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Abstract: The accurate estimation of the state of charge (SOC) plays a crucial role in ensuring the range
of electric vehicles (EVs) and the reliability of the EVs battery. However, due to the dynamic working
conditions in the implementation of EVs and the limitation of the onboard BMS computational force,
it is challenging to achieve a reliable, high-accuracy and real-time online battery SOC estimation
under diverse working scenarios. Therefore, this study proposes an end-cloud collaboration approach
of lithium-ion batteries online estimate SOC. On the cloud-side, a deep learning model constructed
based on CNN-LSTM is deployed, and on the end-side, the coulomb counting method and Kalman’s
filter are deployed. The estimation results at both sides are fused through the Kalman filtering
algorithm, realizing high-accuracy and real-time online estimation of SOC. The proposed approach is
evaluated with three dynamic driving profiles and the results demonstrate the proposed approach
has high accuracy under different temperatures and initial errors, where the root means square
error (RMSE) is lower than 1.5% and the maximum error is lower than 5%. Furthermore, this
method could achieve high-accuracy and real-time SOC online estimation under the cyber hierarchy
and interactional network (CHAIN) framework and can be extended to multi-state collaborative
online estimation.

Keywords: state of charge; convolutional neural network; long short-term memory; unscented
Kalman filter; end-cloud collaboration

1. Introduction

With growing concern over the environment and the greenhouse effect, EVs are
gradually becoming the focus of attention. Lithium-ion batteries are widely applied for
the power system of EVs due to their excellent performance, i.e., high energy density,
high voltage and long life [1–4]. Lithium-ion batteries are easily influenced by ambient
temperature, charge and discharge rate, aging and other factors under operations [5–7]. It
is essential to establish a reliable battery management system (BMS) to monitor and predict
the battery state with high-accuracy and real-time [8,9]. Among the states of batteries,
the battery state of charge represents the ratio of the remaining usable capacity of the
battery to the applicable current maximum capacity, which is one of the key states of
the battery. Accurate and real-time SOC information determines the range and ensure
the reliability of the battery operation by BMS [10]. However, the battery is a highly
complex electrochemical system with time-varying and non-linear characteristics because
of the complex electrochemical dynamics and multi-physical field coupling inside the
battery [11–13]. Therefore, it is still a significant task to accurately estimate SOC online
based on macroscopic signals.

Batteries 2023, 9, 114. https://doi.org/10.3390/batteries9020114 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9020114
https://doi.org/10.3390/batteries9020114
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-1159-4719
https://orcid.org/0000-0002-6746-2352
https://orcid.org/0000-0002-3687-1137
https://orcid.org/0000-0002-6705-4818
https://orcid.org/0000-0002-4111-7235
https://doi.org/10.3390/batteries9020114
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9020114?type=check_update&version=2


Batteries 2023, 9, 114 2 of 20

At present, the essential SOC estimation methods include: 1. the coulomb counting
method (CCM), 2. the open-circuit-voltage (OCV) method, 3. the model-based method and
4. the data-driven method.

The coulomb counting method integrates the measured current with time, while
monitoring the real-time SOC of the battery online based on the initial SOC. This method
is equipped with the ease of implementation, but the initial error will affect the accuracy
seriously. Additionally, such method is an open-loop method, where the cumulative error
influences the SOC error [14].

By establishing the corresponding relationship between the OCV and SOC, the OCV
method can map the SOC of the battery by obtaining the OCV [15,16]. However, the OCV-
SOC relationship will be influenced by temperature and degradation. If the relationship
is not updated in time, serious SOC estimation errors may result. Moreover, when the
SOC is in the middle range (20–80%), the OCV-SOC characteristic curve will present a flat
plateau, especially in lithium iron phosphate (LFP) batteries. At this time, the small error of
OCV will sharply increase the estimation error of SOC, which will cause the estimation
to be very sensitive. In addition, when measuring OCV, it is necessary to disconnect the
battery for a certain period of time (more than 2 h) to make it reach a stable state to ensure
accuracy. Therefore, this method is only applicable to specific application scenario such as
laboratories, and cannot achieve the requirements of onboard applications [17].

The model-based method is mainly implemented through three steps: battery mod-
elling, parameter identification and state estimation. At present, most of the model-based
methods used in practice are to establish an equivalent circuit model (ECM) and identify the
parameters, and then estimate the SOC through Kalman’s filter or other observers [18]. The
model-based method belongs to a closed-loop system, which can reduce the interference of
uncertainty through self-tuning. It has robustness to initial SOC offset and measurement
noise and has achieved high estimation accuracy under specific operating conditions. Plett
applied extended Kalman filters (EKF) and different battery models in BMS to estimate
the SOC for lithium polymer batteries [19–21]. Based on the cubature Kalman filter (CKF),
Peng et al. [22] achieved SOC estimation with high-accuracy and robustness by establishing
an equivalent circuit model and identifying the parameters using the Sequential Quadratic
Programming (SQP) method, which shows that CKF is more accurate than EKF in estimat-
ing the SOC of lithium batteries. Ling et al. [23] proposed an estimation method based on
the probability fusion of ACKF and AHCKF to further improve the estimation accuracy and
robustness of SOC. However, although the method based on the ECM model can achieve
better accuracy and robustness with relatively small calculation consumption, it is usually
difficult to establish an accurate model because of the changes in the internal resistance and
capacitance of the battery for different battery aging process and different temperatures in
practical applications, and the OCV-SOC look-up tables will also be affected by different
battery aging process and different temperatures, such error will increase if the update is
not timely.

