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Abstract: Vanadium redox flow batteries (VRFB) are a fertile energy storage technology especially for
customized storage applications with special energy and power requirements. The dimensioning
and control of these storages is mostly calculated beforehand using battery models in embedded
simulation structures. To cover various stack designs, chemistries, application strategies and system
architectures, battery simulation models should be validated with different experimental input
data and thus show universal functionality. In this study the functionality of a grey box VRFB
model using current, voltage and state of charge (SOC) of a 10 kW/100 kWh VRFB as input data are
validated for an adapted input data set using of a 5 kW/10 kWh VRFB. This model is designed for
stationary applications of VRFB only. The contribution of this study is (i) to apply a suitable SOC
conversion method to the raw data from the used 5 kW VRFB system, (ii) to adapt the modeling
code for broader use and integration of the SOC conversion, (iii) to validate the functionality and
(iv) to investigate the influence of constant current and constant voltage phases in the raw data on
the accuracy of the model. A comparison of experimental data between different redox flow batteries
shows that most VRFB measure the open circuit voltage (OCV) to calculate the SOC of the battery.
Using the calculated SOC as an input data the proposed simulation model need to be adapted and
a method is applied to use OCV input data for model validation. Although simulation models in
general often assume linearity between SOC and OCV, the study showed sufficient accuracy using
polynomic fitting of second order. Applying a parametrization process the results of the simulation
model are compared to the raw data and the scope of application of the grey box VRFB model is
defined. While using the dominant constant current phase for the charging and discharging cycle, the
grey box simulation model has been sufficiently parametrized and validated for adapted input data.

Keywords: vanadium redox flow battery; redox flow battery; modeling; energy storage; grey box
simulation model; validation process; energy system simulations; model parametrization;
applications; state of charge; open circuit voltage; conversion methods

1. Introduction

With increasing focus on the energy turnaround, the amount of renewable energy
(RE) has been growing for decades [2]. The Framework Convention decided at the World
Climate Conference in Glasgow in 2021 favors the use of RE, as fossil energy production is
to be reduced, especially as the CO2 neutral energy production offers the decisive advantage
to achieve the global climate goals until 2030 [3].

This evolution raises new technical and economic challenges that have to be considered
when integrating RE into the existing grid. In fact, there is a decentralization of energy
production in the utility grid, which is exposed to fluctuations due to the inconstant and
unpredictable source of energy. Thus, there is increasing interest in systems for voltage and
frequency stabilization and reduction of load peaks to ensure the stability of the grid [4].

The VRFB is a promising energy storage technology, which has been researched and
developed since the 1970s [5,6]. Due to its independent scalability of power and energy
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as well as the modular design, it is highly attractive for stationary applications [5–8].
To achieve a high efficiency and long lifetime, the placement and control in the grid has
a significant importance [9]. For this purpose, simulation models are used in advance to
predict the batteries’ behavior in different applications, control or placement strategies [9].

Simple simulation models help to implement the characteristics of energy storages,
their control algorithms and placement into embedded energy architectures. Generally, the
scope and modeling approaches for battery simulations define the input data structure.
Input data are defined as the raw data collected from the battery systems, which can start
from full charging/discharging cycles as easy accessible data to equivalent resistances or
even material compositions and kinetics on a more detailed level. The modeling scope itself
can result in limiting the experimental design and input data used for the simulation model,
as detailed material compositions may not be used for application-oriented modeling.
Reversibly, electrical connections and model integration into general system architectures
such as grids might not be used while comparing stack designs or chemistries. Thus,
battery models can only be universally applied to defined modeling scopes.

The original model proposed in [1] has been developed for the purpose of system
analysis and coupling the battery with different application-oriented simulation levels
in future grid scenarios. Thus, the applicability of the model is restricted to stationary
storage and cannot be applied to other storage technologies, such as metal-ion batteries
(e.g., lithium-ion batteries). The original simulation model is a grey box model dedicated to
researchers with no access to the VRFB container system itself. The assumption has been
made that detailed input data on materials, resistances or chemistries is not available to the
end user, such as system integrators or grid operators [1]. The experimental design used to
elaborate the model is based on five charging and discharging cycles at different power
and defined SOC ranges from 20 to 80%. More accurate measurements, e.g., impedance
spectroscopy or UV/VIS analysis of the electrolyte, cannot be made with these systems
without the loss of guarantee. Thus, the grey box model can be parameterized with
a low amount of easy accessible measurements. The input data structure is based on the
measured output of one specific 10 kW/100 kWh VRFB. The model requires standardized
measurement data, which may differ depending on the battery system considered. By
analyzing another VRFB system, it has become clear that a change in experimental design
necessitates a model adaption.

