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Abstract: While past recycling efforts have primarily concentrated on extracting valuable metals from
discarded cathode materials, the focus is now shifting towards anode materials, particularly graphite,
which makes up 10–20% of LIB mass. Escalating prices of battery-grade graphite and environmental
considerations surrounding its production highlight the significance of graphite recycling. This
review categorizes methods for graphite recovery into three approaches: recovery, recycle, and reuse.
Moreover, it explores their potential applications and comparative electrochemical performance
analysis, shedding light on the promising prospects of utilizing spent graphite-based functional
materials. The review underscores the importance of sustainable recycling practices to address the
environmental and economic challenges posed by the proliferation of LIBs and the growing demand
for graphite.
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1. Introduction

The number of lithium-ion batteries has grown exponentially in recent years, as
these secondary batteries have been broadly used in portable electronics, electric vehicles,
aerospace, and large-scale electric energy storage systems [1]. It is predicted that the world
demand for LIBs will grow up to 3600 GWh by 2030 [2]. Taking into account the fact
that the service life of the LIB is limited to 3–10 years, due to the high growth rates of
using this technology, the number of end-of-life batteries is also increasing. Therefore,
researchers and industries worldwide have paid more attention to the recycling of Li-ion
battery components. It is commonly known that LIBs consist of four parts: the cathode,
anode, electrolyte, and separator. Cathode materials contain the most precious metals;
thus, the recycling of spent LIBs was predominantly focused on the metal’s recovery from
waste cathode, and the recycling of the spent anode materials and the remaining parts of
the battery received only a partial focus [3–5]. In turn, anode materials account for 5–15%
of the total cost of Li-ion batteries. Graphite is the most common commercial material
used as an anode material because of its long-lasting cycling stability and high values of
electroconductivity, small expansion coefficient, high level of crystallinity, low intercalation
potential of lithium, and thermal and mechanical stability [6,7]. Nonetheless, the quantity
of graphite in LIBs is about 10–20%, which is 11 times more than their lithium content,
and currently, from the economic and environmental points of view, studies are being
performed on anode recycling in order to recover graphite. To date, several studies on
the recycling of graphite have already been published [8,9], but nevertheless, globally, this
issue is not yet as popular as that of the processing of cathode materials. The price of
battery-grade graphite was USD 1500 per ton in October 2023 [10]. This evidence proves
that the recycling of spent graphite can become a high-importance path to produce a source
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of low-cost graphite. Meanwhile, spent graphite contains some metals, binders, and toxic
and flammable electrolytes [11].

Nowadays, graphite used in the Li-ion batteries’ manufacturing can be obtained from
two sources: natural and synthetic [12]. The growing demand for this kind of battery has
led to the extreme consumption of natural resources, and consequently, these resources will
soon be drained if no action is planned to restore them [13]. On the other hand, the usage
of synthetic graphite leads to a significant emission of carbon dioxide, since this process
requires a large amount of energy. In this context, various graphite extraction methods
have been developed [14]. Each of them has its own benefits and drawbacks. According to
the existing research, the first step of the recycling of spent graphite is unloading the spent
graphite, and then, it is separated using physical methods such as dismantling, crushing,
screening, striking, ultrasonicating, and other mechanical processes [15–18]. Typically, but
not surprisingly, LIBs are the source for most of the graphite produced [19]. In this review,
the path of recycling of spent graphite is considered as follows: The first R is recovery, and
this approach is focused on the regeneration of graphite without using any other materials
to improve its structure. The second R is recycle, used here for characterizing the strategy
of spent graphite modification using different technologies. Last but not least, the final R is
reuse, referring to the synthesis of functional materials based on graphite for energy and
environmental applications.

Accordingly, in this review, we focus on newly investigated methods for the recovery,
recycling, and reuse of graphite obtained from spent lithium-ion batteries and its potential
applications after undergoing different treatment methods. We compare the obtained elec-
trochemical performances of recovered and recycled graphite and analyze the perspectives
on spent graphite-based functional materials for reuse.

2. Graphite Separation from End-of-Life LIBs

End-of-life Li-ion batteries regularly have a residual charge, and an explosion may
happen during their separation using mechanical and physical methods, such as via the
crushing or milling process. Hence, the discharge process is a necessary pretreatment step to
guarantee the safety of further graphite separation procedures. The choice of pretreatment
process completely depends on the final application of the recycled/recovered components.

Currently, the most common discharge method is the chemical treatment of different
solutions, such as the commonly used NaCl [20–22], which has a good conductivity and
can completely remove the residual charge in a battery. Additionally, NaCl has the lowest
price compared to other solutions, for example, MnSO4 and FeSO4 solutions [23,24].

Moreover, various discharge methods have been discussed in existing research, like
cryogenic freezing using liquid nitrogen [25], thermal deactivation, which allows the
removal of fluorine compounds and flammable organics from LIB waste [26,27], and
discharge using solid electrical conductors [24].

After the battery-discharging pretreatment comes to an end, the question is raised
of which method should be chosen for further graphite treatment. LIB waste is directly
crushed and sieved, and then, the milled particles are separated into various fractions,
such as metal shell, polymer, and electrode mass (cathode and anode) [28]. In general,
the ways of obtaining the graphite from crushed LIB waste could be divided into two
categories: direct (physical and mechanical treatment) and artificial (pyro- and hydrometal-
lurgical) separation.

Via direct separation methods, the separated components are further recycled, and the
recovered graphite may be used for various applications. Among the crushed and sieved
fractions, there are metallic components (aluminum and copper current collectors) and elec-
trode materials (graphite, LiCoO2, LiMn2O4, LiFePO4, and LiNixCoyMnzO2), which can be
separated only based on their size. Apart from this size-based separation method, there are
advanced separation techniques used in lithium-ion battery recycling processes, such as
eddy current separation [29], electrostatic separation [30,31], and pneumatic separation [32].
Magnetic separation [33,34] and separation by flotation [35] are additional techniques
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applied for the further liberation of electrode materials from other components during the
recycling of LIBs. In flotation, the separation is based on the hydrophobic and hydrophilic
properties of the materials. Hydrophobic materials tend to repel water and adhere to air
bubbles, while hydrophilic materials have an affinity for water and tend to sink. In the
context of battery recycling, during the flotation process, the hydrophilic cathode, which
consists of lithium oxides of various chemical compositions, is totally wetted with water
and then lowered to the bottom of the tank. At the same time, the hydrophobic graphite
anode is attached to the bubbles and then rises to the top layer of foam. It is worth noting
that one of the challenges in the recovery of spent graphite anodes is to remove the binder
(polyvinylidene fluoride) from electrode materials. To overcome this issue, some modified
flotation processes have been proposed. For instance, He et al. [36] used the Fenton reagent
to modify the electrode material’s surface in order to remove the binder coating.