The data-driven method is not constrained by the physical relationship, which is
easier to establish a high-efficient model. The non-linear relationship between SOC and
measurable signals such as current, voltage and temperature can be established by training
a substantial number of sample data. With appropriate training, higher estimation accuracy
can be achieved [24]. At the same time, the battery SOC estimation model established based
on the data-driven method has a strong generalization in different working environments
of the battery. Chaoui et al. [25] realized the estimation of battery SOC through a recurrent
neural network (RNN), but ordinary RNN cannot solve the long-term dependence problem.
Chemali et al. [26] used the Long short-term memory (LSTM) to achieve the estimation
of SOC with high accuracy, and the same model can be applied at different temperatures,
overcoming the problem that model parameters need to be updated due to changes in the
working conditions. One-dimensional convolution also has an excellent performance in
solving time series problems. Hannan et al. [27] realized high-accuracy SOC estimation by
using a one-dimensional depth full convolution network with a learning rate optimization
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algorithm. In general, the data-driven method still has problems such as large computation
consumption and limited accuracy. The data-driven method is significantly dependent on
the quality and quantity of the data. When the specific working conditions of a specific
battery are used as training data, because the training data cannot fully reflect the inherent
characteristics of the battery, large estimation errors may occur in different battery systems
and under the complex and dynamic working conditions of the battery. Meanwhile,
when the amount of data is large, the training of data-driven models requires a huge
computing cost.

Obviously, each individual method has its own drawbacks when using a single method
to estimate the battery SOC. Collaboration between various approaches is an effective
solution to obtain more accurate results. Tian et al. [28] extracted the open circuit voltage
(OCV), ohmic response and polarization voltage from the voltage and current sequence as
features and input them into the deep neural network (DNN) for battery SOC estimation.
Feng et al. [29] fused the simplified single particle model (SSPM) with the thermal model
to form a lumped model to estimate the battery SOC through the unscented Kalman filter
(UKF), and used the feedforward neural network to improve the performance of the lumped
model under an extreme working environment. Ragone et al. [30] combined a vehicle
model, an electrochemical degradation model, a battery thermal model and a machine
learning to estimate the SOC for the EVs. Although the method of model collaboration
can achieve high accuracy, the constructed model has a high degree of complexity, which
will increase calculation consumption and is unsuitable for vehicle applications. At the
same time, many collaboration models still have the problem of generalization under
different temperatures.

In summary, there are several main issues in the estimation of battery SOC: one is
that the generalization of the estimation of SOC is weak under various working conditions,
especially for temperature conditions, and the impact will become more critical with battery
degradation and inconsistency. It is essential to update the model parameters in a timely
manner to ensure accuracy under different temperatures, but in the data-driven method,
the temperature can be simply regarded as a feature and directly input into the model for
training and prediction, which greatly reduces the difficulty of the operation and effectively
solves the problem of SOC estimation under different temperatures. Another problem is the
contradiction between the constrained computing power of vehicle terminals in practical
applications and the requirements for accurate algorithms functional in real-time. The
high-accuracy results of most methods are usually obtained by building complex models.
However, in practical applications, excessive computing consumption may lead to slow
signal response time, which cannot guarantee the real-time performance of SOC estimation
due to the constraint computing power of the onboard BMS. Although some methods also
have high computing efficiency, these methods are all aimed at predicting battery cells and
cell only. In practical applications, the electric vehicles are equipped with battery packs,
which leads to the calculation consumption multiplied, where the problems mentioned
above still stand.

In order to deal with the above problems, this paper proposes an end-cloud collab-
oration approach to online estimate SOC. The deep learning model can directly input
the simple temperature as a feature into the network for training and prediction, which
solves the problem of generalization under different temperatures, and the end-cloud
collaborative working mode can share the calculation consumption, so as to solve the
contradiction between accuracy and real-time. The deep learning model with large calcu-
lation consumption is deployed on the cloud-side and the real-time collected measurable
signals are uploaded to the cloud for offline estimation. The data-driven model on the
cloud-side is built with the CNN-LSTM network as the core. This model can effectively
deal with the time series problem of SOC estimation in the battery, a non-linear system,
and can obtain satisfactory estimation accuracy under different temperatures. The state
function constructed by the coulomb counting method with less calculation consump-
tion is deployed on the end-side, and the online calculation is carried out through the
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real-time collected current. At the same time, the Kalman filtering algorithm is deployed
on the end-side to fuse the estimation results of the cloud-side and end-side, to achieve
high-accuracy and real-time SOC online estimation. The accuracy and robustness of the
proposed end-cloud collaboration approach were evaluated with three dynamic driving
conditions, including dynamic stress test (DST), US06 driving schedule and federal urban
driving schedule (FUDS) under different temperatures and different initial errors.

This paper is organized as follows:
Section 2 shows the theory of the models and algorithms deployed on the cloud-side

and end-side, as well as the structure of the whole end-cloud collaboration system. Section 3
describes the settings of software and hardware in the experiment and the evaluation index
of the experiment. Section 4 describes the estimation results and discussions of the proposed
method. Finally, Section 5 summarizes the main conclusions.

