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Abstract: The accurate estimation of the battery state of health (SOH) is crucial for the dependability
and safety of battery management systems (BMS). The generality of existing SOH estimation methods
is limited as they tend to primarily consider information from single-source features. Therefore,
a novel method for integrating multi-feature collaborative analysis with deep learning-based ap-
proaches is proposed in this research. First, several battery degradation features are obtained through
differential thermal voltammetry (DTV) analysis, singular value decomposition (SVD), incremental
capacity analysis (ICA), and terminal voltage characteristic (TVC) analysis. The features highly
related to SOH are selected as inputs for the deep learning model based on the results of a Pearson
correlation analysis. The SOH estimation is achieved by developing a deep learning framework cored
by long short-term memory (LSTM) neural network (NN), which integrates multi-source features as
an input. A suggested method is validated using NASA and Oxford Battery Degradation datasets.
The results demonstrate that the presented model provides great SOH estimation accuracy and
generality, where the maximum root mean square error (RMSE) is less than 1%. Based on a cloud
computing platform, the proposed method can be applied to provide a real-time prediction of battery
health, with the potential to enhance battery full lifespan management.

Keywords: lithium-ion batteries; state of health; multi-feature collaborative analysis; long short-term
memory; CHAIN

1. Introduction

Lithium-ion batteries are deployed in a multitude of applications, including portable
electronics, electric vehicles (EVs), and energy storage devices [1–3]. As the performance of
LIBs declines nonlinearly, it becomes a system’s safety risk and limits the usage of electrical
devices [4–7]. It also restricts the continuous use of LIBs as a secondary energy storage
medium [8–10]. Therefore, the precise prediction of the state of health (SOH) is essential
for EVs and sustainable energy application developments.

SOH is one of the metrics that reflects battery health in terms of available capac-
ity. Studies have shown that battery degradation is a sophisticated physicochemical
process [11–13]. The process is simultaneously influenced by internal and external el-
ements of the battery [14]. Due to the complex operating conditions, the accumulation
of internal side reaction products leads to shifts in electrochemical equilibrium, which
makes the battery degradation process highly non-linear [15]. Due to the requirements
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of non-destructive detection, it is challenging to obtain SOH by direct measurement and
experimental approaches. These methods need intricately constructed experiments and
voluminous data [16,17]. Moreover, direct measurement and experimental approaches are
frequently difficult to converge quickly and prone to signal distortions [18,19]. These issues
render the above methods unsuitable for complicated, dynamic, real-time operations and
practical applications.

Diverse methods have been investigated to provide accurate SOH estimation, includ-
ing model-based methods and data-driven methods. The model-based method can be
generally categorized into the equivalent circuit model (ECM) [20–22] and the electro-
chemical model [23–25]. Electrochemical models are more appropriate than ECM models
for estimating SOH. Electrochemical models are developed to simulate the degradation
of a battery by incorporating mathematical descriptions of the underlying physical and
chemical processes that occur within the battery during operation. Capacity loss is esti-
mated by simulating the recyclable lithium-ion loss and the functional material loss of
electrodes throughout cycles. Jin et al. [26] derived a reduced-order degradation model for
electrode materials based on an effective physical loss mechanism and obtained the battery
capacity. Li et al. [27] estimated the battery SOH by calculating the loss of active lithium-
ions across aging cycles and incorporating SEI growth corrections into a single particle
model. The model-based methods are equipped with the advantage of high interpretability.
However, the significant computational cost limits the adoption of these approaches on
mobile devices with limited real-time computing power. In addition, the lack of detail
caused by model simplification leads to a distinct disparity between the estimated and true
values. Meanwhile, increasing model complexity to improve the estimation performance
leads to a discernible declining marginal utility. Therefore, deploying the model-based
model on the cloud with sufficient computing resources, acquiring the SOH with actual
measurement data, and filtering methods on the mobile side have garnered interest [28,29].
Although the application of these approaches achieves a balance between computing ex-
pense and estimating accuracy, their efficacy is still constrained by the electrochemical
model. As a result, it is incompetent to complex and dynamic working conditions by using
electrochemical models.

Recent developments in the machine learning field have provided a promising solution
to SOH estimation. Data-driven methods are adaptable to dynamic operating conditions
since they are not restricted by intricate physical specifics. Many studies have utilized
machine learning approaches to achieve SOH estimation based on degradation features.
Richardson et al. [30] designed a Gaussian process regression method to calculate SOH.
Hu et al. [31] utilized k-nearest neighbor regression to capture capacity dependence based
on five features. As a crucial component of data-driven methodologies, deep learning
techniques are being used to estimate SOH. Khumprom et al. [32] used a Deep Neural
Networks (DNN) approach to predict the SOH and the RUL of LIBs, revealing the excellence
of deep learning methods. Li et al. [33] proposed a variant long short-term memory (LSTM)
neural network (NN) to enhance the model performance of battery SOH prediction. Hong
et al. [34] applied a battery degradation model using LSTM NN for SOH estimation on
actual EVs. The above data-driven methods can achieve accuracy in estimating SOH.
However, the use of input data that lacks physical relevance can impede the interpretability
of these models and restrict their applicability in certain scenarios. As a result, it becomes
challenging to comprehend the underlying physical processes that lead to the degradation
of the battery.