In artificial separation, the most common processes are focused on removing the
cathode and anode’s active masses from the aluminum and copper foils, respectively.
The appearance of metal impurity residues (e.g., Al) has an extreme influence on the
quality of the target graphite material. To avoid the presence of aluminum impurities in
the recovered graphite, the spent batteries are mostly disassembled manually. After this
step, one of the most common ways to split the copper foil and the active anode mass is
hydrometallurgical treatment. By placing graphite in solutions of inorganic mineral acids,
such as HCl and H2SO4, almost 100% of metal residues can be removed from the recovered
graphite. After that, practically all of the copper can be recycled, and most of the organic
components, such as conductive additive (for instance, carbon black), polyvinylidene
fluoride (PVDF)-binder (known as one of the most commonly used materials for the better
adhesion of the anode material to the current collector), and other organic substances in
the separated materials, are withdrawn via various types of heat treatment [37,38]. One
more efficient way to liberate graphite from copper foil is facile smelting in a nitrogen
atmosphere at 1400 ◦C for 4 h. During the heat treatment, the copper foil transforms into
spheroidal particles and is split from the graphite coating. Moreover, residual salts of
electrolytes are also removed through heat treatment. In addition to high-temperature
treatment, ultrasonic and sieving treatments are also conducted to separate high-purity
graphite (99.5%) and copper. Efficient separation through these treatments can be achieved
when two fractions, namely, copper and graphite particles, possess distinct particle size
distributions. Compared with the hydrometallurgical approach of graphite recovery, facile
high-temperature smelting combined with ultrasonic and sieving treatments allows one to
obtain pure graphite without the usage of toxic acids or alkalis, hence this way is much
more eco-friendly [39].

3. Recovery

The simplest way to recovery spent graphite anodes from the production of LIBs is
direct recovery. Bai et al. [40] reported a sustainable solvent-based technique to directly
recover graphite anode scraps. The anode coatings are placed in the water to the delaminate
anode material from the copper current collector, and then new anodes are manufactured
based on slurry, which are obtained from delaminated anode coatings. This method
allows one to avoid the binder dissolution step in which it is usually necessary to use
hazardous solvents.

The leaching process is the most widely used treatment to liberate and purify the spent
graphite anode. This hydrometallurgical strategy allows one to remove the impurities from
the recovered graphite, and moreover, this simple operation has a high level of efficiency.
Various leaching solutions (e.g., acid, alkali, deionized water) convert metals that are con-
tained in the spent graphite (e.g., Al, Li, Cu, etc.) into metal ions. For instance, the deionized
water treatment is able to remove intercalated lithium and solid electrolyte interface layers
from waste graphite anodes [16]. It became possible to eliminate lithium impurities from
recovered graphite due to the reaction of Li with water. This is an exothermic reaction and,
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as a result, releases gaseous H2, which contributes to the liberation of the SEI layer from
recovered graphite, thus removing unwanted impurities.

Still, not all the residual lithium appears in water-soluble form. In fact, there are
also LiF and ROCO2Li, which can be barely removed by water treatment. Therefore, acid
leaching by hydrochloric acid has been used to remove almost all lithium salts and metallic
residues from recovered graphite in order to achieve graphite of high purity [37]. Yang
et al. used HCl leaching for 60 min (leaching conditions of 1.5 mol/L HCl with an S/L
ratio of 100 g/L) and obtained graphite exhibiting impressive electrochemical and cycling
capacities. The whole recovery process proposed by Yang and co-workers is illustrated in
Figure 1 [37]. Additionally, Li et al. [41] used sulfuric and malonic acids as leaching agents
for extracting valuable metals from discarded LIBs. In their study, the leaching efficiencies
of Li, Ni, Co and Mn were shown to reach 99.79%, 99.46%, 97.24% and 96.88%, respec-
tively, under the optimal leaching conditions within 81 min. Also, another acid solution
(5M H2SO4 with 35 wt. % H2O2) was used as a leaching solution to extract metal impurities
from both spent cathode and anode materials [42]. Then, purified graphite was sintered
with sodium hydroxide at 500 ◦C. During this process, all the cathode residue was removed
from the graphite with almost all the PVDF binders. In addition, an oxidation process
took place and led to the expansion of distance between graphite layers, which in turn led
to crystal lattice changes and the following raising of the electrochemical performance of
graphite [42].
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Figure 1. Schematic representation of the whole (anode graphite, copper, and lithium) recycling
process developed by Yang and co-workers. Reprinted with permission from Ref. [37], Copyright
2019, Elsevier.

It is worth noting that using mineral acids, which are often strong and corrosive,
as leaching agents poses significant hazards to both human health and the environment.
Considering this drawback of inorganic leaching agents, some researchers shifted their
focus to studying environment-friendly organic acids (e.g., citric acid [43]) as safer and more
sustainable alternatives to mineral acids. In [43], citric acid was chosen as the extraction
reagent to recover the lithium element and regenerate spent graphite. A citric acid solution



Batteries 2023, 9, 579 5 of 23

with the concentration of 0.2 mol/L was heated to 90 ◦C with graphite anode materials from
spent LIBs. After that, 97.58% lithium was extracted into leaching solution and high-purity
and excellent-performance graphite was obtained via leaching for 50 min [43].

Apart from the acids and alkalis, which are used to extract metals directly, bioleaching
is a promising way to obtain acids for the further metal leaching process. The bioleaching
mechanism is based on microorganisms producing acids via metabolism to extract target
metals from spent graphite. For instance, some types of fungi and bacteria may be used in
bioleaching, such as chemolithotrophic and acidophilic ones. Acidithiobacillus ferrooxidans
bacteria can use elemental sulfur and Fe2+ to produce H2SO4 and Fe3+ in the leaching
medium [44]. The fungus Aspergillus niger has demonstrated fine potential to produce
a high concentration of organic acids, and has been proven useful for the bioleaching of
spent LIBs [45,46].

