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Abstract: In order to reduce the cost of lithium-ion batteries, production scrap has to be minimized.
The reliable detection of electrode defects allows for a quality control and fast operator reaction in
ideal closed control loops and a well-founded decision regarding whether a piece of electrode is
scrap. A widely used inline system for defect detection is an optical detection system based on line
scan cameras and specialized lighting. The cameras scan the electrode, and brightness differences on
the surface are detected and processed inline. The characteristics of the defect image are used for
automated classification of the defects based on image features. Furthermore, the detailed detection
of defects allows for the identification of causes. This paper describes the working principle of such
an inline detection system, the catalog of typical defects, and the image features used to classify them
automatically. Furthermore, we propose and discuss causes and effects of the different defect types
on the basis of the literature and expert experience. In combination with tracking and tracing, this
enables the manufacturer to reduce scrap by detecting defects early in the production chain.

Keywords: lithium-ion battery; quality control; defect detection; inline measurement; electrode coating

1. Introduction

Lithium-ion batteries are an integral part of today’s portable consumer electronics,
such as laptops, smartphones, cameras, headphones, and many more. Starting from
these rather small applications, the interest and demand for lithium-ion batteries in the
automobile and stationary energy storage sectors have significantly grown in the last
decade. However, these large-size applications demand higher power density, energy
density, and a longer lifespan for lithium-ion batteries. Multiple aspects to fulfil these
demands have been investigated in the research community. These include, but are not
limited to, the investigation of new active materials, new additives, higher areal loadings
of the electrodes, or variations of electrode composition and structure [1–3]. Another way
of increasing the cell and, especially, the module energy and power density is to scale up.
Larger electrodes and cells need less periphery compared with smaller cells, decreasing the
inactive mass in the systems [4–6]. However, larger electrodes demand a higher production
quality regarding coating uniformity and defect density. Usually, larger electrodes increase
the waste ratio because of the increased complexity of excluding defects in the continuous
coating from the final electrodes [6,7]. To decrease the scrap rate of larger electrodes,
the reason and the severity of defects must be understood to differentiate critical and
non-critical defects and prevent as many critical defects as possible [8].

Critical electrode defects would be defects that severely damage the cell performance
during cycling or pose a safety risk, such as a short circuit. Another aspect would be the
subsequent processability of electrodes. Defects that hinder the processability by increasing
the fragility or are intensified during later production steps are critical defects.
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Often the severity of defects depends not only on the defect type but also on their
size and frequency. David et al. [9] showed that a small quantity of pinholes with a size
of approximately 100 to 200 µm has no effect on the performance of multilayer pouch
cells. Such defects can even improve ionic conductivity as publications regarding the
structuring of electrodes by lasers have shown [10–12]. However, at the same time larger
uncoated areas lead to a local cascading effect of rapid electrode degradation due to
inadequate balancing and severe overcharging of the cathode coating near the defect. Tests
in small coin cells show that pinholes lead to severe capacity fading as well as a decrease
in C-rate performance because of their higher areal fraction [13]. This shows that not
only the defect type but also the defect size and frequency must be taken into account to
allow for an accurate estimation of the impact of coating defects on the electrode and cell
performance [14–16].

Automatic defect detection is an industrial standard in many areas of mass production,
for example, in glass and fabric production [17,18] or an ongoing research topic for other
battery components, such as separators [19]. To identify defects, optical identification
systems are often used, which allow for an easy, hazard-free, and fast defect detection.
The concept behind the detection is based on analyzing the brightness of the product with
cameras. A fluctuation in the brightness detected by the camera, whether it is light shining
through the product or light reflected by the product, indicates a defect in the product.
Automated categorization algorithms enable real-time automatic quality control based on
this brightness distribution as well as automated inline waste disposal or recycling. To
qualify an automated defect detection for battery electrode production as well as to gain
as much insight as possible into the processes leading to these defects and their influence
on electrode performance, the best parameters for the detection as well as a good defect
categorization must be developed. Furthermore, it must be ensured that the recorded
defects can also be assigned to the respective cells. In this way, the severity of the defect
can be used to decide whether the respective electrode section can be considered directly
as scrap and must be rejected. On the other hand, by tracing the defects back to the cell
level, the influence can be better described. A traceability system as part of the quality
management system offers the right opportunity for this [20,21]. For this reason, this
publication addresses the automated defect detection and classification of coating defects.
Furthermore, the severity of the defects for the cell performance is classified on the basis of
the literature, and the causes of the defects are described. Moreover, the article shows how
errors can be traced back to the cell level.

