actual physical behaviour of the cell. In
this document, a phenomenological ECM has been used.

2.1. Equivalent Circuit Model

ECMs are typically composed of a voltage source, which corresponds to the Open
Circuit Voltage (OCV); a series resistance R0; and a variable number of RC nets (which
determine the order of the model). Some other elements can be added to reflect other
phenomena, such as hysteresis. While adding more RC nets may improve the accuracy, it
also increases the computational burden and the complexity of system identification. In [47],
three different ECM (first order, second order, and first order with hysteresis) are tested for
several battery chemistries. While the model with hysteresis shows the best results, the
difference between the first and second order was minimal for all chemistries. Additionally,
the use of hysteresis is less common and adds stringent non-smooth nonlinearities to the
model, which drastically increases the difficulties in the estimation design.

Hence, the model used in this article is the simple first-order model, which can be seen
in Figure 1. A summary of the parameters is found in Table 1.

Figure 1. First-order ECM. uOCV is the OCV, ubat is the voltage at the battery terminals and u1 is the
voltage at the RC net.

Table 1. Parameters of the first-order ECM.

Parameter Name Units

uOCV Open Circuit Voltage V
u1 RC net voltage V

ubat Battery voltage V
R0 Series Resistance Ω
R1 Polarisation Resistance [48] Ω
C1 Polarisation Capacitance [48] F
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When analysing the circuit in Figure 1, the equations that describe it can be written as:

ubat = uOCV − R0ibat − u1

u̇1 =
ibat
C
− u1

R1C1

(1)

To ease the observer design process, it is convenient to rewrite (1) using the state-space
formalism. Let the states be defined as follows

x1 = u1

x2 =
1

C1

x3 = uOCV

x4 = R0

=⇒

ẋ1 = − 1
R1C1

x1 + x3ibat

ẋ2 = 0

ẋ3 = 0

ẋ4 = 0

(2)

or in a more amenable form
ẋ1
ẋ2
ẋ3
ẋ4

 = A(t)x :=


−τ ibat 0 0
0 0 0 0
0 0 0 0
0 0 0 0




x1
x2
x3
x4



y = c(t)x :=
[
−1 0 1 −ibat

]
x

τ =
1

R1C1

(3)

Notice that states x2 and x4 are considered constant. This is a reasonable assumption,
as these variables change because of the ageing of the battery, which happens over long
time scales. Moreover, changes due to temperature variation are usually slow enough
relative to the electrical time scale.

To summarise, the model presented in (3) presents only one known parameter, with a
single input (the battery current) and a single output (the battery voltage).

2.2. Estimation Objective

The model presented in Section 2.1 does not have any directly measurable state.
Moreover, the model is time-varying (as it depends on ibat), and the only measurable
signals are the output (Vbat) and the input ibat. Thus, these two measurements need
to provide enough information to perform the estimation of the four states. Thus, the
estimation objective to generate an estimation of the states, x̂, such that the following
holds

lim
t→∞
|x(t)− x̂(t)| 6 ε (4)

where ε > 0. In this estimation objective, we already assumed the effect that the presence
of sensor noise and unknown parameters may have on the estimation accuracy.

We remark that, while it can be desirable to estimate the four states, it is the OCV one
that the authors believe is more important. It has been mentioned that there is a direct
relation between the OCV and the SoC, so if the OCV is estimated, SoC can be obtained, in
the fashion of:

OCV = f (SoC)⇒ ˆSoC = f−1( ˆOCV) where f is such as x = f−1( f (x)) (5)
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This relationship has been widely studied in the literature, with many models describ-
ing it. In [11,49] several OCV-SoC models are compared, while the review provided by [50]
not only compares several models but provides some selection metrics and methods for
the estimation of the parameters. Within the realm of OCV-SoC models, some of the most
common ones include the Shepherd model, the Nernst model, a blend of both, as well
as semi-empirical equations formulated using polynomial or exponential terms. In [49]
these models can be found. Another common method is the use of look-up tables. We
remark that the selection of the OCV-SoC model falls out of the scope of this document,
but we encourage the reader to the referred literature if needed. Here, we consider that the
knowledge that the two variables can be related is enough to proceed with the estimation
of OCV.

2.3. Limiting Observability Assumptions of Existing Observers

Prior to any observer design, it is crucial to study whether the proposed estimation
problem is solvable or not in the first place. Indeed, we need to analyse if the measured
signal contains enough information in order to reconstruct the states of the system. In the
control theory community, this type of study is known as observability analysis.

A system of the form (3) is said to be observable if any trajectory of the measured
signal y(t) is generated by a unique initial condition of the system x(0). Conversely, if
there are multiple initial conditions of (3) that generate exactly the same output signal for
all time, then the system is unobservable. A natural consequence of unobservability is that
the state estimation problem cannot be solved.