Pyrometallurgy, in the context of graphite recycling, is also known as graphitization,
and is frequently used to remove various impurities from regenerated graphite and recover
its crystal structure in order to increase the electrochemical behavior of obtained graphite.
For instance, Yang et al. [47] conducted high-temperature treatment at 2600 ◦C under
an inert atmosphere (argon atmosphere). The obtained material demonstrated uniform
graphitization and a slightly expanded layer distance in the crystal lattice. Besides this,
in order to clarify the mechanism of structural reorganization of the material during heat
treatment, Yu et al. [48] conducted several experiments with the usage of semi-in-situ
X-ray diffraction with electron and Raman spectroscopy investigation. In addition, after
investigations of various factors’ influence, such as inert gas atmosphere (nitrogen, argon,
or helium), temperature value, and time duration, optimal conditions were determined
for the process for a high degree of structural reconfiguration of the material, namely, a
temperature of 3000 ◦C and time of 6 h in N2 atmosphere.

The pyro-hydrometallurgy approach is also often used in graphite recycling, as only
leaching is not enough for efficient graphite recovery due to the complex composition of
waste materials. Mixing the sintering process with acid leaching allows the acquisition
of materials of high purity with an outstanding level of structural repair. Gao et al. [49]
suggested a combined method consisting of sulfuric acid leaching and high-temperature
sintering to recover spent graphite. After acid leaching, the graphite was placed into the
furnace at 1500 ◦C for 2 h in an inert argon atmosphere. Later, the same research team
investigated the impact of heat treatment temperature (heat treatment was conducted after
the sulfuric acid leaching process) on the structural and morphological characteristics of
the obtained graphite and, moreover, on its electrochemical behavior [50]. The analysis of
the obtained material demonstrated that even at 900 ◦C the graphite’s crystal structure had
transformed into a good one, and the material showed outstanding performance. Almost
the same approach, but with the addition of the catalyst, was applied in the investigation
by Chen et al. [51]. They applied the same approach, consisting of H2SO4 leaching followed
by heat treatment, but they added Co(NO3)2 as a catalytic additive for the removal of the
structural defects in the crystal layer of the obtained graphite without the need to maintain
extremely high temperatures during the sintering process. The operating parameters of the
process were 900 ◦C for 4 h under N2 atmosphere.

Moreover, there are a few other technologies that also allow one to obtain an improved
crystal structure in spent graphite. For instance, electrolysis is an efficient way to recover
graphite anodes from spent LIBs [52]. Gao et al. used a Na2SO4 solution as an electrolyte,
an anode from a spent LIB with a copper current collector acted as a negative electrode,
and a commercially available graphite plate was used as a positive electrode. Under the
current flow, graphite was split from copper foil, and lithium was liberated from the crystal
layers of graphite and transferred to the solution. Additionally, there is research focused
on the usage of subcritical CO2 [53], which allows to extraction of the electrolyte salts
before the following heat treatment. This approach prevents the formation of phosphorous
compounds on the recovered graphite, but in turn, it also lowers the crystallinity of the
material. Lately, the usage of microwave technology for eliminating the electrolyte salts
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has attracted much attention due to its significant advantages: less energy consumption
and short time of the reaction. Under the action of microwaves, it becomes possible to
remove the electrolyte residue and the binder, so 100% of the graphite can be recovered [54].
Microwave irradiation could also reconstruct the graphite structure in order to create open
areas for the intercalation and diffusion of Li ions [55].

The mentioned recovery strategies offer various advantages and disadvantages, which
are listed in Table 1, and the choice of recovery method should consider factors such as
purity requirements, environmental impact, energy efficiency, and the specific impurities
present in the spent graphite.

Table 1. The advantages and disadvantages of various Recovery strategies of spent graphite anodes.

Recovery Strategy Advantages Disadvantages

Hydrometallurgical strategy with
deionized water leaching solution

Effective at removing intercalated lithium
and solid electrolyte interface (SEI) layers
from graphite waste.
Simple and environmentally friendly
exothermic reaction with lithium releases
gaseous H2, facilitating SEI layer
separation from waste graphite anodes.

Limited effectiveness in removing all
lithium salts, particularly LiF and
ROCO2Li.
May not address all impurities present in
the spent graphite.

Hydrometallurgical strategy with
mineral acid leaching solution

Highly effective in removing almost all
lithium salts and metallic residue from
spent graphite, resulting in high purity of
recovered graphite.
Improves electrochemical and cycling
performance of recovered graphite.
Well-established and widely used
process.

The use of strong mineral acids can pose
environmental and safety concerns.
Requires careful handling of chemicals
and waste disposal.
Energy-intensive due to heating
requirements for the process.

Hydrometallurgical strategy with sulfuric
acid and hydrogen peroxide leaching
followed by sodium hydroxide sintering

Effective in extracting metal impurities
from both spent cathode and anode
materials.
Enables the removal of PVDF binders
from waste graphite anodes.
Induces oxidation and expansion of spent
graphite layers, leading to improved
electrochemical performance of recovered
graphite.

Complex multi-step process with
multiple reagents and heating
requirements.
Potential environmental concerns related
to chemical usage and waste disposal.
Energy-intensive due to the sintering
process.

Hydrometallurgical strategy with organic
acid leaching solution

Environmentally friendly with the use of
organic acids.
High lithium extraction efficiency from
waste graphite anodes.
Lower environmental and safety risks
compared to mineral acid leaching
solutions.

Requires longer leaching times compared
to some other methods.
May not remove all impurities from spent
graphite anodes.

High-temperature pyrometallurgy

Efficient in removing impurities from
spent graphite anodes and restoring the
crystal structure of graphite.
Can improve the electrochemical
behavior of recovered graphite.

Requires very high temperatures, which
may be energy-intensive.
Complex process with inert atmosphere
and time considerations.

Pyro-hydrometallurgy

Combines acid leaching with
high-temperature sintering for
high-purity and structural repair of
graphite.
High-temperature sintering may not be
required at extremely high temperatures.
Catalytic additives can be used to
enhance the recovery process.

Complex multi-step process with
multiple reagents and heating
requirements.
Energy-intensive in some cases.
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Table 1. Cont.

Recovery Strategy Advantages Disadvantages

Electrolysis

Efficiently recovers graphite anodes and
liberates lithium.
Reduces the need for high-temperature
processes.
Effective in separating graphite from
copper foil.
Utilizes relatively safe and readily
available electrolytes.

May require additional post-processing
to obtain high-purity recovered graphite.
May not address other impurities present
in the spent graphite.