2. Experimental Section

In order to identify electrode coating defects, an automated optical defect detection
system (type ISRA Vision SMASH) was used. This system consists of two LED arrays and
two line scan cameras with 8192 pixels each to inspect the entire coating width with a real
pixel size of 35 µm × 37.5 µm. The system allows for the simultaneous inspection in bright
field mode (LED B is in reflection angle of the camera) and in dark field mode (LED A is
not in reflection angle), as shown in Figure 1. The general detection concept is based on
brightness differences in the pictures of the coating, which are filtered by the detection
algorithm. The defects are categorized automatically on the basis of multiple parameters,
such as aspect ratio, brightness, size, form, orientation, position, and many more.

Multiple different electrodes, including NMC cathodes, graphite anodes, and sulfur
cathodes of varying types, production chains, and areal loadings were used to build the
defect catalogue discussed in this paper. Different filter setups were created to allow for
an inspection of the anodes and cathodes. The difference between the two setups was the
brightness range that was considered normal to account for the different colors of graphite
anodes as well as NMC and sulfur cathodes. Regarding anodes, the normal brightness
range was set to 95–180 for the dark and for the bright field. Regarding cathodes, this
range was set to 105–150 for the dark field and 95–150 for the bright field on an 8-bit scale
(256 steps, 0 = minimum brightness, 255 = maximum brightness). In general, the color of
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the materials has an influence on the set detection limits. Therefore, the inspection system
must be re-parameterized for each material used. The setup used for this research allowed
for a maximum detection speed of 11 m/min for anodes and 11.6 m/min for cathodes
based on LED flash times of 200 µs for anode and 190 µs for cathode inspection, with
40% and 30% of the maximum LED brightness used, respectively. However, the maximum
technical inspection speed of the cameras is approximately 1000 m/min or 100 defects per
second and camera, provided that a sufficiently powerful light source is available to reduce
the flash time.

Figure 1. Measurement setup of the optical detection system with a camera and two lights in different
angles to the camera. LED A and B are turned on alternatingly allowing for simultaneous detection
with scattered light (LED A turned on) and direct reflection (LED B turned on). The scale shown
represents 1 mm.

The inspection system was installed at the end of the continuous pilot coating and
drying line LabCo from Kroenert GmbH (Hamburg, Germany) using a slot die or comma-
bar reverse-roll coating system and three 2 m long convective drying sections [22]. The
production speed varied between 0.75 and 2 m/min depending on areal loading, solvent
type, and solid content. For all these different electrodes and production chains, similar
defects could be identified. The user then categorized some defects, taking the optical
impression of the defect into account, to train the integrated machine learning algorithm.
Furthermore, the change of defects due to calendering was performed manually without a
detection system. In general, the detection of defects after calendering is possible, but it
is much more complicated. The reason for this is the increase in electrode gloss and the
occurrence of ripples in the electrode [14]. In order to exclude measurement artifacts created
by the cameras and the setup, the brightness was averaged by the algorithm first and then
analyzed. This filter was 2 by 2 pixels for the dark field and 4 by 4 pixels for the bright
field for both electrode types. Experiments showed that these filter setups are best suited
for defect detection, as no filtering leads to intensive noise and the increased detection
of phantom defects, which are just brightness differences on the electrodes surface, as
shown in Figure 2. On the other hand, choosing a filter that is too large leads to decreased
sensitivity of the detection system towards small defects [23]. The filter size was larger
for the bright field because most defects are reflective. The high reflectivity led to an
overestimation of the defect size. Therefore, it allowed for a lower sensitivity, which was
also necessary because electrode surfaces usually show more intense noise in the bright
field.
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Figure 2. Detection filters and their effect on noise (phantom defects) and real defects.

3. Results

During the investigation of a high number of different electrodes, a catalogue of eight
different electrode defect categories was derived, examples are shown in Figure S1. The
defects in this catalogue had different causes and effects and differed in their frequency
depending on a large array of production and material parameters. In this paper, we present
these categories and share some expert experience regarding the cause of the defects (shown
in Figure 3) and their impact on the electrode handling and electrode performance (shown
in Table 1).