2. Methodology

The proposed end-cloud collaboration approach consists of three parts:
(1) Deep learning model on the cloud-side, which has high accuracy, poor real-time

performance and large computing consumption, and is suitable for cloud computing.
(2) The state function constructed by the coulomb counting method on the end-side,

whose accuracy is susceptible to the interference of initial value deviation, with poor accu-
racy and robustness, but the calculation cost is small, which is suitable for the arrangement
of the end-side for calculation.

(3) Fusion algorithm. Kalman’s filtering algorithm is used to combine the result of the
end-side with that of the cloud-side to obtain more accurate results.

2.1. Data-Driven Model on Cloud

The deep learning model on the cloud-side used in this paper is constructed with the
CNN-LSTM model as the base.

2.1.1. CNN-LSTM Introduction

CNN and LSTM are two commonly used networks in deep learning. CNN is mainly
composed of convolution layer and pooling layer, which can extract potential features from
sample data through the convolution kernel, and there is an activation function after the
convolution layer to introduce the nonlinear characteristics to the model [31]. CNN has the
characteristics of weight sharing and local connection, which can significantly reduce the
number of model parameters, speed up training and improve generalization performance.
One-dimensional CNN is mainly used in timeseries problems and the structure is shown
in Figure 1a. The one-dimensional convolution is calculated as:

xl
k = f

(
∑N

i=1 xl−1
i ∗ wl

ik + bl
k

)
(1)

where ∗ is the convolution operation, xl
k is the k−th convolution map of the layer l, f is

the activation function, N is the number of convolution maps, wl
ik is the weight of the

operation i of the convolution kernel k of layer l and bl
k is the offset of the convolution

kernel k corresponding to the layer l.
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LSTM is a variant of RNN, which adds input gates, output gates and forgetting gates
to the hidden layer, and adds cells for memory storage, which can process the time series
problem of long-term dependence [32]. The schematic of a unit is shown in Figure 1b. Each
unit of LSTM can be expressed as follows:

Firstly, the LSTM units receive the xj and hj−1 and the forget gate is used to control
which information to be forgotten in the cell state:

f j = σ
(

W f ·
[
hj−1, xj

]
+ b f

)
(2)

where sigmoid is a nonlinear activation function, and will limit the value to the range of 0 to
1, which determines the proportion of forgotten information and update the unit status ‘cj.

Secondly, the input gate processes the input data of the current sequence position
and determines which information to be updated to update the cell state. The input gate
includes two parts: one uses the sigmoid activation function to determine which new
information in the input is added to the cell state, and after determining the reserved input
new information, the tanh activation function is used to generate new candidate vectors,
and then input the information to be reserved into the cell state. The input gate can be
described as follows:

ij = σ
(
Wi ·

[
hj−1, xj

]
+ bi

)
(3)

gj = tanh
(
Wg
[
hj−1, xj

]
+ bj

)
(4)

Next, after determining the output of the forgetting gate and the input gate, the unit
state update from cj−1 to cj:

cj = cj−1 ∗ f j + ij ∗ gj (5)

where cj−1 ∗ f j is the information that to be retained ij ∗ gj is the new information to add.
The sum of the two is the cell state of this sequence.

Finally, using the sigmoid activation function to determine which part of the content
needs to be output, then use the tanh activation function to process the cell state, and then
multiply the two parts to obtain the final output:

oj = σ
(
Wo ·

[
hj−1, xj

]
+ bo

)
(6)

hj = oj ∗ tanh
(
cj
)

(7)

where hj is the new hidden state, and the cj is the unit state.
SOC estimation is a typical time series estimation problem but it is aimed at highly

complex dynamic conditions and requires high real-time, which causes the difficulty to
further extract features from the data. CNN can extract the potential features from sample
data, while LSTM can capture the long-term dependence in time series problems, which
has great advantages in processing time series data. Therefore, we use a hybrid model that
adopts LSTM as the backend of CNN, which is called CNN-LSTM, in which CNN is used
to extract features from data and LSTM is used to learn the time dependency relationship.

2.1.2. Structure of Deep Learning Model

The model is constructed with the input layer, Conv1d layer, Maxpooling layer, LSTM
layer and full connection layer. Since we are dealing with one-dimensional time series
problems, one-dimensional convolution is used for the convolution layer. The architecture
of the CNN-LSTM is shown in Figure 2. The current, voltage and temperature are used as
the input. Since the input structure required by 1d-CNN-LSTM is a 3d-tensor, the input
data is built into a time series format. First, build a time series according to a certain time
series length N. The input and the output structures are “many to one”. Considering that
the transmission delay in practical applications will affect the real-time performance, this
work focuses on the SOC estimation of the future time step, that is, extrapolating the SOC
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of the future time based on historical data. The input and output of the CNN-LSTM can be
described as follows:

xk =


Ik−N+1 Vk−N+1 Tk−N+1
Ik−N+2 Vk−N+2 Tk−N+2
· · · · · · · · ·
Ik Vk Tk

 (8)

yk = SOCk+l (9)