The effectiveness of data-driven methods is highly dependent on the supplied data.
Obtaining features highly related to the degradation process is decisive for the effectiveness
of a data-driven model. The incremental capacity analysis (ICA) is one of the critical degra-
dation feature analysis methods. Lin et al. [35] proposed a method for predicting the SOH
of a battery by dividing the IC curve into voltage segments and using a back-propagation
neural network for each segment to achieve high-precision online SOH estimation. In addi-
tion, Zhang et al. [36] and Li et al. [37] also employed IC analysis for SOH estimation. All
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these works achieved excellent estimation results. However, the IC analysis only contains
information on the current and voltage, not temperature. It can only partially capture the
relationship between the external signal and internal activities since the internal phase
change of the battery is expressed as heat [38]. Therefore, mining temperature information
to connect the microscopic degradation process and the signal change has become one of
the focuses. Battery degradation can be characterized microscopically through the type
and intensity of internal phase change. Macroscopically, external signal characteristics
can be used to measure the phase change. The differential thermal voltammetry (DTV)
method is proposed to connect the internal phase change and the external signal charac-
teristics [39–41]. By incorporating the temperature and voltage characteristics through the
DTV method, non-destructive tracking of battery degradation can be realized.

However, data-driven algorithms with single-source information are susceptible to
local optima and noise sensitivity, resulting in an accuracy reduction. To eliminate the limi-
tations of single-source information, Dai et al. [42] extracted multiple degradation features
based on IC and voltage characteristic analysis. They adopted a neural network with a prior
knowledge-based optimization strategy to realize SOH prediction. Patil et al. [43] applied a
multi-level support vector machine to forecast the battery SOH after obtaining numerous
derived features from voltage and temperature profiles. Wang et al. [44] employed DTV
analysis and Gaussian Process Regression (GPR), which effectively extracted features that
had a strong correlation with the SOH of LiCoO2 batteries by combining the temperature
and voltage information of the batteries. The above works achieved excellent accuracy
in SOH estimation. The integration of all relevant data sources, including temperature,
current, and voltage, is crucial in the analysis of battery degradation. A comprehensive
examination of these factors can facilitate a better understanding of the degradation mech-
anism. In addition, deep learning methods have high robustness to noise and practical
applications due to their ability to learn complex and non-linear relationships between
inputs and outputs through multiple layers of abstraction. The validation for different
types of battery material is significant. Therefore, the generality can be validated.

In this research, a SOH estimate method based on multi-feature collaborative analysis
and deep learning is proposed. First, several degradation features are gathered using DTV,
SVD, ICA, and TVC analysis. After that, the input features of the deep learning model
are selected using Pearson correlation analysis. To enhance the performance of the LSTM-
based deep learning model, the dropout and RMSprop techniques are employed. Based
on the NASA and Oxford battery degradation datasets, experiments are conducted. The
experimental results demonstrate the generality of the presented model, showing that the
proposed method achieves estimation accuracy in each experimental case. This work offers
a method that employs a combination of multi-feature collaborative analysis and deep
learning methods for the estimation of SOH. The utilization of multi-feature collaborative
analysis facilitates the full consideration of various data sources pertaining to LIBs, thereby
yielding a model with generality. Furthermore, as the cloud computing platform develops,
the suggested method may contribute to real-time online SOH estimation on various
systems. Under the architecture of Cyber Hierarchy and Interactional Network (CHAIN),
this work contributes to implementing functions (e.g., real-time SOX estimate, safety
management, and early defect notification) for the cloud battery management system
(BMS) [45–47].

The main contributions of this paper are as follows: (1) Multi-feature collaborative
analysis method is used for in-depth mining of voltage, current, and temperature data.
(2) The characteristic signal analysis approach is incorporated to enhance the quality of
model input data while simultaneously lowering data size. (3) Based on the DTV and ICA
method, the connection between microscopic phase change and the macroscopic signal is
developed, enabling the model input to be physically interpretable. (4) The use of the SVD
method is proposed to reduce the dimensionality of data while reinforcing features that are
crucial for degradation analysis, allowing for more efficient analysis while preserving the
important information.
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2. Multi-Feature Analysis

In this section, DTV, singular value decomposition (SVD), IC, and terminal voltage
characteristic (TVC) are analyzed with the NASA and Oxford battery degradation datasets.
Based on the analyses, multiple degradation features have been selected as alternative
features for correlation analysis.

2.1. Battery Degradation Dataset

The experiment conducted four second-generation 18650-size lithium batteries (B5,
B6, B7, and B18) with identical LiCoO2 composite materials sourced from the NASA Ames
Prognostics Center of Excellence [48]. The degradation of the batteries was evaluated under
three conditions, including constant-current and constant-voltage charge (CC-CV) mode
and constant-current discharge at 24 ◦C. The CC-CV charging process was the same for all
four batteries, with the current set at 1.5 A until the voltage reached 4.2 V and ceasing once
the current dropped below 20 mA during the constant-voltage period. The temperature
was divided into three parts based on the current load. Subsequently, the batteries were
discharged with a constant current of 2A until the voltages reached the predetermined
values of 2.7 V for B5, 2.5 V for B6, 2.2 V for B7, and 2.5 V for B18. The experimental
particulars are provided in Table 1. Figure 1a shows the degradation of the capacity of
these four batteries with cycles. It can be noted that there is a discernible capacity rebound
rather than a monotonic capacity drop as the number of cycles increases, which makes
SOH estimation challenging.

Table 1. Specific cycle condition of the NASA dataset.

Battery B5 B6 B7 B18

Cathode material NCA
Nominal capacity [Ah] 2 2 2 2

Charge cut-off voltage [V] 4.2 4.2 4.2 4.2
Discharging cut-off voltage [V] 2.7 2.5 2.2 2.5

Charge rate 0.75C 0.75C 0.75C 0.75C
Discharge rate 1C 1C 1C 1C
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Figure 1. Capacity data of LIBs: (a) NASA; (b) Oxford.