Figure 3. Set defect types for the electrode production on a continuous pilot scale coater: (a) Ag-
glomerate, (b) Coating Crack, (c) Contamination, (d) Micro-compression, (e) Mud Crack, (f) Pinhole,
(g) Slip, and (h) Stripe. The scale shown represents 1 mm. More defect pictures are shown in the
Supplementary Information.
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Table 1. Impact level of different defects on handling in consecutive process steps and on the
electrochemical electrode performance: 0 = none, 1 = low, 2 = medium, and 3 = high.

Defect Impact Level Handling Impact Level Electrode Performance

Agglomerate 1–2 2
Coating cracks 2 1–2

Contaminations 1 1–3
Micro-compressions 0 0–1

Mud cracks 2–3 3
Pinholes 0 1–2

Slips 2 3
Stripes 0 2–3

Agglomerates often derive from insufficient dispersion of the solid components in
the slurry mixing step [24]. Another source may be dried slurry at the coating device,
present mainly in batch production after a bit of shelf life. Agglomerates often consist of
densely packed clusters of conductive agent and binder and can have a size in the area of
100 to 500 µm [13]. Therefore, within an agglomerate, the electrical and ionic conductivity
is reduced, leading to a local increase in impedance and a loss of capacity [9,25]. In the
calendering step, agglomerates can be the reason for a foil tear or damage of the calender
rolls due to their dense structure—especially in the case of NMC cathodes [14]. The second
threat is in regard to the separator integrity in a cell. Coarse agglomerates in a cell, especially
if combined with pressure, can lead to a mechanical failure of the separator and induce
a short circuit, which can be a serious safety risk on top of the significantly decreased
cell performance [26]. Agglomerates pose multiple threats for the electrode performance
and further processing. Therefore, agglomerates should be considered as critical defects.
Introduced into the coating, these agglomerates are either visible as dark dots in the case
of carbon black agglomerates or as local heights on the electrode surface. The detection
system detects this height in two different ways: in the dark field, the agglomerate casts
a shadow detected by the cameras. In the bright field, however, the agglomerate can be
visible also as a micro-compression, which is discussed in detail later. This is because the
electrode is produced in a roll-to-roll process, which leads to a small compression of this
height, increasing the reflective behavior. The dark field picture of the defect is needed to
identify agglomerates and to differentiate them from normal micro-compressions or kinks.

Coating cracks are often the result of small radius redirection of thick electrodes
(mainly water-based anodes) or a too-intense drying procedure, leading to substrate binder
depletion and bad adhesion [27–30]. At this point, it must be taken into account that
direct-drying-induced cracks are very unlikely [31]. These are caused by a combination
of stress-inducing layer shrinkage with poor adhesion and subsequent deflection of the
web [27,31,32]. On the cathode side, drying-induced defects occur in the form of mud
cracks, which are explained in a later section [1]. They can be identified as fine dark lines
on the electrode surface, especially in the dark field because of their shadow casting, and
can be several centimeters in length. On the one hand, the identification of cracks on
the coating surface can be an indicator of bad adhesion or too-thick electrodes, which
can hinder the consecutive processing of the electrodes and lead to bad cell performance
due to delamination. On the other hand, the crack on its own is not a critical defect.
The compression and particle rearrangement during the following calendering step can
lead to the vanishing of these defects so they do not have a significant impact on the cell
performance.

Contaminations include all foreign substances that can be introduced into the coating.
Due to the different properties, these can have varying degrees of impact on the subsequent
cell and different defect features. Contaminants, such as fluff, can be easily avoided by
a drying air conditioning and/or by producing the electrodes in a cleanroom since they
are introduced mainly through sedimentation during the coating and drying step. Fluff,
as shown in Table 1, does not significantly impact cell performance because it is flexible,
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usually non-conductive, and small. In the case of metal dust, this changes drastically. Metal
particles can easily lead to short circuits or significantly damage cell performance [33,34].
Metal impurities in LIB electrodes should be avoided at all times, whereas normal dust and
fluff is usually not a critical defect. Mohanty et al. [13] investigated the influence of cobalt
and aluminum metal particle impurities within the cathode. They found that this resulted
in unstable cell performance at high C-rates. Furthermore, significantly faster capacity
losses occurred during cycling. Hoffmann et al. [26] showed that impurities in the form of
metal contaminations, which can arise from laser cutting, are able to damage the separator
during cell production and, thus, cause short circuits. Usually, contaminations can be
detected as bright spots on the electrode, especially in the bright field due to their different
reflective properties compared with the electrode surface. However, the form of these bright
spots can be largely different among contamination types and individual contaminations.
Fluff, for example, is usually very obvious because of its fine and interloped structure.
However, the varying form can make it difficult to separate this defect distinctly from the
others. In combination with its vastly varying influence on the cell performance, defects of
this type should be reviewed by the user [35].