We remark that the observability of the system (3) strongly depends on the current
profile, ibat, which is introduced on the battery. For instance, if we fix the current at a
constant value ibat = −1, we can see that initial conditions x3(0) = 2 and x4(0) = 1 will
generate the same output as the initial conditions x3(0) = 1 and x4(0) = 2. Consequently,
the proposed estimation problem can only be solved under particular current profiles. With
this fact in mind, we motivate the necessity of explicitly studying the observability of the
system (3). To do so, first, we consider the state transition matrix Φ(t1, 0) of the system (3)
as the matrix that relates an initial condition x(0) of the system with the value of the states
at time t1 ≥ 0, ref. [51]

x(t1) = Φ(t1, 0)x(0). (6)

Now, in the same time interval [0, t1], we define the observability Grammian of the
system (3) as [51]

W(0, t1) :=
∫ t1

0
Φ(s, 0)>c(s)>c(s)Φ(s, 0)ds. (7)

A well-known result from the literature ([51], Theorem 9.8) is that the initial condition
x(0) will be uniquely determined by the measured signal y in the time interval [0, t1] if
the observability Grammian W(0, t1) is invertible. That is, the system (3) is observable if
the current profile sufficiently excites the dynamics of the battery and guarantees that the
Grammian is invertible.

This observability analysis is a well-known result in the control theory community;
moreover, it has already been performed in similar equivalent circuit models, e.g., [45].
What is not that well known is that the convergence of the Kalman Filter (and its variances)
requires a stricter condition known as uniform complete observability [52]. More precisely, the
system (3) is uniform completely observable if there are some positive constants T > 0 and
δ > 0 such that, for all t ≥ 0, the following is satisfied∫ t+T

t
Φ(s, 0)>c(s)>c(s)Φ(s, 0)ds ≥ δI. (8)

Although the definitions of observability and uniform complete observability are relatively
similar, they present some technical differences with significant practical relevance. Pre-
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cisely, the observability of the battery model (3) only needs to be satisfied in a finite window
of time [0, t1], while uniform complete observability needs to be satisfied persistently in
time and in a fixed window defined by T. To better understand this difference, consider
the current profile represented in Figure 2.

Figure 2. Example of a current profile that makes the system observable but not Uniform Completely
Observable (UCO). In the first 5 s, the profile excites the battery system in a way that makes the
system observable and complies with UCO definition during this time-frame, but in the last 5 s, as the
current is constant, the UCO condition is not met in this second time-frame. Consequently, because of
the first part, this current profile ensures the observability of the battery during the whole 10 s while
not guaranteeing UCO.

In this profile, during the first 5 s, the current is the sum of two sinusoidals, which
is enough to guarantee observability and uniform complete observability in the time
interval t ∈ [45, 50]. Since this current profile makes the system observable during a
specific time interval, the battery model will be observable during the full current profile.
Nonetheless, after the second 50, the current is kept constant and the model stops being
uniform completely observable. Therefore, even though the current profile in Figure 2
guarantees observability of the battery model, that is, the measured signals will contain
enough information so as to estimate the unknown parameters, it does not guarantee
uniform complete observability. Consequently, any Kalman filter implemented in a battery
with this current profile is not guaranteed to converge.

We highlight that this difference between observability and uniform complete observ-
ability is of significant importance for Li-ion batteries and, to the best of our knowledge,
has been missed in the estimation literature. Indeed, the importance of this difference is
twofold. First, most estimation results in equivalent circuit models focus on Kalman Filters
(and variations of the Kalman Filter) [29] which require uniform complete observability.
Second, most Li-ion battery applications implement current with various excitation levels,
for example, in vehicular applications, when the vehicle is stopped there is no excitation in
the battery. Consequently, uniform complete observability is rarely satisfied in practice.

To solve this issue, in Section 3, and for the first time in the context of Li-ion batteries,
we propose an observer that does not require uniform complete observability and has
guaranteed convergence with the milder observability condition.
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2.4. What If a Higher-Order Model Was Considered?

One may wonder what would happen if a higher-order model was considered. As
a higher-order model would contain at least one more RC net, let us take a second-order
model as an example, which adds another RC net to the circuit shown in Figure 1. A
quick analysis shows that a second-order model with full unknown parameters is not
observable. Precisely, it is not uniform completely observable and does not satisfy the
interval excitation condition. We recall here that the system will be non-observable if there
are multiple parameter values that generate an identical measured signal. Indeed, notice
that if the parameter values of net 1 and net 2 were interchanged, the value of ubat would
be identical; therefore, it would be possible to achieve two solutions with the same exact
output, without a way to determine which values are correct. Therefore, high-order ECM
do not satisfy any minimal observability condition if the full parameters are completely
unknown. In this sense, some information of the unknown parameters should be included
for our technique to be implementable. Let us be reminded that the only measurable
variables are ubat and ibat.