The Oxford capacity degradation dataset was compiled by the University of Ox-
ford [49,50]. This paper selects eight batteries with a rated capacity of 740 mAh, designated
cells 1 through 8. The temperature of the experiments was maintained at 40 ◦C. Each cell
was repeatedly charged under 2C CC settings and discharged under dynamic circumstances
to simulate driving situations. Every 100 cycles, a 1C CC charge/discharge cycle was used
to measure the battery capacity. Table 2 displays detailed experimental information. The
capacity trajectory of these eight batteries is shown in Figure 1b. Overall, the capacity of the
Oxford dataset is a smooth decline. However, the capacity curves of cell 2 and cell 5 show
an unexplained plunge, which may be attributable to alterations in operating conditions.
Hence, cells 1, 3, 4, 6, 7, and 8 are chosen for training and testing the model in this research.
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Table 2. Specific cycle condition of the Oxford dataset.

Technical Specifications Cycling Tests

Anode material Graphite

Charge test CC charge at 2CCathode material LCO/NCO
Nominal capacity [Ah] 0.74

Nominal voltage [V] 3.7
Discharge cut-off voltage [V] 2.7 Discharge test Artemis drive cycle

dischargeCharge cut-off voltage [V] 4.2

2.2. Feature Analysis
2.2.1. DTV Analysis

Studies have demonstrated a strong correlation between battery deterioration and
microscopic entropy change [40,51], and the variation in temperature distribution can have
a significant impact on the degradation of the battery over time [38]. The primary factors
contributing to the decline of the maximum charge storage capacity of LIBs as a function of
temperature within a specific operating range have been identified as the formation and
alteration of surface films on the electrodes, as well as structural and phase transformations
of the electrode material [52]. As battery degradation progresses, the positive and negative
electrodes may exist in various phase combinations. These phase transitions can lead to
changes in the system’s entropy, which can be identified by observing inflection points
on the DTV curve. The DTV curve’s peak position can indicate the peak potential during
charge/discharge stages, shifts in peak position can indicate changes in impedance and
stoichiometry, peak height can indicate the maximum heating rate, peak width can indicate
the potential window of the phase combinations in the electrodes, and peak area can
provide information on the heat generated during charge/discharge stages. The DTV can
be calculated as:

DTV =
dT/dt
dV/dt

=
dT
dV

(1)

where V represents the terminal voltage, T is the temperature, and t is the sampling time.
The utilization of the DTV method allows for the identification of the degree and type of
phase change within the electrode material through the analysis of changes in temperature
and voltage. This information is crucial for understanding the entropy change in the system,
which dictates the degradation stage of the battery.

However, in practical applications, the temperature and voltage data are vulnerable to
external factors such as operating conditions, making the differential signals noise-sensitive.
Therefore, filtering methods are necessary to obtain clear DTV signals for degradation
feature analysis. In this paper, the Savitzky Golay (SG) filtering method is operated to
filter the DTV curves to maintain the shape of the curve while removing the noise. The SG
filtering method is expressed as follows:

y(i) =
j=M

∑
j=−M

1
N

Cjx(i + j) (2)

where x(i) represents the original input signals, y(i) is the output signals after the filter, Cj
is the coefficient in SG filtering, and N is the number of convolution integers. The value of
N is equal to the size of the smoothing window, which is equal to 2M + 1.

Figure 2a illustrates the comparison results of DTV curves before and after filtering.
The filtering results reveal the effectiveness of the SG filtering method. Specifically, it
effectively smooths the curves while retaining the shapes of features. The results of DTV
differential curves before and after filtering are shown in Figure 2b. Clearly, the DTV
differential curve is still smooth after filtering, further demonstrating the applicability of
SG filtering to DTV analysis.
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Figure 2. DTV analysis: (a) Comparison of unfiltered DTV and DTV curves smoothed by SG;
(b) Differential of unfiltered DTV curves and DTV curves smoothed by SG; (c) DTV curves and
(d) DTV feature variables of battery B5 in the NASA dataset; (e) DTV curves and (f) DTV feature
variables of cell 1 in the Oxford dataset.

The DTV curves change continuously during degradation, and features can be ob-
tained. Figure 2c shows the evolution of DTV curves over the battery B5 cycles in the
NASA dataset. Throughout the degradation stages of the battery, the DTV curves exhibit
two peaks and one trough. In addition, the change in peaks and valleys shows a distinct
directionality. The peak values fall gradually while the peak positions shift progressively to
the left. Simultaneously, the value of the valley grows, and its position shifts to the left. The
curve shape changes correspond to the actual battery degradation process. As illustrated
in Figure 2d, the peaks and the valley are selected as alternative DTV analysis features. The
left peak value and position are denoted as FV1 and FV2, the valley value and position as
FV3 and FV4, and the right peak value and position as FV5 and FV6, respectively. Figure 2e
shows the evolution of the DTV curves of cell 1 of the Oxford dataset. The DTV curves of
the Oxford dataset distinctly exhibit one peak and two valleys throughout the degradation
stages of the battery, which is different from battery B5. With the deepening of battery
degradation, the valley values increase, and the valley positions gradually move to both
ends. Meanwhile, the peak values decrease while the positions gradually shift to the left.
Therefore, as shown in Figure 2f, the peak and valleys of the DTV curve of the Oxford
dataset are taken as the alternative features. It is noteworthy that the DTV curve shape of
the Oxford dataset differs from that of the NASA dataset due to the substantial difference
in experimental conditions. For the Oxford dataset, FV1 and FV2 represent the left valley
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value and location, FV3 and FV4 represent the peak value and position, and FV5 and FV6
represent the right valley value and position.