Micro-compressions are very small reflective spots but are usually part of a larger
cluster. These defects are caused by local compression of the coating. One reason for
this defect is a contaminated or damaged deflection roller, deflecting the substrate on the
coating side. This leads to a smoother and more reflective surface at the tips of the irregular
coating surface, which looks a bit like a starry sky in the bright field detection. The density
differences caused by this defect are usually minimal and very local, so they are entirely
superimposed by the calendering step. Furthermore, micro-compressions can occur when
the electrode is scraping on fixed machine parts on the coating side during production or
wound inhomogeneously into a coil. The reason can be previous defects pushing through to
the next layer or irregular surfaces of winding rolls. In this case, the defect consists of a large
number of micro-compressions. While micro-compressions are not critical defects, they can
help to identify other defects or their causes. Periodically recurring micro-compressions, for
example, allow one to trace the roller causing the defect. They usually have no significant
influence on the cell performance due to the following calendering step but can be used to
detect problems with or contaminations on the equipment.

Mud cracks show a lack of cohesion and adhesion in the coating. Too-intense drying
in combination with a too-low binder content, a too-low overall solid content, or a bad
cohesion leads to fast shrinking of the coating during the drying step [1,24,36,37]. The wet
coating cracks open in the dryer, forming interconnected cracks with visible foil. Due to the
reflection of the blank foil, this defect is especially visible in the bright field. The impact
of this defect on the electrode quality is very critical. Usually, the defect area spans over
the entire electrode due to general problems with unsuitable production parameters or
additive contents. Due to the defect size and their negative impact on electrode structure
and properties, this defect must be considered critical and leads to direct scrap of the
electrode.

Pinholes are one of the most well-known electrode defects. They are caused mainly by
air bubbles in the suspension. In the coating gab, these bubbles open up and leave a free
circular area on the substrate, the pinhole. The size of these holes usually ranges in the area
of a few 100 µm and is clearly visible in the bright field detection because of the reflecting
blank foil. David et al. [9] investigated the influence of a small quantity of pinholes on the
performance of multilayer pouch cells. They found no disadvantage, whereas Mohanty
et al. [13] showed the negative impact by investigating small size coin cells. Thus, pinholes
do have a negative impact on the coating directly around it because of the missing material.
Still, this impact is not relevant for a small frequency and/or larger electrodes. Therefore,
pinholes should not be considered as critical defects in small amounts. It is possible that
pinholes even favor the overall electrode performance of electrodes. Various research
groups have investigated the impact of laser structuring on the performance of thick LIB
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electrodes and found that these artificial pinholes do increase the C-rate performance
because of an easier lithium-ion diffusion [11,38–42].

Slips are caused by inhomogeneous substrate tension or wrinkles and lead to coating
defects, mostly vertical to the coating direction, as shown in Figure 3. This is due to
inconsistent web speed in the coating device, leading to a massively inhomogeneous areal
loading distribution up to completely blank web in some spaces. Inspecting the blank
substrate, wrinkles are often visible as irregular reflections. With applied coating, the
defects are often visible as bright areas or stripes of blank foil vertical to the web direction,
especially in the bright field. Wrinkles/slips often are large defects that can significantly
impact the cell performance and, therefore, should be considered as critical, i.e., result in
production scrap.

Stripes are elongated areas without coating and, therefore, are highly reflective in
the bright field. These defects often appear as a line in the coating direction caused by
agglomerates or other contaminants clogging the coating gab [24]. Such defects are to be
prevented because they can seriously impact the cell performance, as they usually have
a high frequency and can have a length of several meters if not detected early, i.e., can
lead to a very large amount of scrap production. David et al. [9] showed that such line
defects can decrease the long-term performance of LIBs significantly due to a cascading
increased degradation starting in the area of the defect. Thus, these coating defects should
be considered as critical.