where I, V and T are the current, voltage and temperature, respectively. SOCk+l is the SOC
at time k + l, where l is the extrapolation step size and is selected as 1 in this paper. xk is
the input matrix of CNN-LSTM and yk is the output of CNN-LSTM at time k.
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Generally, a longer time series length will improve the accuracy of the estimation but
will reduce the efficiency of the model. For the sake of real-time, it is not appropriate to
choose too large a time series. After comprehensive consideration of model accuracy and
model efficiency and debugging, the time series length is selected as 300. The constructed
time series is constructed into a batch according to the batch size subsequently. With the
increase of the batch size, the training speed will be accelerated, but model will converge to
the local optimal point easily. After comprehensive consideration of the model efficiency
and prediction accuracy, the batch size is selected as 2560. Then, the input data is processed
through CNN; with the operation of convolution and pooling, CNN extracts features from
input and reduces the feature dimension. The convolution layer extracts potential features
from the original data through the sliding of the filter in the time dimension. The pooling
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layer uses maxpooling, and the processing of the pooling layer can further reduce the
feature size to reduce the amount of computation. After that, the LSTM receives the data
processed by CNN and the LSTM network adjust the parameters in each gate through
training so that it can learn the time-dependence relationship between data from features
extracted by the CNN, thus effectively solving the time series prediction problems. Finally,
the predicted value is output by the full connection layer, and the sigmoid activation
function is added to the full connection layer. The detailed training and testing process can
be found in Figure S1 and Table S1.

2.2. CCM in End

The state function constructed by CCM is deployed at the end-side. The change in
charge is obtained through integrating the current with time, the coulomb counting method
is calculated as:

SOC = SOC0 −
1

CN

∫ t

0
η Idτ (10)

where CN is the rated capacity of the battery, I is the current and η is the charge and
discharge efficiency.

When the CCM is carried in vehicle BMS, it needs to be discretized first. In addition,
the integration of the cloud-side model and the end-side also needs the discrete form, which
can be described as follows:

SOCk = SOCK−1 −
IK−1 × ∆t

CN
(11)

where CN is the time interval between time k and time k− 1, IK−1 is the current at time
k− 1, SOCk is the SOC at time k obtained by the CCM and SOCK−1 is the SOC at time k− 1
obtained through the CCM. This method has a clear physical basis and simple calculation,
and consumes little computational resources. However, as an open-loop method, it is easy
to encounter the influence of cumulative error, so it is necessary to use certain methods to
correct it in practical application.

2.3. End-Cloud Collaboration

Kalman’s filter algorithm is deployed on the end-side for fusion. The KF algorithm
estimates the system state based on the linear system state function through the input and
output observation data of the system, but only linear systems can adopt the KF algorithm.
The UKF algorithm is an improvement on the KF algorithm, which adopts the Kalman
linear filtering framework and approximates the probability density of nonlinear functions
based on the Bayesian transform and UT transform. The UKF algorithm has high accuracy
in nonlinear problems, and can also be applied to linear problems. Although the state
function and measurement function constructed in the application of this paper are all linear
functions, considering that the follow-up work will be extended to the joint estimation of
multi-state quantities, in order to deal with the possible nonlinear problems, this paper
will adopt the KF and UKF algorithms, respectively, as collaborative algorithms, and make
a comparison between these two algorithms, to explore the impact of the approximate
transformation of the UKF on the accuracy.

2.3.1. KF Algorithm

The Kalman filter is a filtering algorithm based on optimal estimation [33]. By com-
prehensively considering estimated values and measured values, it fuses state variables
and observation variables to get a result close to real value, which will as state variables
of the next process, and then fuses with the observation variables of the next process, so
iteratively. The KF algorithm can be described as follows:

Xk = AXk−1 + Buk + wk (12)
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Zk = HXk + vk (13)

Expression (12) is a state function, where Xk represents the current state, Xk−1 repre-
sents the previous state, uk represents the input, wk represents the process noise, A and B
represent the state transition matrix. Expression (13) is a measurement function, where
Zk represents measured variables, vk represents measurement noise and H represents the
transfer parameters matrix of the measured variables. The working process of Kalman
filter is as follows:

time update:
x̂k
− = Ax̂k + Buk−1 (14)

Pk
− = APk−1 AT + Q (15)

measurement update:

Kk = Pk
−HT

(
HPk

−HT + R
)−1

(16)

x̂k = x̂k
− + Kk

(
zk − Hx̂k

−) (17)

Pk = (I − Kk H)P−k (18)

where x̂k
− is the prior estimate of the state, x̂k is the posteriori optimal estimate, Pk

− is the
prior estimates of covariance, Pk is the posterior optimal estimation of the covariance, Kk is
the Kalman gain and I is a complete identity matrix.

2.3.2. UKF Algorithm

The UKF is a method that enables nonlinear problems to be applied to the KF system
only applicable to linear problems through UT transformation [34]. The UKF algorithm
can be described as follows:

xk = Axk−1 + Buk + ωk (19)

yk = Cxk−1 + Duk + vk (20)

where, ωk is the system noise, and vk is the measurement noise.
The process of UKF algorithm is as follows:
First determine the initial value of the status value x0 and the initial covariance of the

status error P0, and then calculate the sampling points:

x0
k = x̂k (21)

xi
k = x̂k +

(√
(L + λ)Pk−1

)
(i)

, i = 1, 2 . . . L (22)

xi
k = x̂k −

(√
(L + λ)Pk−1

)
(i)

, i = L + 1, L + 2, . . . 2L (23)

The weight value is calculated as follows:

λ = α2(L + ki)− L (24)

W0
m =

λ

L + λ
, Wi

m =
1

2(L + λ)
, i = 1, 2 . . . 2L (25)

W0
c =

λ

L + λ
+ 1− α2 + β, Wi

c =
1

2(L + λ)
, i = 1, 2 . . . . . . . 2L (26)

where λ is the scale factor between the mean of random variable x and the sigma sampling
points,

(√
(L + λ)Pk−1

)
(i)

is the row i or column i of the square root matrix obtained by
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Cholesky decomposition of matrix (L + λ)Pk−1, α and ki are the scale factor, and β is a
high-order characteristic reflecting the state history information.