Mechanical-hydrometallurgical process
with subcritical CO2-assisted electrolyte
extraction prior to thermal treatment

Efficient in removing electrolyte salts
before heat treatment.
Prevents the formation of phosphorous
compounds on recovered graphite.

Lowers the crystallinity of the recovered
graphite.
May require further processing to
improve the electrochemical performance
of the recovered graphite.

Microwave technology

Less energy consumption and shorter
reaction times.
Efficiently removes electrolyte residue
and the binder, recovering nearly 100% of
spent graphite.
Reconstructs graphite structure, creating
open areas for ion diffusion.

May require specialized equipment for
microwave irradiation.
Possible variations in recovered graphite
properties due to the rapid heating
process.

4. Recycle

Unlike the recovery approach, the recycle approach is targeted not only at the extrac-
tion of graphite from the spent anode, but also at the improvement and development of its
electrochemical performance.

The most interesting approach is the carbon coating of the graphite due to its low cost
and efficiency. For instance, Li et al. obtained carbon-coated graphite with the usage of
both carboxymethyl cellulose and glucose by a carbonization heating process at 800 ◦C for
5 h [56]. The modified graphite demonstrated an increasing capacity. Moreover, some other
sources of carbon were used for the synthesis of new improved carbon-coated graphite—for
instance, pitch [57,58], polyethylene glycol 400 monooleate [59], and phenolic resin [60].
Before starting the process of carbon-coting, often, spent graphite undergoes leaching and
pre-treatment sintering to remove residual electrolyte salts and lithium ions. Then, the
materials are sintered at high temperatures with various carbon sources for the following
structure reconstruction and coating. Furthermore, the doping path was also investigated.
Gas phase exfoliation and element doping were used to obtain nitrogen-doped graphite
with enhanced layer distance in the crystal structure from acid-pretreated retired graphite
and urea as initial materials [61]. Ammonia formation from the urea decomposition took
place during the heating process. Formed NH3 was able to etch and exfoliate the upper
layer of graphite and subsequently intercalate into layers and exfoliate the graphite. g-
C3N4 at 800 ◦C decomposed and was able to dope graphite, as it was a source of further
doping nitrogen.

One more promising path to recycle graphite anode materials from spent LIBs is to
composite spent graphite with the silicon anode. Si anodes were in the spotlight due to
their extremely high theoretical capacity, up to 4000 mAh/g, and low operating voltage of
about 0.4 V. In spite of that, the silicon anode had low electrical conductivity, and cycling
volume expansion takes place, which makes it impossible to use it in LIBs [62]. The joining
of Si anodes with graphite allows for obtaining low-cost working anodes with outstanding
characteristics. Carbon-coated silicon-spent graphite anode (T-SGT/Si@C) was synthesized
by sintering at 1000 ◦C with silicon, pitch, and spent graphite (T-SGT) as raw materials.
Because of T-SGT’s high porosity, Si is easily bonded to spent graphite, and consequently,
volume expansion could be prevented. Moreover, the silicon–graphite anode was prepared
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by combining ball milling and carbonization [63]. The matrix of spent graphite better
combines with silicon particles due to electrostatic forces; this fact allows one to restrain
volume expansion.

Additionally, Ye et al. [64] developed an effective regeneration path with the usage of
both electrodes from end-of-life LIBs: cathode and anode materials. The authors synthe-
sized a composite anode CoO/CoFe2O4/expanded graphite. The cathode part was leached
by reduction acid treatment to extract Li and Co into the solution, the waste graphite went
through calcination under an Ar atmosphere and then the intercalation process took place
to obtain oxidized graphite. The next step was a high-temperature treatment to expand
the graphite. Then, the expanded graphite and leachate from the cathode material were
collected and went through solvothermal treatment to synthesize the target composite
anode. The whole recycling strategy of the waste LiCoO2–graphite battery developed by
Ye and co-workers is illustrated in Figure 2 [64].
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Furthermore, one more research group investigated the gas sulfidation process to obtain
metal sulfides/graphite composite anodes [65]. Firstly, Li(NixNiyMnz)O2/Li(NixNiyAlz)O2
(NCM/NCA) chopped cathodes were mixed and pretreated with NaOH to dissolve the
aluminum current collector to obtain cathode powder. The spent graphite was manually
split from copper foil and went through oxidation–intercalation treatment. Afterward,
mechanically mixed cathode, graphite, and sublimed sulfur were annealed at 600 ◦C for 2 h
under an Ar/H2 atmosphere. To synthesize the composite Li(NixNiyMnz)O2 spent carbon–
Li(NixNiyAlz)O2 spent carbon) (NCMS/C (NCAS/C), the obtained material underwent
deionized water leaching to extract lithium and then was dried. The synthesized composites
demonstrated a high electrochemical capacity for Li storage.

To summarize all processes and technologies attributed to recovery and recycle ap-
proaches and to compare the electrochemical performance of obtained graphite materials,
Table 2 is given below.

The feasibility of industrialization of either the recovery or the recycling approach
for obtaining restored graphite from spent graphite anodes depends on several factors,
including the specific application, economic considerations, and environmental impact. A
comparison of these two approaches in terms of the possibility of their industrial application
is given in Table 3.
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Table 2. The electrochemical performance of obtained graphite materials by recovery and recycle
approaches.

Process Conditions Electrochemical Performance Ref.

Recovery approach

1.5 M hydrochloric acid
60 min
ratio of solid/liquid phase—100 g/L

540–591 mAh·g−1 at 37.2 mA·g−1

485–510 mAh·g−1 at 74.4 mA·g−1

305–335 mAh·g−1 at 186 mA·g−1

165–190 mAh·g−1 at 372 mA·g−1

[37]

1. 5 mol/L H2SO4, 35 w/w %H2O2
2. Heat treatment: 500 ◦C, 40 min with addition of NaOH 377.3 mAh·g−1 at a current rate of 0.1C [42]

0.2 mol/L citric acid at 90 ◦C, 50 min 330 mAh·g−1 at a current rate of 0.5C after 80 cycles [43]

2600 ◦C, Ar atmosphere 263 mAh·g−1 at a current rate of 1C after 300 cycles [47]

3000 ◦C, 6 h 360.8 mAh·g−1 at a current rate of 0.15C after 100 cycles [48]

H2SO4 + 1500 ◦C for 2 h 349 mAh·g−1 at 0.1C [49]

H2SO4 + 900 ◦C 358.1 mAh·g−1 at a current rate of 0.1C [50]