3.1. Defect Causes

In addition to the detection and classification of the detected defects, the assignment
to the respective cause and its avoidance is of great importance. Generally, coating defects
occur for a variety of reasons [42]. Nevertheless, many detected defects can be traced back to
the previous process steps. An overview of the defect classes and the process steps causing
them is shown in Figure 4. For example, pinholes usually originate from an insufficiently
degassed suspension. However, they can also occur due to wetting problems, but they
could not be observed during the recording of the data of this work [42]. Furthermore,
agglomerates arise due to insufficient dispersion and, thus, incomplete deagglomeration
of large carbon black agglomerates. These can be avoided by installing a suspension
filter before the slot die. At the same time, this prevents the slot die from being blocked
by an agglomerate, which also minimizes the probability of stripes appearing on the
coating. Furthermore, foreign particles in the form of metal contamination, which may
be caused by abrasive effects within the mixing devices, can be filtered out. In this way,
the cause of pinholes, agglomerates, and stripes can be traced back to the previously
manufactured intermediate product suspension and are, thus, the result of inadequate
quality management. It should be considered that agglomerates and stripes can also be
caused by dried suspension on the container walls. Other defects, such as mud cracks,
coating cracks, slip or edge defects, result from incorrectly set process parameters or
insufficient equipment capability. The defect at the edge of the electrode was not defined
as a separate defect class. The reason for this is that there is no consistent occurrence of
this type of defect; therefore, a classification can be designated only on the basis of the
positioning of the defects. They are caused by non-optimal slurry transfer to the substrate
in the edge area, for example, due to decreasing coating thickness on the edges [43]. This
leads to occasional or periodical dewetting of the substrate. Depending on the frequency
and size of these defects, they can be problematic in the calendering step or cause problems
for double-sided coating and cell cutting. Occasional small edge defects can be ignored or
excluded; however, periodical or large edge defects are critical.
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Figure 4. Typical defect types caused by different process steps and environmental conditions.

3.2. Defect Classification by Selected Image Features

As already mentioned above, the detected defects are classified by the system automat-
ically. This process is based on a machine learning algorithm called “QuickTeach”. Several
electrode defects are taught into the system with user-defined classification. We taught
approximately 70 to 120 defects for each class (edge defects excluded) leading to a total
of 820 taught defects to allow for a stable and diverse data set. The error images used can
be made available on request. After teaching, the system determines the combination of
image features best suited to reproduce the defect assignment made by the user.

For each detected defect, 44 defect features (selection listed in Table 2) are calculated
by the system and compared with the above-mentioned defect classes by means of an
algorithm in order to determine their class affiliation. Since some of the image features
used were created artificially and, thus, have no relation to reality, only selected image
features are discussed below. After training the system with the provided defects, the
algorithm correctly reclassified 95.0% of these. As can be seen in Table 3, the remaining 5%
are distributed among defect classes that have a similar appearance. Especially, contamina-
tions, pinholes, and agglomerates reach a comparatively low reclassification accuracy. For
example, the algorithm falsely classified nearly 6% of contaminations as mud cracks. This
is because of the sometimes very similar defect features.

Table 2. Selected investigated defect features used by the algorithm for automated defect classification.

Feature Short Description Main Feature

Dark field

Aspect ratio Ratio of length to width of the defect
(according to web direction) Shape

Roundness Defect circumference divided by real defect area
(values = 1 equals circle) Shape

Percent fill Real defect area divided by area of the enveloping rectangle Compactness
Moment relationship Real aspect ratio, also suitable for diagonal defects Shape
Maximum brightness Maximum brightness in defect area Brightness

Maximum contrast Maximum defect contrast compared with background Brightness
Minimal contrast Minimal defect contrast compared with background Brightness
Average contrast Average contrast of the defect area against background Brightness

Mean defect-to-area ratio Ratio of the average size of defect parts in composite defects to
the total defect area (similar to compactness). Compactness

Number dark Sum of dark defect pixels Brightness
Number bright Sum of bright defect pixels Brightness
Brightness 75 x75 of the defect brightness distribution Brightness
Brightness 90 x90 of the defect brightness distribution Brightness
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Table 2. Cont.