In relation to using different ECM, for instance, the work in [45] studies the observabil-
ity of a different type of circuit and shows that UCO is only satisfied for particular current
inputs. In this sense, our approach could relax the UCO property to one with weaker
observability.

3. Proposal

This section is dedicated to presenting the main result of the paper. That is, we present
an observer for the battery system which only requires a mild observability assumption.
The observer is based on applying the ideas presented in [46] to the presented battery
model in (3).

The main idea of the observer is, first, to transform the state-estimation problem into
a parameter-estimation problem [53]. Second, the parameters are estimated through a
parameter-estimator algorithm based on the recently proposed dynamic regressor exten-
sion and mixing (DREM) approach [54]; see [55] for a recent review on the topic. The
combination of these two steps results in a estimator that relaxes the observability assump-
tions.

The next subsection is dedicated to explaining how the state estimation problem can
be transformed into a parameter estimation one.

3.1. Transforming the Problem

Consider the battery model (3) and recall the definition of the state transition matrix in
(6). The estimation objective described in Section 2.2. should also be considered Consider a
copy of the battery model of the form

ξ̇ = A(t)ξ. (9)

Notice that the solution of (9) can also be depicted through the state transition matrix
(6). That is, ξ(t) = Φ(t, 0)ξ(0). Since we do not know the initial condition of the battery, in
general, we will have ξ(0) 6= x(0), which means that the copy (9) is initialised at a different
initial condition from the ground-truth model (3).

Now, we define the error between the battery state and the copy model e := x− ξ.
Then, since both the battery model and the copy of the model are linear, the dynamics of
the error can be computed through the same state-transition matrix. More specifically,

e(t) = Φ(t, 0)e(0) = Φ(t, 0)(x(0)− ξ(0)). (10)

From this result, we can see that the states of the battery model can be computed as

x(t) = ξ(t) + Φ(t, 0)θ, (11)
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where θ := x(0)− ξ(0). Notice that the signal ξ(t) comes from the copy of the model (9),
which can be run in parallel to the battery system; thus, is known. The state transition
matrix Φ(t, 0) can be computed by running in parallel the following equation

Φ̇ = A(t)Φ, Φ = I. (12)

Therefore, the only thing that remains to be computed is the unknown parameter (that
is, a constant value) vector θ related to the initial error between ξ and x. In other words, if
we are able to estimate θ, we can reconstruct the states through (11). From this, we can see
how the state estimation problem can be transformed into a parameter estimation one.

The next natural question is how to estimate the parameter θ. Indeed, from (11), we
can deduce the following equality

y(t) = c(t)x(t) = c(t)ξ(t) + c(t)Φ(t, 0)θ, (13)

which can be rearranged as the following linear regression equation

Y = Ψ>θ, (14)

where Y := y − c(t)ξ and Ψ := Φ>c(t)>. Notice that both Y and Ψ are measurable
signals; thus, what remains is exploiting these measurable signals and the linear regression
Equation (14) in order to estimate the unknown parameter θ. This will be the focus of the
next section.

3.2. Estimator Equations

There are plenty of existing algorithms that can be utilised to solve the parameter
estimation problem in (14). Some notable examples are the gradient descent [44]; the least-
squares algorithm [56], with its variations; or high-order algorithms [57,58], as well as the
adaptive parameter estimator of [43]. Nonetheless, the convergence of all these algorithms
requires what is usually referred to as a persistence of excitation condition. Indeed, we say
that the linear regression in (14) satisfies the persistence of excitation condition if there exist
some positive constants T > 0 and δ > 0 such that∫ t+T

t
Ψ(s)Ψ(s)>ds ≥ δI. (15)

Roughly speaking, the persistence of excitation condition is related to the fact that
the signal Y should contain enough information to infer the parameters θ. Nonetheless,
by recalling the definition of Ψ(t) = Φ>c(t)>, we can see that persistence of excitation
the linear regression (15) is equivalent to uniform complete observability of the original
system (8). Consequently, if we just implemented classical parameter estimation algorithms
in (14), we would be unable to solve the observability conflict described in the past section.
For this reason, this section proposes using a parameter estimator based on the DREM
idea [55]. Specifically, we propose using the algorithm presented in [54], which has been
proven to converge under milder observability conditions and has already been used to
relax the persistence of excitation condition in other electrochemical devices [59].