2.2.2. SVD Analysis

As a fundamental matrix decomposition technique, the SVD method condenses the
information in complex matrices by using simpler matrices, achieving data compression
while preserving the information’s characteristics. The SVD approach is applicable in
several situations, including data downscaling and feature extraction, due to its practical
data compression impact. External measurement data can characterize the degree of battery
degradation. Large data quantities and minor changes in measurement data might hinder
the performance of the deep learning model. Consequently, the SVD approach is applied
to the numerical processing of the external measurement data of the battery in order to
compress data while reinforcing the degradation features. Suppose that matrix A is an
m × m matrix of any size, and AAT and ATA are symmetric matrices of size m × m and
n × n, respectively. If AAT = PΛ1PT and ATA = QΛ2QT, the SVD of matrix A can be
described as follows:

A = PΣQT (3)

where P and QT are square matrices of size m × m and n × n, respectively, Σ is the diagonal
matrix of size m × n, which means that all matrix elements are 0 except those on the main
diagonal. The elements on the main diagonal of the Σ matrix are called singular values.
Thus, the SVD compresses matrix A of size m × n into singular values, which can be utilized
as degradation features.

In this study, SVD was applied to both voltage and temperature data for each discharge
cycle, resulting in the extraction of two singular values for each cycle as feature vectors,
thus compressing the voltage and temperature data. This method of applying SVD to
the voltage and temperature data can compress the amount of data being measured and
reduce the input burden on the model. By extracting the singular values as feature vectors,
labeled FV7 and FV8, it reduces the dimensionality of data and eliminates less important
or redundant information, making it more efficient for the model to process.

2.2.3. IC and TVC Analyses

As a commonly used feature analysis method to describe the battery degradation
process, the IC curve can characterize the battery deterioration from the electrode level
and has a high resolution for the battery charge and discharge platform area. The IC curve
is defined as the incremental battery capacity of successive voltage increments, and its
mathematical representation is as follows:

dQ
dV

=
I × dt

dV
= I × dt

dV
(4)

where Q, I, V, t are the discharge capacity, current, voltage, and time, respectively.
In actual applications, the measured values of current and voltage are accompanied by

noises, which can generate undesirable variations in the IC curve and therefore impact the
extraction of features. This paper applies the SG filtering method to filter the IC curve. The
IC curves change continuously during the battery degradation process, and the degradation
features can be obtained. Figure 3a illustrates the evolution of IC curves during the cycles
of battery B5 in the NASA dataset. In addition, it has been discovered that a complete IC
curve has a significant peak throughout the degradation process and that as the battery
degrades, the peak value of the IC curve is constantly falling and shifting to the left. These
phenomena indicate that the peak of the IC curve can be used as a feature to characterize
battery degradation. Figure 3b shows the features within the IC curve of the battery in the
NASA dataset. The peak value and position are extracted as alternative features for SOH
estimation. The evolution of IC curves during the aging cycles of battery cell 1 in the Oxford
dataset is illustrated in Figure 3c. The IC curves of the Oxford and NASA datasets contain a
single peak, and their shapes, including the peak’s trend, are comparable. Figure 3d shows
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the IC feature variables of the battery. Similarly, the feature variables are identical to those
in the NASA dataset. In this research, the peak value and position of the IC curves based
on NASA and Oxford datasets are denoted as FV9 and FV10, respectively.
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Figure 3. IC and TVC analysis: (a) IC curves and (b) IC feature variables of battery B5 in the NASA
dataset; (c) IC curves and (d) IC feature variables of cell 1 in the Oxford dataset; (e) Time-voltage
curves for battery B5 in the NASA dataset and (f) Time-voltage curves for cell 1 in the Oxford dataset.

In addition to the three feature analysis approaches described above, this work presents
a straightforward way for obtaining battery degradation features through TVC analysis.
The discharge time in the same operating terminal voltage range falls continually during
the CC situation, which can be used to characterize the battery deterioration as the battery
degrades. The expression of TVC is shown as follows:

TVC
(

Vlow, Vhigh

)
= tlow − thigh (5)

where Vlow is the lower cut-off voltage value and Vhigh the higher cut-off voltage value
during the CC condition.tlow and thigh are the end and start times of the discharge process
between Vlow and Vhigh, respectively.

As shown in Figure 3e,f, the voltage curve shifts to the left during the degradation
process, and the degradation features can be obtained. Figure 3e shows the evolution of
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the voltage-time curve throughout the degradation stages of the battery B5 in the NASA
dataset. Changes in voltage during the early discharge process are relatively gradual. As
the depth of discharge increases, the discharge curve reaches an inflection point, after
which the battery enters a highly nonlinear zone. In this paper, the feature is utilized as an
alternative feature, marked as FV11, based on both NASA and Oxford datasets. Figure 3f
shows the evolution of the voltage-time curves of the whole discharge process during the
degradation process of the cell 1 battery in the Oxford dataset. Different material types and
loading conditions can have an impact on the behavior of the batteries over time. Due to the
significant differences in the battery material types and operating conditions between the
NASA dataset and the Oxford dataset, the voltage range selected for TVC features differs
between the two datasets. The voltage range used for the NASA dataset is (3.5, 3.9), while
for the Oxford dataset, it is (3.7, 4.1). Selecting a voltage range within which the battery
voltage changes are relatively stable and smooth rather than experiencing rapid drops
can facilitate better feature analysis and characterization of battery aging. This can lead
to a more accurate and reliable assessment of the battery’s performance and degradation
over time.