1. H2SO4
2. Sintering with Co(NO3)2 at 900 ◦C for 4 h under N2

358 mAh·g−1 at a current rate of 0.1C at 1st cycle
245.4 mAh·g−1 at a current rate of 0.1C after 500 cycles

[51]

Electrolysis: 30 V, 1.5 g/L Na2SO4, 25 min 427.81 mAh·g−1 at a current rate of 0.1C [52]

1. Leaching sulfuric acid H2SO4, 200 g/L, 90 ◦C, 4 h
2. Microwave irradiation 800 W, 15 s ≥400 mAh·g−1 [54]

1. Water leaching
2. Microwave irradiation 800 W 20–30 s

438.6 mAh·g−1 at a current rate of 0.1C
320 mAh·g−1 after 100 cycles at a current rate of 0.5C

[55]

Recycle approach

1. Air calcination
2. Graphite—300 mg
Cellulose gum—100 mg
C6H12O6—150 mg
Conditions: 800 ◦C, 5 h under nitrogen atmosphere

424.7 mAh·g−1 at a current rate of 0.1C after 270 cycles [51]

1. Heat treatment (HT) in air, acid leaching, HT under Ar
2. Graphite and pitch mixture, the weight ratio 9: 1,
at 1000 ◦C, 2 h under nitrogen atmosphere

325 mAh·g−1 at a current rate of 0.5C after 250 cycles [57]

1. Acid leaching and HT with alkalis
2. Graphite and pitch mixture
Conditions: 1100 ◦C under nitrogen atmosphere, duration
2 h

105.3 mAh·g−1 at a current rate of 1C after 500 cycles [58]

1. Acid leaching, HT under nitrogen atmosphere
2. Polyethylene glycol 400 monooleate acid—0.02 L,
Graphite—1 g
Zinc chloride—2 g
Conditions: 1000 ◦C, 2 h under nitrogen atmosphere

730.8 mAh·g−1 at a current rate of 0.1C at 1st cycle
420 mAh·g−1 at a current rate of 0.1C after 100 cycles

[59]

1. Acid leaching and HT in air atmosphere
2. Graphite—10 g,
Phenolic resin–ethanol solution—0.02 L,
Conditions: solidification at 120 ◦C,1 h,
Then 950 ◦C, 1 h under nitrogen atmosphere

342.9 mAh·g−1 after 50 cycles [60]
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Table 2. Cont.

Process Conditions Electrochemical Performance Ref.

1. Acid leaching
2. Graphite—1 g
Urea—5 g
Conditions: 550 ◦C, 3 h
Then 800 ◦C, 1 h under argon atmosphere

465.8 mAh·g−1 at 0.1A·g−1 after 200 cycles [61]

1. Acid leaching + air HT
2. Sintering at 1000 ◦C, 2 h, under N2 with pitch, graphite
and Si

774.5 mAh·g−1 at 0.05A·g−1 [62]

1. NMP + scrapping
2. Ball-milling with nano Si, sintering at 800 ◦C, 3 h under
argon atmosphere

1321.8 mAh·g−1 at 0.05 A·g−1 [63]

1. Acid leaching for cathode, oxidation-intercalation for
anode
2. Solvothermal synthesis at 160 ◦C for 12 h

890 after 700 cycles at 1 A·g−1 [64]

1. Scrapping and intercalation
2. Gas sulfidation at 600 ◦C, 2 h, under Ar/N2

NCMS/C—900.4 mAh·g−1 after 200 cycles at 0.2 A·g−1

NCAS/C—830.5 mAh·g−1 after 200 cycles at 0.2 A·g−1 [65]

Table 3. The main advantages and disadvantages of the recovery and recycle approaches in terms of
the feasibility of their industrialization.

Recovery Approach Recycle Approach

Advantages Disadvantages Advantages Disadvantages

Higher purity can be achieved,
which is crucial for certain
applications, such as
lithium-ion battery anodes.

Recovery processes can be
resource-intensive, especially
when using strong acids or
high-temperature treatments.

More eco-friendly and
potentially energy-efficient,
particularly if the emphasis is
on reusing the recovered
materials rather than
achieving high purity.

May not yield the same level
of purity as the recovery
approach, limiting its
suitability for
certain applications.

Well-established recovery
methods using
hydrometallurgical processes
can be more readily adopted
in industrial settings.

Chemical handling and waste
disposal can pose
environmental and
safety challenges.

Reduces the need for
extensive chemical treatment,
making it a greener option.

The electrochemical
performance of recycled
graphite may not match that
of newly manufactured
graphite, especially for
high-performance batteries.

Offers the potential to
produce high-quality graphite
with enhanced
electrochemical properties.

May require multiple steps,
leading to complexity in the
overall process.

Suitable for applications
where high purity is not a
strict requirement, such as in
some energy storage systems
or composite materials.

The choice between the recovery and recycling approaches depends on the specific
goals and constraints of an industrial operation. If the priority is to produce high-purity
graphite for demanding applications like lithium-ion batteries, the recovery approach may
be more feasible. However, it comes with higher costs and environmental considerations.
On the other hand, for applications where high purity is not critical and sustainability is a
key concern, the recycling approach may be more practical.

In practice, a hybrid approach may be the most suitable for many industrial appli-
cations. This approach combines recovery methods to obtain high-purity graphite for
premium applications and recycling methods to produce less pure but environmentally
friendly graphite for less demanding uses. The choice ultimately depends on the balance
between performance, cost, and sustainability objectives for a particular industrial process.
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5. Reuse

The third approach, the reuse approach, is focused on preparing functional materials
from the spent LIB graphite, which are possible to use in other applications. In this subsec-
tion, such functional materials, such as adsorbents graphite-based capacitors, catalysts, and
graphene, are provided. Additionally, there are few publications in which spent graphite is
reused in other types of secondary rechargeable batteries, such as sodium/potassium-ion
batteries and dual-ion batteries.