The general idea of the algorithm in [54] is to pass the measured signals Y and Ψ

through a set of pre-processing dynamics and then compute a nonlinear adjugate operation
over the post-processed signals. Then, a standard gradient descent is implemented over
the resulting signals. More precisely, the structure of the estimator is as follows:

˙̂θg = γgΨ(Y −Ψ>θ̂g), θ̂g(0) = 0

Ω̇ = −γgΨΨ>Ω, Ω(0) = I,
˙̂θ = Γ∆(Y− ∆θ̂),

(16)
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where γg > 0 and Γ = diag{γ1, . . . , γ4} > 0 are positive constants to be tuned and

∆ := det{I−Ω},
Y := adj{I−Ω}θ̂g

(17)

where det(·) and adj(·) refer to the determinant and adjugate of a matrix.
Intuitively, the main idea of the proposed observer is to introduce the measured signals

Y and Ψ to the pre-processing dynamics ˙̂θg and Ω̇ in (16) and then compute the nonlinear
operations in (17) in order to generate the new signals ∆ and Y. Then, even if the original
measured signals Y and Ψ did not present a persistence of excitation condition, the new
signals ∆ and Y may indeed present such a condition. This allows the parameters to be
recovered through the dynamics ˙̂θ in (16).

More precisely, in [54], it was proven that such an estimator has guaranteed conver-
gence if the linear regression in (14) satisfies an interval excitation condition. That is, for a
positive constant tc, the following matrix∫ tc

0
Ψ(s)Ψ(s)>ds, (18)

is invertible. Notice that interval excitation of the linear regression (14) is equivalent to the
observability of the original system (3) as presented in the past section. Therefore, by imple-
menting (16) in the considered system, for the first time, we can relax the uniform complete
observability to a milder observability condition and still guarantee estimation convergence.

4. Numerical Simulations
4.1. Methodology

In order to analyse the effectiveness of the formulated observer, a series of numerical
tests were developed. To perform this analysis, a digital twin of a real lithium-ion battery
system was considered, which allowed us to mimic the expected measurable battery
voltage, which was used, together with battery current, as input for the observers. Later,
the estimated battery voltage was compared with the measured one, as well as the estimated
states are compared to those of the digital twin. The battery current varied depending on
the test performed. This can be seen in Figure 3.

Figure 3. Simulation diagram.

The digital twin is based on the lithium-iron phosphate (LFP) battery provided by [47],
and its specifications are presented in Table 2. The main reason to use this work is that it
provides a first-order model that has been calibrated and validated, making it possible to
have a realistic idea of the values that the different parameters R0, R1 and C1 can take in
real applications. These parameters were estimated for different SoC levels, but for our
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work case, they are considered constant and independent of the SoC. Therefore, the values
that have been considered correspond to the average of all SoC level values, obtaining the
following parameters for the first-order model:

R0 = 0.03075 Ω R1 = 0.16321 Ω C1 = 585.4 C (19)

With this model in mind, we develop different studies in order to see if the observer is
capable of correctly estimating the parameters defined in (19), which from now on will be
referred to as the real parameters.

Table 2. Lithium-iron phosphate (LFP) battery specifications. Extracted from [47].

Cell Number Nominal Capacity Nominal Voltage Voltage Range
Typology of Cells (mAh) (V) (V)

Cylindrical 1 2600 3.20 2.00–3.65

In order to see the advantages of the proposed observer, it will be compared with the
common and well-known Kalman filter (KF) technique. Furthermore, for a more exhaustive
study, different scenarios will be considered.

The first case that has been analysed is one in which the current profile guarantees
persistent excitation of the battery model. In this scenario, both observers should present
good performance results. In the second case, a case of non-persistent excitation is studied in
which better behaviour of the GPEBO should be observed with respect to the KF one. Finally,
three more scenarios are considered which attempt to contemplate different phenomena
or operating situations, such as the measurement noise phenomenon, the effect of not
considering the OCV constant and the use of load profiles that may be demanded in real
applications, such as Worldwide Harmonised Light Vehicles Test Procedure (WLTP).

All these experiments have been performed assuming that the value of the product
between the resistor R1 and the capacitor C1 is known; that is, the parameter τ in (3) is
known, in order to test an ideal case in which both observers should achieve satisfactory
estimation. The product between R1 and C1, for this particular case of study, is 95.5431 s.
Hence, τ in Equation (3) acquires the value of 0.010469. The reason behind the selection
of KF as a benchmark is that KF-based algorithms are very popular in the literature. We
have used the basic KF because the model (1) is linear. Even though batteries are non-linear
systems, the description used is that of a time-varying linear system. EKF is suitable for
linearising non-linear systems and treating them in a linear way, but if we applied it, the
result would be the same as KF, as the linearised-model would be the already-linear model
we have considered. A different situation happens regarding SMO or other non-linear
observers. Based on our knowledge, utilising non-linear observers in linear systems often
results in a poorer performance than utilising a linear observer. For the particular case
of SMO, the high order of the model would result in too-high sensibility to noise, which
would greatly affect the estimation.