3. Methodology

In this section, the framework and process of the proposed deep learning model for SOH
estimation are described in detail, including the feature selection and model construction.

3.1. Framework of Multi-Feature SOH Prediction

Figure 4 illustrates the proposed framework for battery SOH estimation based on
multi-feature collaborative analysis and deep learning methods. The framework consists
of five components: raw data acquisition, multi-feature analysis, feature selection, deep
learning model construction, and assessment of the proposed model. In the first and second
parts of the framework, data acquisition and degradation feature analysis are carried out,
and four sets of alternative features are extracted using DTV, SVD, IC, and TVC, respectively.
The procedure is discussed detailed in Section 2. In the third component of the framework,
Pearson correlation analysis is used to pick alternative features with high correlation as the
final features, which are the inputs of the LSTM NN model. The LSTM NN is constructed
and trained in the fourth part, with the dropout technique applied to restrain overfitting and
the RMSprop algorithm from achieving rapid convergence. In the fifth part, the predicted
SOH is compared to the actual SOH. Root mean square error (RMSE) and mean absolute
error (MAE) analyses are performed to evaluate the model performances.

3.2. Feature Selection

Based on the multi-feature collaborative analysis in the previous section, eleven
alternative features are obtained based on both the NASA and Oxford datasets. In order to
further screen out high-quality features as the inputs of the LSTM model, the correlation
between the alternative features and SOH is calculated using Pearson correlation analysis.
The calculation can be described as follows:

ρxy =
∑

p
i=1(xi − x)(yi − y)√

∑
p
i=1(xi − x)2

√
∑

p
i=1(yi − y)2

(6)

where xi and x represent the feature value and the mean value of the feature variable,
respectively. yi and y represent the SOH value and the mean SOH value, respectively. P
represents the number of samples. ρxy is the correlation coefficient between the specific
feature and SOH. The value of ρxy is between −1 and 1. In this study, a feature selection
technique was implemented on the training set in order to identify features that exhibited a
strong correlation with the SOH of the battery. Subsequently, the selected features were
employed for predicting the SOH of the test set. The correlation coefficient is utilized as
a metric to evaluate the strength of the association between the features and the SOH. A
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high correlation coefficient, approaching 1, implies a strong correlation. The correlation
values for the NASA dataset are shown in Table 3, while the correlation values for the
Oxford dataset are shown in Table 4. As a result, the features FV2, FV4, and FV6 to 11 are
selected as the input features for the NASA dataset, while FV6 to 11 are chosen for the
Oxford dataset.
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Table 3. Pearson correlation coefficients between feature variables and SOH for the NASA dataset.

Method DTV SVD IC TVC

Features FV1 FV2 FV3 FV4 FV5 FV6 FV7 FV8 FV9 FV10 FV11
B5 0.55 0.94 0.57 0.94 0.49 0.98 0.98 0.98 0.99 0.94 0.99
B6 0.11 0.98 0.83 0.95 0.70 0.98 0.97 0.98 0.98 0.98 0.99
B7 0.41 0.92 0.33 0.87 0.06 0.97 0.98 0.99 0.98 0.92 0.98

B18 0.50 0.91 0.93 0.83 0.74 0.98 0.99 0.98 0.99 0.95 0.99

Table 4. Pearson correlation coefficients between feature variables and SOH for the Oxford dataset.

Method DTV SVD IC TVC

Features FV1 FV2 FV3 FV4 FV5 FV6 FV7 FV8 FV9 FV10 FV11
Cell1 0.80 0.11 0.85 0.53 0.71 0.98 0.99 0.99 0.95 0.97 0.98
Cell3 0.88 0.29 0.83 0.22 0.82 0.97 0.98 0.99 0.94 0.95 0.96
Cell4 0.84 0.43 0.86 0.53 0.71 0.98 0.99 0.99 0.93 0.95 0.98
Cell6 0.86 0.08 0.83 0.55 0.52 0.97 0.99 0.97 0.83 0.95 0.99
Cell7 0.90 0.64 0.91 0.18 0.60 0.97 0.98 0.99 0.84 0.94 0.99
Cell8 0.95 0.61 0.96 0.02 0.90 0.97 0.99 0.99 0.93 0.92 0.98

3.3. Model Structure

In this paper, the LSTM NN model is trained as the core of the deep learning model
for battery degradation prediction. As a variant of recurrent neural network (RNN), the
LSTM NN could effectively mitigate the problems of gradient disappearance and gradient
explosion of simple RNN and capture the long-term dependence between inputs and
outputs. The LSTM unit accepts the inputs and unrolls them in time, learning from each
time step of the input sequence. Each LSTM unit controls the input, forgetting, and output
of information via its input gate, forgetting gate, and output gate, respectively. The forward
propagation process of each LSTM unit at time step t is as follows:

ft = σ
(

W f · [xt, ht−1] + b f

)
(7)

it = σ(Wi · [xt, ht−1] + bi) (8)

ot = σ(Wo · [xt, ht−1] + bo) (9)

C̃t = tanh(Wc · [xt, ht−1] + bc) (10)

Ct = ft × Ct−1 + it × C̃t (11)

ht = ot × tanh(Ct) (12)

where it, ft, ot are respectively the output of the input gate, forgetting gate, and output gate.
σ and tanh are the sigmoid and hyperbolic tangent activation functions; W and b are the
weight matrix and bias vector, respectively, which are continuously learned and updated
during training. xt is the input to the LSTM unit in the current time step. In addition, ht
and ht−1 are the hidden output of the neuron at the current time step and the previous
time step, respectively. Ct−1 is the memory of the neuron at the previous moment, C̃t is the
newly generated memory of the neuron, and Ct is the current memory state of the neuron.