5.1. Adsorbents

Graphite from retired batteries is an attractive material due to its surface with large
quantities of functional groups and porous morphology. These properties are extremely
important for adsorbents, and subsequently, spent graphite may be a promising candidate
from the economic and ecological points of view. Three types of graphite
materials—extracted from spent LIBs, commercial graphite, and biochar—were compared
in terms of sorption ability [66]. Spent graphite demonstrated excellent sorption capac-
ity for metals, such as barium, lead, and cadmium (~43.5 mg/g), and lower values for
organic compounds, such as 2,4-dinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine and
2,4-dichlorphenol (~6.5 mg/g). Presumably, the residual impurities could have an influence
on sorption properties. The high values of adsorption are based on the arrangement of
graphite layers. In order to develop the specific surface area and adsorption sites, various
modification methods have been studied, for instance, spent graphite was treated with
KMnO4 to obtain MnO2-loaded graphite (MnO2-AG) [67]. This material exhibited good
removal rates of lead, cadmium, and silver from wastewater—99.9%, 79.7%, and 99.8%,
respectively. The great removal efficiency can be explained by the ion exchange between
functional groups on the surface and the metal ions. Further, Hao et al. [68] obtained
amorphous carbon with the coating MnO2 from spent LIB graphite by ball-milling and the
hydrothermal method. The ball-milling completely reconstructed the graphite structure
and allowed it to enhance the surface area. These changes led to an increase in the sorption
capacity of cadmium from 4.88 to 135.81 mg/g. By various analyses, such as XPS, the
explanation of excellent adsorption was given as ion exchange, electrostatic attraction, and
surface complexation (Figure 3).

5.2. Capacitors

Graphite from EoL lithium-ion batteries can also be used in capacitors, such as Li-ion
and Na-ion capacitors. We systematically studied the probability of spent graphite usage as
the negative electrode for Li-ion and Na-ion capacitors. Dual carbon capacitors of different
types were assembled with activated carbon, used as the positive electrode. For Li-ion
capacitors, the spent graphite went through lithiation in order to form a LiC6 compound for
further lithium-ion supply. In a carbonate solution at room temperature, this capacitor de-
livered 185.84 Wh/kg [69]. Subsequently, this research team investigated the phenomenon
of solvated Li ions’ cointercalation into graphite with the usage of LiPF6 in tetraethylene
glycol dimethyl ether as the electrolyte. In comparison with carbonate-based electrolytes,
the glyme-based Li-ion capacitor displayed better cycling properties and safety, and in
addition the capacitor showed an energy density of 46.40 Wh/kg at room temperature [70].
Likewise, in the Na-ion capacitor, Divya et al. [71] used a solvent cointercalation mechanism
for high reversibility with NaPF6 in tetraethylene glycol dimethyl ether. The capacitor was
assembled in the same way, with activated carbon as positive and pre-sodiated graphite as
negative, and this demonstrated an energy density of 59.93 Wh/kg and saved about 98%
of capacity after 5000 cycles.
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Besides this, some experiments have focused on applying the spent graphite in super-
capacitors. For instance, Schiavi et al. [72] regenerated cobalt or cobalt–copper nanowires
and graphite from EoL-LIBs, which acted as positive and negative electrodes, respectively,
in supercapacitors. Figure 4 depicts the flow chart of the overall process proposed by
Schiavi and co-workers. Pure graphite without any metal impurities and mixtures of metal
salts was obtained after mechanical–physical treatment and hydrometallurgy. After that,
a positive electrode in the form of a nanowire was made via electrodeposition technol-
ogy with the usage of mixed metal salts as electrolytes. The synthesized supercapacitor
demonstrated a specific capacitance of 42 F/g [67].

5.3. Catalysts

The preparation of catalysts based on spent batteries’ graphite has attracted a lot
of attention due to its good carbon matrix structure and rich surface. Nowadays, these
graphite-based catalysts appear as an outstanding material for use in the redox of organic
compound degradation, electrochemical reduction reactions with O2, and trapping and
catalytic polysulfides. Nguyen and Oh [66] observed that graphite addition to persulfate
oxidation with iron and reduction with dithiothreitol and hydrogen sulfides affects the re-
moval of organics. This relationship can be explained by the presence of oxygen-containing
functional groups and the type of graphite structure. These factors simplified the electron
transfer during oxidation/reduction reactions. Furthermore, spent graphite after binder
removal could also be applied in LiS batteries as a functional interlayer with advanced
polysulfide trapping and catalytic behavior [73]. The presence of residual transition metals
in spent graphite can influence the polysulfide conversion kinetics. The porous structure
and polar functional groups cause the spent graphite to be able to confine polysulfides by
physical and chemical adsorption.
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Additionally, graphene (LIB-rGO) was obtained from spent graphite for the further
catalytic ozonation of organic pollutants [74]. In comparison with that synthesized from
commercially available graphite, rGO from spent LIB graphite demonstrated better catalytic
behavior due to its defective structure.

Moreover, the application of composite catalysts based on spent graphite was studied
in pollutant degradation. Guan et al. [75] prepared zero-valent iron with expanded graphite
(ZVI-EG) from iron chloride (FeCl3) and graphite from spent lithium-ion batteries by
carbothermic reduction. A similar type of composite was obtained by Chen et al. [76].
In their proposed route (Figure 5), graphite and copper of the spent LIB anode and iron
oxide from mill-scale waste went through carbothermic reduction to synthesize the final
product—the zero-valent iron-copper bimetallic catalyst (denoted as ZVI-Cu/C). Both
these composite catalysts achieved an efficient removal of 4-chlorophenol from water by
heterogenous Fenton reactions.

Moreover, copper from spent anodes was also applied for graphene oxide/CuO
composite synthesis [77]. CuSO4 was obtained through the reaction of copper foils and
sulfuric acid, and graphene oxide was synthesized by Hummer’s method from spent
graphite. The final composite GO/CuO was prepared by adsorption and bonding reactions.
To analyze its properties, GO/CuO was compared to CuO, and the composite demonstrated
a higher value of photodegradation on methylene blue. To increase the photodegradation
degree, it is possible to apply an electric field.
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5.4. Graphene

One of the most attention-grabbing materials nowadays is graphene, with outstanding
mechanical, chemical, electric, and thermal characteristics [78]. Graphene comprises a
single layer of carbon atoms with sp2 hybridization, which are bonded in a hexagonal
lattice. Previously, the synthesis of graphene has been extremely complicated, but many
researchers have investigated various methods of obtaining this exceptional material,
such as chemical vapor deposition [79], chemical oxidation/reduction [80], mechanical
exfoliation [81], and electrochemical exfoliation [82]. By chemical oxidation/reduction and
mechanical exfoliation, it became possible to obtain graphene from spent graphite from
EoL LIB.