Then update the prior status value xk+1 and system variance prediction value Pxx:

xk+1 = ∑2L
i=0 Wi

mxi
k (27)

Pxx =
2L

∑
i=0

(
Wi

c

(
xi

k − xk+1

)(
xi

k − xk+1

)T
)
+ Qk (28)

where Qk is the system noise covariance matrix. Next, update the observations ŷk+1 and
predicted value of observation variance Pyy.

ŷk+1 =
2L

∑
i=0

Wi
myi

k (29)

Pyy =
2L

∑
i=0

(
Wi

c

(
yi

k − ŷk+1

)(
yi

k − ŷk+1

)T
)
+ Rk (30)

Finally, update the covariance Pxy, the posterior state value x̂k+1 and the posterior
state error covariance Pk.

Pxy =
2L

∑
i=0

Wi
c

(
xi

k − xk+1

)(
yi

k − ŷk+1

)T
(31)

Kk =
Pxy

Pyy
(32)

x̂k+1 = xk+1 + Kk(yk+1 − ŷk+1) (33)

Pk = Pxx − KkPT
xy (34)

2.3.3. Collaboration Process

For the SOC estimation, the state vector is x = SOC, which follows the coulomb
counting method to construct the state function and deploy on the end-side. The measure-
ment vector is the SOC outputs by the CNN-LSTM network. The CNN-LSTM network
deployed on the cloud-side is applied as the measurement function. The Kalman’s filter is
deployed on the end-side, which receives the results from both sides of the end and cloud
and performs result fusion. Therefore, a state space model is established as follows:

SOCk = SOCk−1 −
Ik−1 × ∆t

Cn
+ ω (35)

LSTMk = SOCk + v (36)

where Ik is the current at time k, Cn is the nominal capacity, ω ∼ N(0, Q) is the Gaussian
state noise and v ∼ N(0, R) is the Gaussian measurement noise.

The framework of the proposed end-cloud collaboration SOC estimation system is
represented in Figure 3; the whole system is constructed based on the CHAIN frame-
work [35,36]. On the cloud-side, the deep learning model estimates SOC, and the estimated
results are regarded as the measured value. On the end-side, the state estimation is per-
formed and the calculation results are regarded as the observed values, and then the
collaborative algorithm is used to combine the calculation results of the end-side and the
cloud-side, and update the result at each time step to obtain more accurate results. Specifi-
cally, in the training process, the deep learning model on the cloud-side uses a substantial
amount of offline data from public datasets, enterprise databases, online data storage and
other aspects to complete the training. During the estimation process, the voltage, current
and temperature collected from the end-side are uploaded to the cloud-side. To estimate
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the battery SOC, and the cloud-side offline high-accuracy estimation results are obtained
subsequently, the deep learning model on the cloud-side can estimate the SOC of the battery
in the form of extrapolated estimation of historical data and the result will be used as the
measured values of the Kalman’s filter, that is, the zk in Expression (17) and the yk+1 in
Expression (33) to update the end results. The coulomb counting method in end-side uses
the current collected from the end-side to calculate the SOC, and the result will be used as
the observed value of the Kalman’s filter, that is, the x̂k

− in Expression (14) and the x̂k in
Expression (24). The Kalman’s filter is deployed on the end-side, and the real-time estima-
tion results from the end-side and the estimation results from the cloud-side are received at
the same time. Because the cloud-side is estimated by extrapolation, the cloud-side estima-
tion results of the current time step have been obtained and transmitted in the previous
time, so it can ensure that the transmission delay will not affect the real-time performance.
The Kalman’s filter fuses the results from both sides to obtain the end-cloud collaborative
high-accuracy and real-time estimation result, that is, the x̂k in Expression (17) and the x̂k+1
in Expression (33), which is the final output of the entire end-cloud collaboration system. In
practical applications, the whole end-cloud collaboration process can be realized through a
cloud-based BMS [37].
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Figure 3. Framework of the proposed end-cloud collaboration SOC estimation system based
on CHAIN.