Compared to simple RNNs, which decay exponentially to the past inputs, the LSTM
controls the neuron memory through the forgetting gate and input gate. The continu-
ous updating of the internal parameters of the forgetting gate and input gate enables
dynamic selection to recall correct information and forget redundant information, hence
facilitating a more accurate correlation between input features and battery SOH. Since
battery degradation is a long-term process, it is inevitable that duplicate information will
emerge. Through the above structure, the LSTM NN improves the prediction performance
of the deep learning model by forgetting redundant information and screening out the
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appropriate information. Consequently, the LSTM NN can successfully prevent gradient
disappearance and gradient explosion, reflecting the long-term relationship between the
input features and battery degradation.

Overfitting has been one of the primary issues with the deep learning approach.
In this paper, the dropout technique is used to reduce overfitting and enhance model
performance by randomly resting neurons. Specifically, during the forward propagation of
the NN, each neuron is allowed to rest with a specific probability p. Through this process, a
randomly smaller NN is generated from the original NN structure, reducing the model’s
complexity while severing the connection between some neurons. While addressing the
issue of overfitting, the dropout strategy might lower the number of learned parameters
and increase convergence speed. Moreover, the optimization method of the NN is critical,
as it dictates how the NN executes the learning process, hence influencing convergence
speed, characteristics, and model performance. It has been demonstrated that the RMSprop
approach is effective for RNNs [53]. The RMSprop method offers a quicker convergence
rate than other optimization techniques and is appropriate for RNNs. In this research, the
RMSprop approach is employed as an optimizer for the LSTM model.

4. Results and Discussion

In this section, the SOH prediction results are described, and the accuracy and gener-
ality of the proposed model are validated based on both NASA and Oxford datasets.

4.1. Evaluation Index

In order to quantitatively evaluate the prediction results, RMSE and MAE are utilized
to describe the error between the real SOH and the predicted SOH. The expression of RMSE
is given by Equation (13), and the expression of MAE is given by Equation (14):

RMSE =

√√√√ 1
N

N

∑
i=1

(Q̂i − Qi)
2 (13)

MAE =
1
N

N

∑
i=1

∣∣Q̂i − Qi
∣∣ (14)

where Q̂i represents the predicted value, Qi represents the true value, and N represents the
number of cycles.

In this paper, the battery SOH can be calculated from the remaining capacity of the
battery, and the expression is as follows:

SOH = Qcurrent/Qinitial (15)

where Qcurrent represents the current capacity of the battery and Qinitial represents the initial
capacity. The SOH of a new battery is 1, and the SOH value gradually decreases as the
battery ages.

4.2. Results Based on the NASA Dataset
4.2.1. Results with Different Features

In this subsection, the comparison between single-feature and multi-feature analysis
is conducted based on the battery B5 of the NASA dataset. The first 40% of data are used as
the training set to derive the parameters of the LSTM NN model, while the remaining 60%
is used as the testing set to evaluate the performance of the model. From the original battery
data, each feature analysis method obtains a feature set, and the collaboration features are
the fusion of all feature sets. Figure 5 shows the results of the SOH prediction based on
different feature sets and feature collaboration. Figure 5a–e shows the detailed results with
two colored lines for each subplot. The orange line indicates the actual SOH, whereas the
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black line indicates the expected SOH. Figure 5f is a bar chart displaying the RMSE and
MAE for each case.
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Figure 5. Results on NASA battery B5 based on different methods: (a) DTV. (b) SVD. (c) IC. (d) TVC.
(e) Multi-feature collaboration. (f) MAE and RMSE analyses.

As shown in Figure 5f, each case achieves good prediction results. The highest error
results are the RMSE of 1.22% and MAE of 1.10%. As illustrated in Figure 5a–e, the
model accurately predicts the degradation trend of the battery SOH. The capacity rebound
phenomenon is accurately captured based on the NASA dataset, reflecting the superiority
of the selected features. In addition, models based on the DTV and IC analysis obtain the
estimated results with RMSEs of 1.22% and 1.10%, respectively. Compared with models
based on other feature analysis methods, their error values are the highest. The differential
operation of DTV and IC analysis notably amplifies the noise of the measurement data,
resulting in a loss of accuracy. Although the SG filtering method is applied to remove the
noise and achieve curve smoothing, the influence of noise cannot be ignored entirely. In
contrast, the SVD method achieves the best prediction results among the single-feature
analysis with an RMSE of 0.67%, indicating that the compressed data using the SVD
method still characterizes the battery degradation well. The feature set of TVC analysis
achieves an RMSE of 0.92%, revealing that with the deepening of battery degradation,
the change in battery discharge voltage-time curves can characterize battery degradation
well through the simple feature obtained by TVC analysis. Noting that the model with
the multi-feature collaborative analysis achieves the best prediction results, reaching an
RMSE of 0.62% and an MAE of 0.51%. The results demonstrate the predictive accuracy
superiority of the suggested method. The collaborative features contain more information
on the degradation of various variables, enabling the deep learning model to characterize
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the battery degradation better. In addition, the single-feature analysis could be sensitive to
the data quality. Due to the comprehensive consideration of several different methods, the
multi-feature collaborative analysis method could avoid the extreme situation that single-
feature analysis could be disturbed by serious data quality, indicating that the proposed
method has stronger robustness compared to the single-feature analysis method.