The equations of KF are as follows:

K = PC′R−1

˙̂x = Ax̂ + K(y− Cx̂)

Ṗ = AP + PA′ + γQQ− KCP

(20)

where P is the state covariance matrix, R is the measurement covariance matrix and Q is
the process noise covariance matrix.

Finally, for each of the studied cases, two different tunings have been tested for each
observation. We establish γQ as the KF gain and γg as the GPEBO gain. First of all, let it be
noted that γQ is not a gain itself, but an adjustment of the covariance matrix of the noise
of the KF. A larger covariance matrix will, in most of cases, produce a more robust filter
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but at the expense of the convergence time. γQ is obtained following Kalman’s procedure
and only depends on the characteristics of the noise. On the other hand, γg is purely a
gain parameter. The tuning of this parameter is a trade-off between sensibility to noise and
convergence time. As can be seen, both observers have very different tuning processes,
which make comparison difficult. Therefore, it is not possible to establish a solid criteria
regarding which gain is high or low, as the magnitude is relative.

4.2. Case 1: Persistence of Excitation Current Signal

The first experiment consists of the estimation of the OCV (denoted by x3 in the
statement problem written in (2)) under an input current ibat that guarantees persistence
of excitation. To ensure this condition of persistent excitation, different sinusoidal signals
have been used, resulting in the current profile that can be seen in Figure 4a.
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(a) Current ibat.
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(b) Terminal voltage ubat.

Figure 4. Current and terminal voltage profiles used to guarantee the persistence of excitation
condition. the current is a custom profile defined by two sinusoidal signals of amplitude 2 and 3 A,
and 10 and 5 Hz of frequency, respectively. The terminal voltage response is calculated according to
this current profile and the model described in (1).
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Considering this current, a constant OCV of 3.3275 V and the system parameters
defined in (19), the resulting terminal voltage ubat can be computed by means of the first-
order model defined in (1). The profile of this terminal voltage is shown in Figure 4b, in
which it is possible to see the effect of the ohmic resistor R0 and the RC net.

Using this current profile, a simulation in MATLAB was launched simultaneously
with both KF and GPEBO observers to estimate the OCV state starting from null initial
conditions. The KF observer was computed in its classical form according to [60], tuning
the covariance matrix of the process noise Q. This covariance matrix was defined by means
of the identity matrix multiplied by an observer gain defined as γQ. With respect to the
GPEBO observer with the structure presented in (16), it was programmed in MATLAB to
tune the observer gain γg.

The results obtained can be observed in Figure 5, in which it is possible to see how the
estimated OCV converges to the real value in both cases. Looking at these profiles, it is possible
to state that the GPEBO converges uniformly to the real value, while the KF estimation does
not present this behaviour. These results fit with the theory explained in Section 3.
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0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

O
C

V
 (

V
)

Real GPEBO KF

0 10 20 30 40 50
0

1

2

3

0 10 20 30 40 50
0

1

2

(b) High observer gains.

Figure 5. Profiles of the real and estimated OCV using the KF and GPEBO for different gain observers
γ for the persistent excitation profile shown in Figure 4. (a) Using low observer gains of γQ = 0.005
and γg = 0.1. (b) Using high observer gains of γQ = 5 and γg = 100.
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On one hand, the KF ensures the convergence of the full parameter vector, creating a
dependence between the individual elements. Therefore, it is possible to find parameters
that converge with non-uniform behaviours according to the observer gains. This behaviour
can be observed in the details of the KF profiles (in yellow) in Figure 5. As can be noticed,
firstly, the estimated OCV increases from 0 V to 1.5 V in less than 10 s to later change the
profile until the estimation converges to the real value at 700 s. Moreover, it can be seen
that the time required to reach this initial point of 1.5 V is directly related to the observer
gains. Using a γQ of 0.005, the observer requires 10 s to reach the 1.5 V as can be seen in
detail in Figure 5a, while this time is reduced until 1 s using a γQ of 5, as seen in detail in
Figure 5b. At this point, it is important to notice that the value of γQ does not guarantee
that all parameters will converge to the real values in a shorter or longer period of time.
Looking at both Figure 5a,b it can be noted that the OCV converges to the real value at 700
s independently from the observer gain γQ.

On the other hand, using the GPEBO proposed in this work, the behaviour of the
observed dynamics is totally different. For this particular case, each parameter converges
independently from the others following a uniform profile. This property can be observed
in the details of Figure 5a,b that show the profiles of the OCV estimated by means of
the GPEBO in red. Furthermore, for this observer the gain has a direct impact on the
convergence time, making it possible to decrease the convergence time increasing the
observer gain γg. Figure 5a shows the OCV profile using a value of γg = 0.1, where it is
possible to see how the OCV converges to the real value in 60 s. This convergence time can
be reduced using a greater value of γg, as can be noticed in Figure 5b where the convergence
time is 40 s with γg = 100.