3. Experimental Setup
3.1. Dataset Description

Three dynamic driving profiles are employed to evaluate the proposed method, in-
cluding the DST, US06 and FUDS. The specific details of each profile can be found in the
USABC manuals [38]. The experimental data comes from a public dataset from the data
repository of the Center for Advanced Life Cycle Engineering (CALCE) at the University
of Maryland [39]. In the experiment, the cylindrical 18650 LiFePO4 batteries were tested
under different temperatures of 0 ◦C, 10 ◦C, 25 ◦C, 30 ◦C, 40 ◦C and 50 ◦C, the specifica-
tions of the batteries are shown in Table 1, and the voltage, current, temperature and SOC
profiles under 25 ◦C are shown in Figure 4. More details about the dataset are shown in
Figures S2–S4. Obviously, there are significant differences between these three driving
conditions. To verify the generalization performance of the proposed method, the training
set is constructed using the data of DST profile, and the test set is constructed using the data
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of US06 and FUDS profiles. Before training and testing, the datasets are standardized to
optimize the training process and reduce the difference in the order of magnitude between
the data. The data have been standardized as follows:

xsta =
x− x

xσ
(37)

where x is the original value, x is the mean value and xσ is the standard deviation value.

Table 1. Specifications of the batteries.

Parameters Specifications

Type A123 18650
Cathode LiFePO4
Anode Graphite

Nominal capacity 1.1 Ah
Charge cut-off voltage 3.6 V

Discharge cut-off voltage 2.0 V
End-of-charge current 0.01 C
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3.2. Simulation Setup

The Bayesian optimization and the RMSprop algorithm were used to improve the
training efficiency of the model. The RMSprop algorithm is an effective and practical deep
learning model optimization algorithm which has been proven in practice, and it is one of
the most advanced and frequently used optimization algorithms can efficiently improve
the convergence speed and accuracy.
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The Bayesian optimization method is employed for hyper-parameter optimization [40].
The hyper-parameters are parameters preset before training, rather than obtained by train-
ing. The performance of the deep learning model is highly dependent on the hyper-
parameters. However, the values of the hyper-parameters are usually unable to be applied
for batteries with different material systems and different driving conditions. The method
of manually setting hyper-parameters is highly dependent on parameter adjustment expe-
rience and requires a lot of debugging, which will greatly reduce the training efficiency,
especially in applications with large data volumes and complex model structures. The
Bayesian optimization methods could find the optimal hyper-parameters automatically
to obtain the best result of the deep learning model. In this paper, the size and number
of filters in convolution layers, the learning rate and the number of units for the LSTM
are optimized through this method. The calculation of the Bayesian optimization method
could be represented as follows:

d∗ = argminJ(d), D ∈ (a, b), (d ∈ D) (38)

where d is the hyper-parameter value, d∗ is the optimal value.
In this paper, the whole network has been built based on TensorFlow, and the train-

ing process is accelerated through the compute unified device architecture (CUDA). All
experiments are conducted on a server with Intel core i7 CPU and NVIDIA GTX 3090 GPU.

3.3. Evaluation Index

The proposed end-cloud collaboration approach is evaluated with the mean absolute
error (MAE) and root mean square error (RMSE) criteria as the evaluation index:

MAE =
1
N ∑N

k=1|yk − y∗k | (39)

RMSE =

√√√√ 1
N

N

∑
k=1

(
yk − y∗k

)2 (40)

where yk represents the real SOC and y∗k the estimated SOC.

4. Result and Discussion

In this section, the accuracy and generalization of the CNN-LSTM network and the
proposed end-cloud collaboration approach are evaluated firstly by estimating the SOC at
different temperatures and different driving profiles. Secondly, the robustness of the pro-
posed method is evaluated by manually setting different initial errors to estimate SOC under
different temperatures. Meanwhile, the estimation results of KF and UKF as collaborative
algorithms are compared in all experiments about the end-cloud collaboration approach.

4.1. Estimation Result of CNN-LSTM Network

In this subsection, the accuracy and generalization of the deep learning model on
the cloud-side are evaluated at 0 ◦C, 25 ◦C and 40 ◦C, respectively. Figure 5a–f shows the
estimation results and estimation errors of the CNN-LSTM network under US06 and FUDS
profiles, respectively, while Figure 5g,h show all estimation errors in the form of histograms.
Each subgraph contains one dotted line and two solid lines. The black solid line illustrates
the real SOC, the green solid line illustrates the estimation results of the CNN-LSTM
network and the dotted line illustrates the estimation error of the CNN-LSTM network. The
MAE and RMSE of the estimation results are about 2% and 3%, respectively. In particular, at
25 ◦C, the MAE and RMSE of the FUDS profile are 1.44% and 1.94%, respectively. However,
the estimation results of the CNN-LSTM network fluctuate significantly, with a maximum
estimation error is about 10%, and all appear in the middle regions, because the voltage
characteristic curve having a plateau section in the middle region of SOC during battery
discharge and cause the voltage change slope is so small that enlarge the deviation of the
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entire estimation results easily. Meanwhile, although the CNN-LSTM network has a strong
generalization of the battery SOC estimation at different temperatures, the temperature will
affect the estimation results. The error and fluctuation of the estimation results will increase
at 0 ◦C and 40 ◦C. The maximum error is 8.57% at 25 ◦C under the US06 profile but will
increase to 10% and 10.9%, respectively at 0 ◦C and 40 ◦C. At 25 ◦C under the FUDS profile,
the maximum error is 7.8%, when the temperature is 0 ◦C and 40 ◦C, it will increase to
16.5% and 15.4%, respectively. The estimation error will also have a difference of about 1.5%.
This is because the LiFeO4 battery has a section of platform in the voltage characteristic
curve and it will become flatter with the increase in temperature. Therefore, when the
voltage measurement errors are the same, the estimation error of SOC will increase at high
temperatures, while at low temperatures, with the increase in temperature, the internal
resistance will increase rapidly and as a result, the polarization characteristic time at low
temperature is very short, and the polarization voltage changes rapidly with temperature,
increasing the estimation error.
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Figure 5. SOC estimation results with CNN-LSTM under different temperatures: (a–c) donate the
estimation results for US06 driving cycle under 0 ◦C, 25 ◦C and 40 ◦C, respectively; (d–f) donate the
estimation results for FUDS driving cycle under 0 ◦C, 25 ◦C and 40 ◦C, respectively; (g,h) donate the
RMSE and MAE analysis for US06 driving cycle and FUDS driving cycle, respectively.