4.2.2. Results Based on Different Batteries

In this subsection, the generality of the model based on the multi-feature collaborative
analysis method is validated based on the batteries B6, B7, and B18 of the NASA dataset.
Figure 6 displays the results of the predicted SOH on different batteries. Figure 6a–c shows
the detailed prediction results. Figure 6d describes the RMSE and MAE.
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Figure 6. Results on NASA battery based on collaborative features: (a) B6; (b) B7; (c) B18; (d) MAE
and RMSE analyses.

As shown in Figure 6d, the results based on different batteries reach a maximum
RMSE of 0.93% and a maximum of 0.80%, which provides good overall prediction results
and demonstrates the model’s dependability and generality. As shown in Figure 6a–c, the
model based on the multi-feature collaborative analysis method achieves accurate SOH
prediction in all cases, reflecting the superiority of the proposed method. The collaborative
features contain more degradation information compared with a single feature. While
the single feature is easily disturbed by the data quality and the measurement conditions
of different experiments, the multi-feature collaborative method can nevertheless accu-
rately predict the SOH of different batteries, reflecting the model’s generality. From the
detailed prediction results, the model also accurately captures the battery capacity rebound
phenomenon, reflecting the proposed method’s advantage. Specifically, the collaborative
features can accurately analyze the various changing behaviors of the battery SOH and
precisely construct the mapping relation between the features and SOH. The above results
can demonstrate the generality of the multi-feature collaborative analysis method.

4.3. Results Based on the Oxford Dataset
4.3.1. Results with Different Features

In this subsection, the comparison with the single-feature analysis and multi-feature
analysis is performed based on the Oxford dataset cell 1. Figure 7a–e illustrates the detailed
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results of the model SOH prediction. Figure 7f shows the RMSE and MAE. As shown in
Figure 7f, each case achieves accurate SOH prediction, getting a maximum RMSE of 0.45%
and a maximum MAE of 0.39%. In addition, the prediction results on the Oxford dataset
are significantly better than those on the NASA dataset. This phenomenon is because the
Oxford dataset battery SOH is a smooth decline and does not exhibit a significant capacity
rebound, making it easier to achieve SOH prediction on this dataset. The models based
on each feature analysis achieve balanced prediction results, indicating that the selected
features have an excellent ability to characterize battery degradation. The model based on
IC analysis achieves the lowest RMSE of 0.41%. The IC analysis responds to internal battery
degradation through external current and voltage measurement parameters. The results
imply that the feature provides a good link between the measurement parameters and the
battery’s microscopic changes. In contrast, the model based on DTV analysis achieves the
highest RMSE of 0.45%. The DTV method links the temperature and voltage measurement
data with the internal entropy change in the battery. However, due to the challenges of
measuring the temperature data and its vulnerability to noise interference, DTV analysis is
more susceptible to being disturbed by measurement noise. Despite this, the DTV analysis
model still gets an RMSE of 0.45%, indicating that the DTV analysis can link the internal
entropy change with the external measurement parameters and characterize the battery
degradation well. Noting that the model based on the multi-feature collaborative analysis
method still achieves the best prediction results, with RMSE of 0.32% and MAE of 0.28%,
which may be related to the model based on the multi-feature collaborative method has
more information to describe degradation. The above results reflect the reliability and
generality of the proposed method.
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Figure 7. Results on Oxford cell1 based on different methods: (a) DTV. (b) SVD. (c) IC. (d) TVC.
(e) Multi-feature collaboration. (f) MAE and RMSE analyses.
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4.3.2. Results on Different Battery

In this subsection, the generality of the multi-feature collaborative analysis method
is further validated based on the Oxford dataset cell 3, cell 4, cell 6, cell 7, and cell 8.
Figure 8a–e shows the detailed prediction results of the proposed method. Figure 8f shows
the RMSE and MAE. As shown in Figure 8f, the model based on the multi-feature collabo-
rative analysis method achieves accurate SOH prediction on each cell, getting a maximum
RMSE of 0.56% and a maximum MAE of 0.45%. The results demonstrate the generality of
the proposed method, which may be attributable to the fact that the collaborative features
contain more degradation information to characterize battery degradation than a single-
feature set. As shown in Figure 8a–e, it can be seen that the real curve of SOH in this dataset
is smooth, and there is no capacity rebound phenomenon. Different from the above results
based on the NASA dataset in which the predicted SOH shows a sightly rebound, the
predicted SOH on this dataset is similar to the real SOH with a smooth decline. The results
suggest that the proposed method can adequately capture the change in battery SOH in
diverse material system batteries and varied battery SOH change behaviors, demonstrating
the method’s dependability and generality.
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Figure 8. Results on Oxford battery based on collaborative features: (a) Cell 3; (b) Cell 4; (c) Cell 6;
(d) Cell 7; (e) Cell 8; (f) MAE and RMSE analyses.

4.4. Compared with Other Methods

Tables 5 and 6 show the prediction results of the proposed method in this paper and
compare them with other works that were studied based on the NASA battery dataset and
the Oxford battery dataset, respectively. These studies employed data-driven algorithms
and some hybrid algorithms to establish a battery degradation model. Ref. [54] used
voltage and current as features; a Support Vector Regression (SVR) and an Adaptive
Dropout LSTM were established to predict the battery’s SOH. Ref. [43] used DTV as the
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input feature, and a GPR model was constructed to predict the battery’s SOH, achieving
excellent results on the NASA dataset. Ref. [55] used the time interval of the equal charging
voltage rising (DV_DT) as the input feature, and an LSSVM-ECM model and an EDM
model were constructed and tested on both the NASA and the Oxford datasets. Ref. [56]
constructed SVM, MLR, GPR, and Fusion of SVM MLR GPR models and tested them on
the Oxford dataset. The designed method has a high SOH prediction accuracy on different
datasets. It benefits from the input features provided by the multi-feature analysis method
and the excellent ability of the LSTM network to solve the long-term dependency time
series problem. The comparison results indicate that the designed SOH prediction method
has good prediction performance.