The aim of this work is to investigate the effect of input data variation on the function-
ality as well as the programming and thus validate the model presented in [1]. Input data
variation describes the difference between the battery system which was used during the
development process and the battery for the validation. Therefore, the experimental design
of two different VRFB is compared and a method for data conversion of the SOC from
primary sensor data is applied. Afterwards, the model validation is performed to verify the
model prediction capabilities. Independent functionality and sufficient accuracy between
raw and simulated data is pursued while maintaining the differential-algebraic model.

The remainder of this paper is organized into three sections: starting with a short
introduction of the functionality of the existing model, Section 2 discusses the experimental
design between different VRFB systems and the effect on the model. Furthermore, the
sections show methods to identify the SOC of VRFB and concludes the method used for
the course of the study. Section 3 presents the results of the data conversion, the model
parameterization and validation of the model prediction. Section 4 concludes the paper
and highlights open challenges and future research directions.

2. Materials and Methods
2.1. Grey Box VRFB Model

In this study, the functionality of the grey box VRFB model proposed in [1] using cur-
rent, voltage and SOC of a 10 kW/100 kWh VRFB as input data is validated for an adapted
input data set using of a 5 kW/10 kWh VRFB. To enable universal functionality indepen-
dent of the input data set used, this study analysis the experimental design used to simulate
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the behavior of a VRFB in [1] and shows how to adapt the model in case the experimental
input data differs.

Figure 1 shows the simulation steps one to four as proposed in [1]. Starting with
the raw data extraction (step 1) of constant power charging and discharging cycles mea-
sured by the Battery Management System (BMS) the data are modified to smooth peaks,
delete zero values and reduce the step size for the following optimization routine (step
2). Afterwards, the raw data are used in two different ways (steps three and four). As
specific battery-related parameters has been not accessible for the model description from
the raw data, a parametrization routine is applied. The parametrization process (step three)
enables optimal values for current losses, theoretical storage capacity, OCV, and ohmic cell
resistance based on the experimental data.

The model itself is based on one differential and two algebraic equations, calculating
SOC, voltage and DC power. Starting with defined start values for current losses, OCV,
and ohmic cell resistance, a screening range is applied for the parameter theoretical storage
capacity. The simulation error for the state variables current, voltage and SOC is calculated
for every time step and every screening parameter of the theoretical storage capacity.
The screening range as well as the start parameters are adapted during three consecutive
optimization routines. The goal is to achieve the lowest possible error between the raw
data and the simulated data for voltage, current and SOC. Afterwards the optimized
values for current losses, theoretical storage capacity, OCV, and ohmic cell resistance are
stored. During the optimization process, the amount of raw data used can be adapted,
e.g., reducing the data from five total cycles to three. In the last step four, the model is
validated for different charging and discharging cycles and time dependent curves can
be investigated.

Figure 1. Method of the simulation model with steps one to four as proposed in [1] and extended
raw data preparation step zero.

For the investigation of universal functionality as well as experimental design in this
study step zero has been added to the simulation model. The changes in the battery model
itself, as well as the raw data preparation, will be explained in the following chapters.

2.2. Comparison of the Experimental Design

The simulation model used by Zugschwert [1] was developed using data from a Cell-
Cube FB10-100 VRFB, hereafter referred to as Battery 2. The new data set of this research
work was obtained from a battery system called Volterion VRFB 11, hereafter referred to as
Battery 1. In the process of validating the model, it is necessary to adapt the newly recorded
data sets of Battery 1 to the data schematics of the simulation model. Table 1 describes
the two batteries with respect to their dimensions and most significant characteristics.
Generally, redox flow batteries can be either current- or power-controlled.
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Table 1. Overview: Comparison of the preset parameters of the simulation model.