4.2. Estimation Result of End-Cloud Collaboration Approach under Different Temperatures

In this subsection, the estimation accuracy and generalization of the proposed end-
cloud collaboration approach are evaluated at 0 ◦C, 25 ◦C and 40 ◦C, respectively. Figure 6a–f
shows the estimation results and estimation errors of the end-cloud collaboration approach
under US06 and FUDS profiles respectively, while Figure 6g,h show all estimation errors in
the form of histograms. Each subgraph contains two dotted lines and three solid lines. The
black solid line represents the real SOC, the blue solid line represents the estimation result
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collaborated by KF, and the red solid line represents the estimation result collaborated by
UKF. The dotted line represents the estimation error, and different colours correspond to
the above solid lines one by one. The MAE and RMSE are all about 1%. In particular, at
the FUDS profile under 40 ◦C, the MAE and RMSE are 0.58% and 0.77%, respectively. The
accuracy of adopting KF and UKF as collaborative algorithms are almost the same, and
the difference between MAE and RMSE is only about 0.01%. In most cases, the estimation
accuracy of UKF is slightly lower than that of KF, but the difference is very small, which
does not affect its application in practical applications. The difference between these
two methods is little for the application is linear, but the approximate transformation will
slightly reduce the accuracy when using UKF in linear problems. Table 2 summarizes the
estimation error of the end-cloud collaboration approach and the CNN-LSTM network. It
can be seen that after the integration of the end-cloud collaboration system, the MAE and
RMSE are reduced by about 1% and 2%, respectively compared with those of the single
data-driven model, and the RMSE is reduced by 2.73% under the FUDS profile, particularly
at 40 ◦C. Meanwhile, the maximum error of the end-cloud collaboration system has also
been greatly reduced, and the maximum error is within 5%, which is more stable than the
data-driven model. Furthermore, the estimation results of the single data-driven model will
be affected for temperature, while the end-cloud collaboration approach is more stable at
different temperatures, and the estimation error at room temperature is only 0.2% different
from that at 0 ◦C and 40 ◦C. It can be seen that the end-cloud collaboration approach
proposed in this work has high accuracy, and strong generalization and stability under
different temperatures and driving cycles.
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Table 2. RMSEs and MAEs of SOC estimation results with CNN-LSTM and end-cloud collaboration
system under different temperatures.

Driving
Cycle Method Evaluation

Index
Estimation Error (%)

0 ◦C 25 ◦C 40 ◦C

US06

CNN-LSTM
MAE 2.57 1.88 2.41
RMSE 3.24 2.38 2.98

Collaborated by KF MAE 0.82 0.84 1.20
RMSE 0.98 1.24 1.50

Collaborated by UKF MAE 0.82 0.84 1.20
RMSE 0.98 1.24 1.50

FUDS

CNN-LSTM
MAE 2.64 1.44 2.71
RMSE 3.42 1.94 3.49

Collaborated by KF MAE 0.84 0.59 0.58
RMSE 1.09 0.89 0.77

Collaborated by UKF MAE 0.86 0.86 0.59
RMSE 1.10 0.89 0.78

4.3. Estimation Result of End-Cloud Collaboration Approach under Different Initial SOC Errors

In practical applications, the challenging point in estimating the battery SOC is about
the SOC estimation with the consideration of varying model parameters, which change
with the temperature and aging state of the battery. On the end-side, the state function
is built by the CCM, whose accuracy is highly dependent on the initial error, which will
change at different temperatures and different aging process. On the cloud-side, the deep
learning model can directly input the temperature as a feature into the network for training
and prediction. Meanwhile, training data with different data distributions can be used to
train battery SOC estimation models under different aging states to deal with the impact
of different aging process. Thus, the estimated results of the model on the cloud-side can
correct the influence of varying working environment. Therefore, to verify the ability of the
proposed end-cloud collaboration approach to resist initial value dependence and converge,
in this subsection, taking the FUDS profile as an example, SOC is estimated by manually
setting the initial value error at different temperatures. Figures 7a–c and 8a–c shows the
estimation results and estimation errors of the end-cloud collaboration approach under
the FUDS profile when the initial error is 20% and 40% of the true initial SOC, respectively.
Figures 7d and 8d show all estimation errors in the form of histograms. The lines and
colours in each subgraph represent the same content as described in Section 4.2. Specific
error values are summarized in Table 3.

Observe the overall deviation. When the initial SOC is 80% of the real initial SOC, the
estimation results of the end-cloud collaboration system can still guarantee high accuracy.
Compared with the case without initial value error, MAE and RMSE only increased by
about 0.02% and 0.1%, respectively. Under the harsh case with the initial SOC is 60% of the
real initial SOC, MAE and RMSE are only increased by about 0.04% and 0.3%, respectively.
In particular, under the US06 profile at 40 ◦C, when the initial SOC was 0.8 and 0.6 of the
real initial SOC, RMSE increased by only 0.05% and 0.16%, respectively.