Table 5. RMSE of SOH estimation result on the NASA dataset.

Method
Proportion of
Training Set Feature

RMSE (%)

#5 #6 #7 #18

Ours 40% Multiple features 0.62 0.77 0.61 0.93
SVR [54] 50% Voltege, Current 3.3 - - -

AD-LSTM [54] 30% Voltege, Cur-rent 3.0 3.3 2.0 -
GPR [44] 20% DTV 0.27 0.28 0.32 0.31

LSSVM-ECM [55] - DV_DT
- 2.5 1.7 -

EDM [55] - 11.3 2.7 -

Table 6. RMSE of SOH estimation result on the Oxford dataset.

Method
Proportion of
Training Set Feature

RMSE (%)

#1 #2 #3 #4 #5 #6 #7 #8

Ours 40% Multi-features 0.32 - 0.31 0.44 0.45 - 0.37 0.56
SVM [56] -

Voltage
Temperature

ICA

0.85 2.33 0.75 0.58 0.64 0.93 0.59 0.57
MLR [56] - 0.84 2.02 0.73 0.55 0.60 0.97 0.37 0.43
GPR [56] - 0.94 2.11 0.81 0.45 0.51 0.94 0.53 0.62

Fusion of SVM
MLR GPR [56] - 0.70 0.79 0.57 0.42 0.48 0.86 0.51 0.51

LSSVM-ECM
[55] - DV_DT

- 0.91 0.65 - 0.31 0.50 1.47 0.29

EDM [55] - 1.65 0.96 - 1.94 1.46 3.23 1.39

4.5. Discussions

The study proposes a method that employs a combination of multi-feature collabora-
tive analysis and deep learning methods for the estimation of the SOH of LIBs with a high
level of precision. The synthesis of diverse information sources, such as temperature, cur-
rent, and voltage, plays a crucial role in the assessment of battery degradation. A thorough
analysis of these variables can contribute to a deeper insight into the degradation process.
Furthermore, it is crucial to verify the results for various types of battery materials to
establish their general applicability. The use of multi-feature collaborative analysis allows
for the examination of multiple sources of information related to the LIBs, resulting in a
model with robust generality. Note that the proposed method is validated under specific
experimental conditions (CC-CV). However, in practice, the operating conditions of the
battery may be uncertain due to varying environments. The inherent uncertainty and
imprecision of dynamic loading conditions present significant challenges in the extraction
of high-related features for the input of the deep learning model, which can negatively
impact the correlation between the extracted features and the structural health, thereby
compromising the accuracy of the model. However, the proposed method combines mul-
tiple data resources. In the event of a failure of one feature analysis, the utilization of
other feature extractors can potentially mitigate the impact and maintain the functionality
of the model.
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The utilization of deep learning models in the field of battery SOH estimation poses
several challenges, particularly in terms of deployment on resource-constrained devices
such as electric vehicles. An approach to mitigate the challenges associated with the
deployment of deep learning models for SOH prediction on resource-constrained devices
is to leverage the computational resources of a cloud-based platform for training the model
and to enable its usage through data transmission to the target device. By leveraging the
computational resources available on cloud-based platforms to analyze features and train
the proposed deep learning-based model, it is feasible to achieve real-time prediction of
battery state. In the process of selecting an appropriate model for a particular task, some
simple machine learning models may prove to be more effective in terms of prediction
accuracy. However, in certain cases, more complex machine learning models, such as LSTM
NN in this study, may outperform their simpler counterparts. This is due to the increased
complexity of LSTM, which allows it to more effectively capture the relationship between
the input data and the SOH, resulting in improved generalization capabilities. The results of
this study demonstrate that the proposed method is capable of achieving an acceptable level of
accuracy for the estimation of various types of LIBs through the effective extraction of relevant
battery information via a multi-feature collaborative analysis method. However, further research
is needed to investigate the generality of this method to other types of LIBs.

5. Conclusions

In this study, a LIBs SOH estimation framework based on a deep learning method
with collaborative multi-feature analysis is provided. In such a framework, the physical-
derived features are combined, and a deep learning model is utilized to estimate battery
SOH efficiently. DTV, SVD, IC, and TVC analysis were used to attain the degradation
features to describe battery degradation and increase the models’ generality thoroughly.
Based on the results of the feature analysis, the Pearson correlation analysis is then used
to select features as the input of the deep learning model cored by LSTM NN. In addition,
the dropout and RMSprop techniques are implemented into such a framework, which
improves the model’s performance. In order to verify the generality of the multi-feature
collaborative analysis method, the NASA and Oxford battery degradation datasets are
selected for validation and error analysis. The experiment results demonstrate that the
method has high estimation accuracy and generality, where the maximum root mean
square error (RMSE) is less than 1%. The proposed method can reduce the dependence
of the estimation accuracy on the data scale while considering the interpretability of the
estimation results. With the continuous improvement of cloud technology, this study
provides valuable improvements to the battery SOH estimation method, which boosts
the interpretability and generality of the deep learning model. On the basis of the Cyber
Hierarchy and Interactional Network (CHAIN) architecture, it is anticipated that the deep
learning model paired with the multi-feature collaborative analysis approach could be
implemented on a cloud platform.
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