Feature Short Description Main Feature

Bright field

Aspect ratio Ratio of length to width of the defect
(according to web direction) Shape

Roundness Defect circumference divided by real defect area
(values = 1 equals circle) Shape

Moment relationship Real aspect ratio, also suitable for diagonal defects Shape
Average intensity Average brightness of defect area Brightness

Defect standard deviation Standard deviation of the brightness of the defect pixels Brightness
Maximum contrast Maximum defect contrast compared with background Brightness

Mean sharpness 2 Average contrast at defect edge between defect and background
based on 2 pixels each Brightness

Maximum defect-to-area ratio Ratio of the average size of defect parts in composite defects to
the total defect area (similar to compactness). Compactness

Table 3. Reclassification accuracy of taught defects (lines) by machine learning algorithm (columns)
with selected defect features (lines add up to 100%).

Classification
Accuracy (%) Agglomerate Coating Crack Contamination Micro-

Compression Mud Crack Pinhole Slip Stripe

Agglomerate 92.73 1.82 2.73 1.82 0.91
Coating crack 0.99 99.01

Contamination 1.94 90.29 0.97 5.83 0.97
Micro-

compression 0.96 2.88 96.15

Mud crack 2.56 95.73 1.71
Pinhole 0.95 1.90 93.33 2.86 0.95

Slip 1.39 1.39 97.22
Stripe 0.93 0.93 1.85 96.30

The features used by the system for the defect classification are sometimes quite
complex but can be grouped into three main features at a closer look: defect shape, defect
compactness, and defect brightness. The defect shape is very distinctive for some defect
classes, and some defects can, thus, already be classified very well by their shape. For
example, pinholes are usually almost round, while stripes are elongated and narrow, as
shown in Figure 5a,b. Other defects, such as micro-compressions, however, do not have
a fixed shape. Due to their path of formation as a result of slight surface compaction of
the electrode, their shape is highly dependent on how this compaction occurs. Micro-
compressions can have an elongated shape similar to a stripe if they are caused by dragging
on a stationary component. They can be point-shaped if they are caused by point-shaped
contamination on a substrate-carrying roll. Thus, by their shape alone, micro-compressions
cannot be distinguished from pinholes, contamination, or stripes.

What is striking about micro-compressions, however, is their compactness. Viewed
from a distance, a micro-compression’s appearance is similar to a starry sky. This appear-
ance is due to minimal height differences in the coating so that higher surface areas are
slightly compressed and, therefore, are more reflective, while lower surface areas remain
uncompressed. Defects, such as contaminations or dewetting, also often have a lower
compactness than pinholes or stripes, as seen in Figure 5c for percent fill.
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Figure 5. Examples of defect picture features for different defect classes: (a) Moment Relationship,
(b) Roundness, (c) Percent Fill, (d) Average Intensity.

As a third aspect, the brightness of the defect can be considered. Defects such as
agglomerates or cracks are usually dark defects and, thus, can be easily distinguished from
the bright defects. However, there are also differences in the bright defects. Pinholes or
slips, for example, are extremely bright due to the high reflection of the substrate film.
Micro-compressions, on the other hand, show brightness values above the tolerance limits
but which are comparatively lower, as seen in the lower right diagram of Figure 5d.