Meanwhile, observing the initial error correction, it can be seen that under different
initial errors, the proposed end-cloud collaboration approach can quickly complete the
initial error correction, so that the estimation results can quickly converge to the level under
true condition. When the initial SOC is 80% of the real initial SOC, the estimation result
can converge to the accuracy equivalent to that under the condition of accurate initial SOC
within 30 s, and the error can be converged within the maximum error of the condition of
accurate initial SOC about 10 s. When the initial SOC is 60% of the real initial SOC, it can
converge to the same accuracy as the condition of accurate initial SOC within 50 s, and the
error can converge within the maximum error under the condition of accurate initial SOC
about 20 s. The convergence speed of KF and UKF is almost the same.
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all estimation results.
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Table 3. RMSEs and MAEs of SOC estimation results with end-cloud collaboration system under
different temperatures with incorrect initial value of 80% and 60%.

Initial Value Method Evaluation
Index

Estimation Error (%)
0 ◦C 25 ◦C 40 ◦C

80%
Collaborated by KF MAE 0.87 0.61 0.60

RMSE 1.17 0.99 0.88

Collaborated by UKF MAE 0.88 0.61 0.61
RMSE 1.18 0.99 0.87

60%
Collaborated by KF MAE 0.89 0.63 0.62

RMSE 1.31 1.15 1.03

Collaborated by UKF MAE 0.90 0.63 0.63
RMSE 1.32 1.15 1.04

In general, the proposed end-cloud collaboration approach can quickly complete the
initial value error correction, thus avoiding the initial value dependence. Under different
initial SOC conditions and different temperatures, it can achieve satisfactory accuracy,
proving the robustness and stability of our method.

5. Conclusions

In this paper, the end-cloud collaboration approach is proposed to estimate the SOC
for lithium-ion batteries online. The data-driven model is deployed on the cloud-side, and
the coulomb counting method and Kalman’s filter are deployed on the end-side. The data-
driven model is built with the CNN-LSTM network as the core. The potential features in
the original data are extracted through CNN, and the time series features are captured from
the information extracted from the CNN network through LSTM subsequently. During the
experiment, the Bayesian optimization algorithm is used for the automatic optimization of
hyperparameters, and the training process is completed through a substantial number of
data provided by public data sets or databases offline. The voltage, current and temperature
collected from end-side and uploaded to cloud, where such data is used for estimation.
The state function constructed by the CCM is deployed at the end-side and is calculated
online through the current monitored in real-time. The estimation results of data-driven
model are regarded as measured values, and calculation results of the coulomb counting
method are regarded as observed values. The Kalman’s filter simultaneously receives and
fuses the calculation results from both the end side and cloud side, thus obtaining the
final high-accuracy real-time output of the entire end-cloud collaboration system. Finally,
the proposed end-cloud collaboration approach is evaluated under different temperatures
and different initial errors with three dynamic driving profiles: DST, US06 and FUDS. The
RMSE error is controlled less than 1.5%, and the maximum error is less than 5%, which
indicates that the proposed end-cloud collaboration approach has high accuracy and strong
robustness. By deploying a data-driven model on the cloud-side, deploying the coulomb
counting method and Kalman’s filter on the end-side, and fusing the calculation results
of the end-side and the cloud-side through Kalman filtering algorithm to obtain high-
accuracy estimation results, the amount of calculation is transferred through end-cloud
collaboration, thus realizing high-accuracy, real-time online estimation of battery SOC.
The data-driven model on cloud-side is constructed based on the CNN-LSTM network,
the potential features in the original data are extracted through CNN, and the long-term
dependence on the time series is captured from the feature information extracted from
CNN through LSTM subsequently and iterative training is conducted for many times, thus
conducting effective dynamic modelling. In the dynamic working condition, the features
contained in the measurable signal and the long-term dependence relationship with SOC
can be well extracted. This approach has strong generalization for it is based on the data-
driven and CCM, which eliminates the necessity to adjust model parameters promptly
and consult tables to build appropriate OCV-SOC relationships at different temperatures.
Meanwhile, this method has strong robustness which can automatically correct the initial
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value error to avoid initial value dependence and achieve satisfactory accuracy under
different initial SOC conditions. It can complete the estimation task well under a variety
of working conditions and initial errors and can be extended to batteries with different
materials. This paper optimizes the estimation results and ensures real-time performance
by arranging the models on the end-side and cloud-side respectively in the manner of
end-cloud collaboration. Under the CHAIN framework, a high-accuracy and real-time
SOC online estimation can be achieved through the proposed approach and this method
can be extended to multi-state collaborative online estimation, making contributions to
the development of the next generation of cloud-based BMS and end-cloud collaborative
management system. In the future work, the impact of battery aging on SOC estimation will
be considered through SOH and SOC collaborative estimation, and the proposed method
will be further verified and optimized through real vehicle data verification and embedded
development and can be expanded to application scenarios such as fault diagnosis and
energy management.
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and different temperatures; Figure S4: Correlation analysis for the variable values with SOC.
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