At this point, it can be concluded that under the condition of persistent excitation,
classical techniques such as the KF observer works properly but do not allow a direct
tuning of the convergence time. In counterpart, the GPEBO presented in this work has
the advantage of satisfying these requirements while guaranteeing a correct estimation of
the parameters.

4.3. Case 2: Non-Persistence of Excitation Current Signal

The second experiment that was carried out used a current profile which presents an
interval that is not UCO, followed by the example presented in Figure 2 of the previous
section.

The current profile selected consists of the same one used in the previous case, but
introduces an interval of constant current of 3 A. This current profile can be seen in the
following Figure 6a, while the terminal voltage of the battery considering this current
appears in Figure 6b.

In order to see the performance of the GPEBO observer under the operating condition
of non persistent excitation, we used the observer gain γg = 0.1, which was small, to ensure
that the required estimation time was greater than 60 s. For the case of the KF observer, we
used a gain γQ = 0.005.

As can be seen in Figure 7, in the moment in which the observable profile is in-
terrupted, KF stops converging and the value of the estimated OCV remains constant
with an important error with respect to the real value. For the case of the GPEBO, it
converges to the real OCV without any apparent effect. As shown, the OCV approaches
the real value from the second 70, although the constant current appeared 20 s earlier.
Moreover, it should be highlighted that the estimated OCV follows its characteristic
uniform profile.
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(a) Current ibat.
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Figure 6. Current and terminal voltage profiles used to analyse the problem of a non-persistence
excitation condition. Current is a custom profile that defined the first 50 s using two sinusoidal signals of
amplitude 2 and 3 A, and 10 and 5 Hz of frequency, respectively, and the remaining time by a constant
value of 3 A. The terminal voltage response is calculated according to this current profile and the model
described in (1).
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Figure 7. Profiles of the real and estimated OCV using the KF and GPEBO using the non-persistent
excitation profile presented in Figure 6.
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Using this experiment has made it possible to validate the correctness of the proposed
observer while taking the other states into account. Taking into account the model described
in (3), aside from the the OCV state, there are three more states that can be estimated. The
first is the voltage in the capacitor–resistor branch, which is denoted as u1. The second
is the inverse of the capacitor value C1, which can be defined as elastance and expressed
in units of 1/F. The final state is the resistor R0, which is connected in series with the
capacitor-resistor branch.

Figure 8 presents the evolution of these different states mentioned. In this figure, it is
possible to see how, by means of the GPEBO, it is possible to estimate their correct values.
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(a) Voltage of capacitor–resistor branch u1.
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(b) Elastance of capacitor 1/C1.

0 10 20 30 40 50 60 70 80 90 100

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

R
e
s
is

ta
n
c
e
 (

)

Real GPEBO KF
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Figure 8. Profiles of the real and estimated states using the KF and GPEBO using the non-persistent
excitation profile presented in Figure 6. (a) Voltage of the resistor-capacitor branch u1. (b) Elastance
(inverse of capacity) of the condensator C1. (c) Resistance of the series resistor R0.



Batteries 2023, 9, 578 17 of 26

Using this study, it is possible to highlight the advantage of the proposed observer
with respect to classical ones, when battery operating conditions with non-UCO profiles
are used. In future studies, in order to simplify the analysis, only the estimation result of
the OCV state, which is directly related to the SoC of the battery, will be presented.

4.4. Case 3: Sensor Noise

The next study that was developed consists of introducing measurement noise in the
output signal. Thus, a distributed Gaussian random signal with 0 mean and 0.001 variance
has been introduced to the ubat profile.

To perform this first scenario, the same current profile from the previous study was
used, which corresponds to a sinusoidal current with a not UCO interval as can be seen
in Figure 6a. Using this current and the measurement noise mentioned, the obtained ubat
signal is the one shown in Figure 9.
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Figure 9. Terminal voltage ubat considering the current profile shown in Figure 6a and a Gaussian
random measurement noise with 0 mean and 0.01 variance.

In order to see the effect of the measurement noise and how, by means of the observer
gains, it can be reduced, different values of the observer parameter gains γg and γQ were
used. The values chosen are the same ones from the first study, in which two different γg
were considered for the GPEBO, which correspond to 0.1 and 100, while the values for the
KF observer are 0.005 and 5. Figure 10 presents the estimated OCV for both GPEBO and
KF observers under the conditions of measurement noise described.