The transitions of the individual defect features among the different defect types are
sometimes blurry, as shown in Figure 5 as well. Stripes, for example, have a very high
moment relationship, in some cases making them unique in this aspect. The moment
relationship takes into account the direction of the defect for the calculation of the aspect
ratio/defect form and is independent of the web direction and is, thus, defined as a real
aspect ratio. In other features, such as the percent fill, they are in line with other defect
classes, such as agglomerates and pinholes. In the case of percent fill, it can be observed that
this defect feature can be used very well to separate the very dense defects where the defect
area is very concentrated, such as pinholes, stripes, or agglomerates, from less dense defects
which are quite fractal, such as coating cracks or micro-compressions. On the basis of these
four exemplary defect features, it can be seen that the classification of defects with only one
or a few features is not possible with sufficient accuracy. However, it becomes obvious that
certain defect features for certain defect classes show clear differences. Therefore, the inline
classification uses the total of 44 defect features to classify. The 44 features are enough
to separate the defect classes from one another sufficiently and to analyze and classify a
detected defect afterwards.
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However, it is not able to classify every single defect correctly, especially if the class
features overlap somewhat. During multiple system operations, it was obvious that
contaminations, pinholes, and mud cracks are difficult to discern in some cases, as are
pinholes, micro-compressions, and slips. Examples of such challenges to classify and
discern defects can be seen in Figure 6. Looking at defect (Figure 6a) with an experienced
human eye, it can be classified as a mud crack, but looking at the bare optical features of
defects (Figure 6a,b), they have much in common and look very much alike. They both
show an irregular, elongated structure with excellent bright areas, resulting in a low percent
fill. The inline detection system with no expert experience can have difficulty discerning
these similar-looking defects. However, defects can also be challenging to classify, even
for an expert looking at the taken pictures. Defect (Figure 6c) is likely still a contamination
with small fluff, but looking at defect (Figure 6d), it becomes almost impossible to decide
whether this is a small contamination or a small pinhole. In addition, it is difficult to set a
clear transition point regarding pinholes (Figure 6e) and stripes (Figure 6g). At what aspect
ratio is a defect to be classified as a stripe, for example, by looking at defect (Figure 6f)?
These differentiations are, in some cases, significant to assess the defect’s criticality and
influence on the electrode and cell performance and safety: whether defect (Figure 6d) is a
metal particle or a small pinhole has a significantly different impact on the cell performance.
In other cases, the impact of the classification is much smaller; for example, whether defect
(Figure 6f) is classified as a pinhole or a stripe has no significant impact on its influence
on the electrode performance because regardless of this, it is clear that this defect is a free
substrate area with missing coating. In this case, the amount of free area is more important
for the impact than its classification. This does not mean that the differentiation between
pinholes and stripes is unnecessary, because these two defect types have very different
causes. The classification can help to tackle those. More examples for the different defect
classes can be seen in Figure S1.

Figure 6. Exemplary defect pictures of different classes: (a) mud crack; (b,c) contamination (fluff);
(d–f) pinhole and (g) stripe. The scale shown represents 1 mm.

3.3. Defect Classification by a Deep Learning Image Classifier

Classification of images by deep learning neural networks boosted the performance of
real-world image recognition tasks in the past decade [44]. In industrial applications and
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especially in quality assurance tasks, such as the classification of surface defects, engineered
and feature-based classifiers are still in frequent use today [45,46]. Often those solutions
are built from decades of experience and handpicked datasets. A feature-based solution
has excellent traceability and relates well to human knowledge: An engineer can see in
detail why a classifier has chosen the defect class for a defect. Even for machine learning
classification, the detail of the algorithmic decision is easily accessible. Additionally, feature-
based approaches can much better handle small datasets with few examples per class [47].
The additional abstraction of the feature extraction moves the problem complexity to a
space of much lower dimensionality compared with the image’s pixels in the deep learning
scenario. The drawback of the feature-based techniques is that the accessible properties of
the image are limited to the predefined feature set. It can happen that a certain property
of the defect’s texture, e.g., roughness, is clearly visible to the human eye but does not
translate to a significant feature. Of course, the feature set can be extended with results from
an image processing algorithm that aims for the desired property, but this is a retrospective
approach.

With a deep learning neural network, the properties which can be learned from the
images are limited only by the structure and size of the network. In the described industrial
quality assurance scenario, good results are achieved on different materials, e.g., by Ren
et al. [48], Badmos et al. [49], or Bhatt et al. [50]. However, the performance still greatly
depends on the given training data and the nature of the images or the material, respectively.
For this investigation, we used a standard residual neural network, a ResNet [51]. For this
investigation, the implementation was carried out using PyTorch to generate a prototype
software and evaluate the approach with state-of the-art methods [52] but is not specific to
this software package, i.e., could also be implemented on TensorFlow [53] or Keras [54].

Specifically, a non-pre-trained ResNet-18 is suitable for this type of data: Pre-training
with real world images, e.g., ImageNet data, does not help with these images, as they are
different in nature. The choice of a rather simple deep learning network is adequate for these
data, as the complexity is well below scenes from the real world. This allows for training on
this dataset in only 6 h on a single state-of-the-art GPU. We used the same dataset as was
used for the feature-based approach and performed a fivefold cross validation. For training,
a dataset augmentation, which is specific to the image properties, is used to provide enough
samples. In Table 4, the performance of this approach is shown in detail. The overall
accuracy is 96.3% and, thus, similar to the machine learning result. Some details of the
misclassifications differ between the two approaches: All contaminations are classified as
what they actually are. The QuickTeach approach performs better in classifying the coating
cracks. The difficulty of classifying micro-compressions is the same with both approaches.
Contaminations are difficult for the feature-based approach to classify, as they are more
random in their appearance and sometimes not easy to tell apart. Here the strength of the
deep learning network shows, as it can learn properties of such contaminations without
being restricted to certain pre-engineered properties.