Zhang et al. [83] studied the processes of both calcination and oxidation/reduction for
graphene synthesis from spent graphite. Firstly, the spent graphite was calcined at 600 ◦C
for 1 h in order to remove organic residue from the top layer of graphite powder. Then,
with the usage of a modified Hummer’s method and ultrasonic exfoliation, graphite oxide
was synthesized and went through reduction in N2H4·H2O to obtain reduced graphene
oxide. Various impurities in spent graphite, such as LiPF6 salts, PVDF binder, copper oxide,
and lithium salts, could be simply removed by Hummer’s method (mixture of KMnO4
and sulfuric acid) [84]. This path allows one to obtain graphene without pre-calcination.
Moreover, Zhao et al. [85] proposed a synthesis of soluble graphene oxide from spent
graphite by also using a modified Hummer’s process following NaOH–KOH eutectic
reduction. Molten NaOH–KOH at 220 ◦C effectively removed oxygen-containing groups
from graphene, while creating additional hydroxyl functional groups, which is explained
by the exceptional solubility of rGO in water/ethanol solution. As the cost of the oxidation–
reduction compounds is extremely high, some investigations that focused on decreasing
the cost were carried out. For instance, Natarajan et al. [86] used metallic cases made from
aluminum or stainless steel as reducing agents with concentrated HCl for the following
synthesis of graphene. A schematic illustration of the synthesis route of rGO from waste
LIBs is reported in Figure 6. Among all the obtained samples, graphene, which was reduced
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by Al at room temperature, demonstrated the highest capacity as a result of the highest
value of reduction and its porous structure.
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Chen et al. [87] investigated the exfoliation with sonication of spent graphite into
few-layered graphene. Due to the decrease in interlayer force between layers after many
cycles of charge/discharge of spent graphite, the effect of exfoliating was higher than
that of commercially available graphite. After heat treatment at 500 ◦C, the conductivity
value was raised to 9100 S/m. Additionally, during the process of charging the spent
batteries, the lithium intercalated graphite. This intercalation led to the direct splitting of
the graphite layers [88]. When the SOC of the LIB reached 50%, the graphite electrode
completely transformed into lithium intercalated compounds, such as LiC6 and LiC12.
After hydrolysis and ultrasonication, the Li from the intercalated compounds dissolved
and was recovered in Li2CO3, and two- to four-layered and one- to two-layered types
of graphite were formed. From an economic point of view, using spent graphite in the
following synthesis of graphene entails a much lower cost than the commercially developed
graphene synthesis process.

5.5. Other Types of the Rechargeable Batteries

Besides the simplest mode of spent graphite application in new LIBs after regeneration,
some researchers have investigated and studied the possibility of reusing graphite anodes
from LIB in other types of batteries. For instance, Natarajan et al. [89] discovered that
spent graphite coated on the copper foil could be transformed into Cu-BTC MOF, which
could be further applied not only in LIBs, but also in SIBs. The obtained anode material
demonstrated a discharge capacity of 208.9 mAh/g at a current density of 100 mA/g. This
reveals further possible processing paths of LIB waste.

Liang et al. [90] proposed a new concept of graphite anode waste reuse. High-
temperature heat treatment leads to an increase in interlayer distance and contributes
to reducing oxygen content and defects. The recovered electrode was reused as an anode
in sodium-ion and potassium-ion batteries, and demonstrated outstanding performance:
for SIB 162 mAh/g at 0.2 A/g and for KIB 320 mAh/g at 0.05 A/g.
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A unique cation/anion workable DIB was investigated by Meng et al. [91]. The
research group offered an innovative approach—to join spent LFP cathodes and graphite
anodes in order to obtain one electrode for further use in dual-ion batteries. This unique
electrode is able to work together with cations and anions, in which LFP can store Li+

ions and graphite -PF6
− ions during the intercalation and deintercalation processes by

variations in voltage ranges. The LFP/graphite composite (RLFPG) exhibited a high specific
capacity of 117.4 mAh/g at 24 mA/g current density and outstanding cycle life (78% after
1000 cycles at 100 mA/g).

Another attractive approach to spent graphite usage was investigated by Yang et al. [92].
They created an advanced cathode based on the spent graphite from LIBs for dual-ion
batteries. The transformation included the recovery of the graphite crystal structure and
morphology to restore the regular layer order and layer spacing so that the spent graphite
was damaged after long cycling. This recovery increased the anion intercalation in the
graphite. Moreover, the SEI’s thermal decomposition leads to the formation of an amor-
phous carbon layer, which in turn prevents electrode degradation and develops the cycle life
of the material. The synthesized material exhibited the capacity of 87 mAh/g at 200 mA/g
current density. By this environmentally friendly path, spent graphite could be applied in
Li-, Na-, and K-DIBs, effectively reducing resource consumption.

To summarize all processes and technologies attributed to the reuse approach, and to
compare the performances and applications of thus-obtained graphite materials, Table 4 is
given below.

Table 4. A comparison table of different functional materials obtained by the reuse approach.

Application of the Final Material Performance/Application Ref.

Adsorbents

Spent graphite

Pb—43.5 mg/g
Cd—11.0 mg/g
Ba—24.7 mg/g
DCP—6.5 mg/g
TNT—2.6 mg/g
DNT—2.3 mg/g

[66]

MnO2-loaded graphite
Ag—67.8 mg/g
Cd—29.5 mg/g
Pb—99.9 mg/g

[67]

MnO2-coated amorphous carbon Cd—135.81 mg/g [68]

Capacitors

Li-ion capacitor with LiC6 185.84 Wh/kg [69]

Glyme-based Li-ion capacitor with LiC6 46.40 Wh/kg [70]

Glyme-based Na-ion capacitor with NaC6 59.93 Wh/kg [71]

Supercapacitor with cobalt-copper nanowire
as positive electrode and graphite as
negative electrode

42 F/g [72]

Catalysts

Spent graphite Catalytic redox degradation of
organic compounds [66]

Spent graphite Polysulfide trapping and catalytic for
LiS battery [73]

rGO Catalytic ozonation of organic pollutants [74]

ZVI-EG Heterogeneous Fenton rection for
4-chlorphenol removal [75]

ZVFe-Cu supported on graphite Reduction and heterogeneous Fenton rection
for 4-chlorphenol removal [76]

GO/CuO Photodegradation for methylene blue [77]
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Table 4. Cont.

Application of the Final Material Performance/Application Ref.