As can be noticed in Figure 10a, using a low gain γg = 0.1 for the GPEBO, the OCV
converges to the real value following a uniform profile without noise. With respect to the
KF, using a γQ = 0.005, it is possible to observe how stills do not converge to the real value
when the non-UCO interval appears. Moreover, in the same time window used in the
details of both KF and GPEBO profiles, it is possible to note how the OCV estimation for
the case of the KF method presents significant noise.
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If a higher-value γg parameter for the GPEBO is used, the estimation presents more
noise along its profile and it is possible that it does not converge to the exact real value.
This behaviour can be seen in Figure 10b using γg = 100. As can be observed, although
the estimated OCV tries to converge more rapidly to the exact value, it finally presents a
constant error which, despite not being very high, must have been taken into account. With
respect to the KF results, introducing a gain γQ = 5, it is possible to highlight the increase
in the noise in the OCV estimation, compared to the previous low gain used.
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(a) Low observer gains.
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Figure 10. Profiles of the real and estimated OCV using the KF and GPEBO for different gain
observers γ considering the noise output measurement shown in Figure 9. (a) Using low observer
gains of γQ = 0.005 and γg = 0.1. (b) Using high observer gains of γQ = 5 and γg = 100.
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Taking into account these results, it is clear that, as in the vast majority of observers,
there is a trade-off between the convergence time and the sensibility to measurement noise.
For the case of the GPEBO, the analysis shows that a small γg value must be selected
in order to guarantee that the estimation will converge to the real value with null error.
Concerning the KF observer, it is clear that due to the presence of a non-UCO interval, the
estimation does not converge to the real value, but the influence of the measurement noise
can be counteracted by decreasing the value of γQ.

4.5. Case 4: Variable OCV

An important study that must be developed is one that analyses the behaviour of
the observer when the OCV (directly related to the SoC) varies. According to the model
presented in (3), the OCV is considered as a constant parameter. In this context, an adequate
observer should be robust to this discrepancy between the reality and the model.

In order to perform this analysis, a different case from the previous experiments was
considered. Indeed, instead of assuming a constant OCC, a sinusoidal OCV was used, in
order to ensure that the battery remained in its operational region in search of a realistic
scenario.

Similar to the previous experiment, the same observer gains were used for both GPEBO
and KF observers in order to analyse their effect on the estimation performance. Figure 11
shows the results obtained for this experiment when the persistent excitation current shown
in Figure 4a is used.

As can be noticed, the use of the GPEBO makes it possible to estimate the real OCV
with practically null error when steady-state behaviour occurs. Using an observer gain
γg = 0.1, the detail of Figure 11a shows the existence of a very small error between the real
value and the estimated one. This error disappears when a higher value of γg is used, as
shown in further detail in Figure 11b.

It is important to remark that the use of the KF does not guarantee the convergence
of the observer to the real value of OCV. Although a persistent excitation profile for the
current signal is used, the observer is not able to estimate the OCV with null error when
it changes over time. For this particular case, the only effect of the observer gain γQ is to
push the estimation more quickly or more slowly at the beginning of the experiment, as
seen in the first experiment carried out in Section 4.2.

4.6. Case 5: Vehicle Load Profile

As has been mentioned, one of the points of this work is to guarantee the state and
parameter estimation of lithium-ion batteries under real operating conditions. For that
reason, in the last-case scenario, the load profile proposed is a standard driving cycle
WLTP, which is used to test range, fuel consumption, and emissions in light vehicles in the
European Union. It applies mainly to passenger cars, vans, and some buses. For our case
study, the load profile used has been extracted from the velocity profile of the WLTP driving
cycle [61,62], which can be observed in Figure 12a. From this velocity, it is possible to obtain
the current profile according to the model and parameters that define the dynamics of a
vehicle ([63], Chapter 7); for instance, the Toyota Proace 50 kWh model [64]. Finally, the
current has been scaled using a factor 1/5000 to meet the requirements of the lithium-ion
battery defined in Table 2. The profile of this scaled current can be seen in Figure 12b.

Using this current profile, a simulation has been launched that considers the OCV
as constant in order to study if the observer can estimate its value. As can be noticed in
Figure 12b, this current profile has some regions with constant null values. Thus, it is
interesting to analyse how the observer behaves under this situation.
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(a) Low observer gains.
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Figure 11. Profiles of the real and estimated OCV using the KF and GPEBO for different gain
observers γ when the OCV is not constant and is defined by means of a sinusoidal signal of 0.2 V
amplitude, 3.3 V mean value and 0.08 Hz of frequency. (a) Using low observer gains of γQ = 0.005
and γg = 0.1. (b) Using high observer gains of γQ = 5 and γg = 100.
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Figure 12. Velocity and current profiles of the WLTP driving cycle [61]. This profile has been scaled
and transformed to current using the equation of the vehicle dynamics [63].

Following with the same procedure developed in previous experiments, the same sets
of observer gains were tested again, showing different performances depending on the
gain values. Figure 13 shows the OCV estimations considering the low and high observer
gains. As can be noticed, the use of the GPEBO correctly estimates the OCV with null error,
while for the case of the KF, it does not reach the ground-truth value.