Table 4. Reclassification accuracy of taught defects (lines) by deep learning algorithm (lines add
up to 100%).

Classification
Accuracy (%) Agglomerate Coating Crack Contamination Micro-

Compression Mud Crack Pinhole Slip Stripe

Agglomerate 96.19 2.86 0.95
Coating crack 95.00 5.00

Contamination 100.00
Micro-

compression 0.74 1.48 96.30 1.48

Mud crack 2.00 98.00
Pinhole 2.50 1.67 95.00 0.83

Slip 4.29 94.29 1.43
Stripe 1.18 1.18 97.65
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In conclusion, we have no clear winner performance-wise. The two approaches are
very different in the secondary properties, such as engineering and traceability. For the task
at hand, the deep learning approach shows more strength on a much bigger dataset and is,
thus, relevant for future large-scale industrial applications.

3.4. Enhancement of Defect Detection through Tracking and Tracing

With the help of the detection system, it is possible to detect defects inline and to
classify them directly. This allows for quality control of the electrode coating and drying
with direct assessment of the coating defects. Furthermore, a statement can be made
regarding the number and frequency of defects and their sizes that occur in an electrode
batch. On the basis of this data and the knowledge of the respective severity of the defect,
the quality of the batch and scrap can be defined, and a quality grading can be implemented.
However, since a decision on the definition of rejects is not meaningful based on the total
number of defects, it is necessary to assign the detected defects to the individual electrode
sections and trace them back to the electrode sheet level. At this point, the tracking and
tracing system is suitable for tracing the electrode defects down to the cell level [20,32].
The defect detection system was equipped with an inkjet printer and a data matrix code
(DMC) reader to provide more than just a statement regarding the number and frequency
of a particular defect per batch. With the help of the printer, DMCs are applied to the
side of the electrode at regular intervals. Due to the known offset among print position,
code reading, and defect detection, the detected defects are automatically assigned to the
respective codes. By that, the knowledge of which defects are found on a specific electrode
sheet, and where this defect can be found in the subsequent cell is not completely lost. As
shown in Figure 7, by linking the defect detection system to the tracking system (TS), it is
possible to define not only which defect number is to be found in which cell but also the
total defect area as the sum of the individual defects. This allows the influences of defects
on the electrochemical performance to be identified and described more easily and quickly
in future work. Areas with critical defects can be rejected or grading of the electrode sheets
can be performed.

Figure 7. Assignment of certain defect to the respective electrode ID.
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4. Conclusions

On the basis of experience with different electrode types and mixing, coating, and
drying devices, we have defined eight defect classes for the battery electrode production.
These eight classes are detected by the inline defect detection system on the basis of their
brightness value compared with the surrounding electrode surface. After the detection is
completed, different feature values are calculated for each defect image and used for auto-
mated classification through machine learning. We showed that approximately 800 defects
were taught to lay a basis for the algorithm with a reclassification accuracy by the algorithm
of 95%. The detection system automatically uses forty-four defect image features to classify
the detected electrode defects, including features such as aspect ratio, contrast, percent
fill, and many more. Except for only minor differences among the defect classes for single
features, the number of features used allows for a robust and reliable defect classification.
We discussed that the detection and classification of electrode defects in combination with
tracking and tracing lead to the possibility of reducing scrap because of a direct connection
of individual defects to single electrode sheets. In the future, we will investigate more
closely the effect of certain defects, their sizes, and their quantities on certain aspects of
the performance of lithium-ion battery cells, such as cycling stability, internal resistance,
impedance, and safety. Furthermore, the continuous detection of the defects on the elec-
trode, including data on the position in and orthogonal to the web direction, could be used
for tracking the electrode without code using fingerprint tracking. Inline defect detection is
a commonly used quality assurance technique in many production processes, such as those
for paper or glass. In this paper, we showed that by using the correct defect catalogue,
this system could also be used for the defect detection in electrode production either after
the drying step or after the calendering with industrial production speeds. However, the
defect detection after the calendering shows some challenges due to the electrode’s high
reflectivity—which also depends on the calendering pressure—and the ripply behavior of
the band afterward.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries9020111/s1, Figure S1. Exemplary defect pictures of all
defined classes.
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