Graphene

Graphene Decrease in H2SO4 and KMnO4
consumption in graphene synthesis [83]

2D graphene oxide Synthesis without pre-calcination and
acid leaching [84]

Soluble graphene nanosheets Excellent solubility in water, ethanol and
other polar solvents [85]

rGO Supercapacitor [86]

High-quality graphene Conductive ink application [87]

1–4-layered graphene
2–4-layered graphene
Battery-grade Li2CO3

Reduction in the graphene production cost
(USD 540 per ton graphene)
Li recovery from spent graphite anode

[88]

Rechargeable batteries

Cu-BTC MOF Application in LIB/SIB
208.9 mAh/g at 100 mA/g [89]

Heat-treated spent graphite
Application in SIB/KIB
For SIB 162 mAh/g at 0.2 A/g; KIB 320
mAh/g at 0.05 A/g

[90]

Joint cation-anion electrode RLFPG
Application in DIB
117.4 mAh/g at 24 mA/g; 78% after 1000
cycles at 100 mA/g

[91]

Transformed spent graphite Application in DIB
87 mAh/g at 200 mA/g [92]

6. Challenges in the Recovery of Spent Graphite Anodes

The recovery of spent graphite anodes presents several challenges that need to be
addressed for efficient and sustainable recycling. Some key challenges associated with the
recovery of spent graphite are listed below:

1. Complex composition—Spent graphite anodes from lithium-ion batteries (LIBs) often
have a complex composition, including various impurities, lithium salts, and binders.
Removing and separating these components to obtain pure graphite can be a complex
and energy-intensive process;

2. Environmental impact—Many traditional recovery methods involve the use of strong
acids, high-temperature processes, or other chemical treatments. These methods can
have negative environmental impacts, including the generation of hazardous waste
and emissions;

3. Energy consumption—Some recovery methods, such as high-temperature pyromet-
allurgy, can be energy-intensive. Energy consumption is a concern both in terms of
environmental impact and cost-effectiveness;

4. Purity requirements—The level of purity required for the recovered graphite de-
pends on the intended application. Meeting high-purity standards, particularly for
LIBs, can be challenging and may require more extensive and resource-intensive
recovery processes;

5. Impurities—Some impurities, such as LiF and ROCO2Li, are challenging to remove
using standard recovery methods, leading to the need for more advanced and complex
techniques;

6. Safety concerns—Handling strong acids and other chemicals in the recovery pro-
cess can pose safety risks for workers, and the disposal of chemical waste must be
managed carefully;
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7. Energy storage requirements—The recovered graphite’s electrochemical performance,
including its capacity and cycling stability, may not match that of newly manufactured
graphite. Achieving the same electrochemical properties can be challenging;

8. Resource efficiency—Balancing the use of resources (both energy and materials) with
the desired level of recovery and purity is an ongoing challenge. Maximizing resource
efficiency while achieving acceptable purity levels is critical;

9. Recycling infrastructure—Establishing a recycling infrastructure that can efficiently
process and recover spent graphite from a growing number of end-of-life batteries is
a logistical challenge;

10. Cost-effectiveness—Finding cost-effective recovery methods that balance the expenses
associated with recovery and recycling against the potential value of the recovered
materials is crucial;

11. Environmental regulations—Meeting environmental regulations and sustainability
goals while recovering and recycling graphite materials is a significant challenge,
particularly as regulations may become more stringent.

Addressing these challenges requires ongoing research and development efforts to
innovate and optimize recovery methods, reduce environmental impacts, and improve
the economic viability of recycling spent graphite. Furthermore, a shift toward more
sustainable and eco-friendly recovery methods is essential to meet the growing demand for
graphite and the need to minimize its environmental footprint.

7. Conclusions and Promising Prospects for Utilizing Spent Graphite-Based
Functional Materials

The recycling of spent graphite from LIBs not only addresses environmental concerns
and resource depletion, but also presents promising opportunities for the development
of innovative functional materials. Spent graphite, which may contain residual metals,
binders, and electrolytes, can be repurposed and transformed into valuable products for
various applications. Here, we explore the potential prospects and applications of spent
graphite-based functional materials:

1. Energy storage systems—Spent graphite can be processed and modified to create high-
performance anode materials for the energy storage systems of the future. Advanced
treatments and engineering techniques can enhance the electrochemical properties of
recycled graphite, allowing it to store and release energy efficiently. These recycled
materials could lead to the development of cost-effective and sustainable energy
storage solutions, supporting the growing demand for renewable energy integration
and grid stability;

2. Supercapacitors—Spent graphite-based materials can find applications in supercapac-
itors, offering rapid charge–discharge capabilities and extended cycling stability. The
unique features of graphite, such as its high surface area and electrical conductivity,
make it an ideal candidate for supercapacitor electrodes. Recycling graphite for super-
capacitors can enhance their energy storage performance while reducing the need for
virgin graphite production;

3. Advanced composite materials—The incorporation of spent graphite into composite
materials can lead to the development of lightweight and high-strength materials.
Graphite’s mechanical stability and electrical conductivity can enhance the properties
of composites used in aerospace, automotive, and construction industries, reducing
the reliance on virgin graphite and promoting sustainability in material production;

4. Environmental remediation—Spent graphite can serve as an effective adsorbent for
environmental remediation purposes. Its porous structure and affinity for various
pollutants make it suitable for the removal of metals, organic contaminants, and haz-
ardous chemicals from water and air. By repurposing spent graphite in environmental
applications, we can contribute to cleaner ecosystems and mitigate pollution;

5. Electrochemical sensors—Recycled graphite can be tailored for use in electrochemical
sensors and analytical devices. Its electrochemical activity, coupled with surface
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modification techniques, can enable the sensitive detection of analytes, paving the
way for improved sensing technologies in fields such as healthcare, environmental
monitoring, and diagnostics;

6. Thermal management—The high thermal conductivity of graphite makes it valuable
in thermal management applications. Spent graphite-based materials can be incorpo-
rated into thermal interface materials, heat sinks, and cooling solutions for electronics
and electric vehicle batteries, enhancing heat dissipation and system efficiency;

7. Construction and infrastructure—Recycled graphite can be employed in construction
materials, such as concrete additives and coatings, to improve durability and reduce
carbon emissions. Its inclusion can enhance the overall performance and sustainability
of infrastructure projects.

In summary, the recycling and repurposing of spent graphite from LIBs offers a multi-
tude of opportunities to create valuable functional materials with a range of applications
across industries. These prospects not only promote sustainability and resource conserva-
tion, but also contribute to the development of innovative technologies that address the
global challenges of energy storage, environmental protection, and advanced materials
development. As research and development efforts continue to evolve in this area, the full
potential of spent graphite-based functional materials is expected to be realized, speeding
up the transition towards a more sustainable and eco-friendly future.
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