It is possible to see how the KF observer does not converge to the real value of OCV
according to the details shown in Figure 13a,b, which correspond to the low and high
observer gains, respectively. With respect to the GPEBO, it can be seen how, by means
of a high observer gain γg = 100, the estimated OCV converges to the real one with null
steady state error. However, with a low gain γg = 0.1, it is possible to see how there is a
small error due to the fact that the estimation has not reached the steady state. Thus, it can
be seen how a properly tuned GPEBO successfully estimates the real value, even though
the convergence time is not short, when a realistic profile of the current is considered for
the battery.



Batteries 2023, 9, 578 22 of 26

0 200 400 600 800 1000 1200

Time (s)

0

0.5

1

1.5

2

2.5

3

3.5

O
C

V
 (

V
)

Real GPEBO KF

600 700 800 900 1000 1100 1200

3.1

3.15

3.2

3.25

3.3

(a) Low observer gains.
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Figure 13. Profiles of the real and estimated OCV using the KF and GPEBO for different gain
observers γ using the current profile shown in Figure 12b. (a) Using low observer gains of γQ = 0.005
and γg = 0.1. (b) Using high observer gains of γQ = 5 and γg = 100.

One may wonder why, in this case, KF seems to converge faster than GPEBO, even
if the latter converges to the true value and KF does not. The reason behind this is that
GPEBO includes two dynamical systems that are connected in the cascade. The first is
θ̂g-dynamics, which pre-process the measured signals. Second is the θ̂-dynamics, which use
the post-process signals to estimate the parameters. In this sense, intuitively, the GPEBO
requires the θ̂g to reach a large enough value for the θ̂-dynamics to start quickly converging
to the true value. This happens around 500 s in Figure 13a. Alternatively, the KF includes
a set of dynamics (the x̂-dynamics and the P dynamics) which run in parallel. Since the
GPEBO has dynamics in cascade and the KF in parallel, the KF presents faster convergence
during the initial times. A simple way of solving this is to initialise θ̂g at a larger value in
order to reduce the convergence time of the θ̂g-dynamics. Nonetheless, in this work, we
considered the worst-case scenario, in which we have no information regarding how to
initialise this variable, so we initialise it at an arbitrary value of zero.
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5. Conclusions and Future Work

In this document, a new SoC estimator has been developed based on the application of
GPEBO, in a novel approach that merges the benefits of using a well-known, popular and
linear model such as first-order ECM with an observer that guarantees accurate estimation
even in the absence of persistent excitation.

It has been shown how, for the case with persistence of excitation, GPEBO works
better than KF and for the non-persistence of excitation situation, KF is unable to converge,
while GPEBO is not affected by the change in excitation. This performance is maintained
when measurement noise is introduced, but in this situation, the gain needs finer tuning.
A similar situation happens when the WLTP, a real profile, is introduced as a load to the
battery. Again, KF is unable to converge but the GPEBO is highly dependent on the gains.
Finally, for the case of a varying SoC, which is implemented through a sinusoidal variation
of OCV, an analogue response is found, with an incapable KF and a capable GPEBO with
a performance affected by gain. As a summary, it can be stated that in general, for an
application such as the one considered, GPEBO works better than KF.

However, as shown by the simulation results, the tuning of the GPEBO is not trivial
and requires careful treatment. On the other hand, once properly tuned, it performed
successfully in all the experiments, showing its advantages against KF, which was used as
a benchmark.

Considering these points, some future lines of research appear to be interesting:

• Test of the performance against full unknown parameters. In the test performed,
the time constant of the circuit, τ, was assumed to be known. We think that practical
applications would benefit if the GPEBO did not need to know this parameter.

• Experimental validation. Independent test to characterise the cell (as in [48]) to
compare it against the estimated value of the parameters.

• Experiment with temperature sensitivity. With temperature affecting the value of
many ECM parameters, it would be interesting to test the performance of GPEBO
with different temperatures.

• Automatic tuning. Automatic tuning would solve the main drawback that we have
experienced, which is finding a gain that ensures performance.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BMS Battery Monitoring System
DFN Doyle-Fuller-Newman
DREM dynamic regressor extension and mixing
ECM equivalent circuit model
EKF Extended Kalman Filter
ESS Energy Storage System
EV Electric Vehicle
GPEBO Generalized Parameter Estimation-based Observers
HGO High Gain Observer
KF Kalman Filter
Li-ion Lithium-Ion
LIBs lithium-ion batteries
OCV Open Circuit Voltage
SMO Sliding mode observer
SoC State of Charge
SPM Single Particle Model
SVM Support Vector Machine
UCO Uniform Completely Observable
UKF Unscented Kalman Filter
WLTP Worldwide Harmonised Light Vehicles Test Procedure
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