Battery 1 Battery 2

Model name Volterion VRFB 11 CellCube FB 10–100
Stack configuration 2 stacks 10 stacks

Nominal power 5 kW 10 kW
Overall capacity 10 kWh 100 kWh
Nominal voltage 48 V 48 V

Considered SOC boundaries 20–80% 20–80%
Temperature range 0–40 °C 20–30 °C

Battery 1 has a nominal power of 2.5 kW per stack, with a maximum capacity of
10 kWh at 48 V DC operating voltage. However, it should be noted that a power value
above 2 kW was never tested. In the work, the operation SOC range is specified be-
tween 20% and 80%, which corresponds to an OCV of 1.24 V (20%) and 1.45 V (80%) [10].
The SOC boundaries are identical to that of Battery 2 and therefore correspond to the
simulation model [11].

Battery 1 is current-controlled, which is one of the significant differences to Battery 2.
The energy storage system can be operated with a constant current, which means an incon-
stant power level during charge and discharge. During charging, when the stack voltage
increases steadily at a given constant current, this results in a constant increase in power.
The losses of a VRFB can be classified into coulombic, voltaic and electrical losses. The
electrical losses include auxiliary consumers such as the pumps. In addition, a bidirectional
AC/DC converter is installed, which converts the voltage during the charging process from
the input AC voltage to the output DC voltage. The bidirectional DC/DC converter located
between the VRFB and the AC/DC converter adapts the DC voltage to the battery or the
AC/DC converter system. Furthermore, temperature sensors are installed, which allow
monitoring of the various areas and components of the battery [11].

Battery 2 has a nominal power of 10 kW, with a maximum capacity of 100 kWh
consisting of 10 stacks with a nominal voltage of 48 V. The VRFB is power-controlled and
is operated in a SOC range of 20 to 80%. The stacks are connected via three bidirectional
AC/DC converters. In contrast to Battery 1, this battery has a ventilation system which,
together with the pumps, is connected to an additional 24 V DC power supply on the
primary side of the AC/DC converter [12].

2.3. Comparison of Input Data Setup

The measurement data of Battery 1 are collected over the period of one charge and
discharge cycle varying current from 15 to 35 A, with a defined window of SOC from 20 to
80%. Thus, five measurement series starting with 15 to 35 A are available for the subsequent
modification of the data sets.

The simulation model defines the input data structure. During the development of
this model, only data from Battery 2 has been used. Based on this, the input data and
the further calculation of the simulation model are specified. Therefore, the model is
not universally applicable for any VRFB raw data without restrictions. As the BMS from
different manufactures provides different types of data, the analysis of the experimental
design as well as the input data variation are a necessary step to enhance model usage.
The SOC input data can be used as an example. While the BMS of Battery 2 records the
SOC, this value is not available by the BMS of Battery 1. At the latter, it is necessary to use
a conversion method to convert the OCV to obtain the SOC of the battery. In Battery 2 there
is no access to every single data input of the BMS, but only the mathematical transformation
to SOC values in percent. This results in differences between the data from the battery and
the simulation model, rendering the data useless for Battery 1. The conversion of the data
designed in this work will finally allow the simulation model to be parameterized.

Table 2 shows the data required by the simulation model. The numbering corresponds
directly to the order in which the data must be placed in the columns. The data sets
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of Battery 1 on the right side serve to illustrate the differences to the simulation model.
These must be converted afterwards by appropriate methods in order to be able to execute
the validation of the model.

Table 2. Overview: Comparison of the preset parameters of the simulation model.

Number VRFB Simulation Model Battery 1 Data Set

1 Absolute time [s] Time stamp [hh:mm:ss]
2 Grid side power AC [W] -
3 SOC [%] -
4 Total stack voltage [V] Voltage per stack [V]
5 Total stack current [A] Current per stack [A]
6 Temperature [°C] -

In the following, an explanation of the parameters of the simulation model and
Battery 1, which are compared in Table 2, is given:

(1) As a basic parameter, the specification of time at measurement represents a funda-
mental part of the simulation model and the data set of Battery 1. Second values are
needed for the simulation, therefore the data sets with specified timestamps must be
converted accordingly.

(2) The simulation model expects the measured AC power at the grid connection point.
These data are required for the subsequent efficiency analysis and is only recorded
for the measurement series with 15 A charge and discharge current. A defect at the
converter makes further recordings impossible. The measured values recorded up
to that point are not plausible. Due to the current data situation, which cannot be
extended, there is no efficiency analysis and this part of the model is not used within
this study.

(3) To determine the optimization parameters, a modified formula from Nernst equation
is applied, which describes the battery model as one of the three main equations.
Battery 2 provides a calculated SOC through its integrated BMS, which can be passed
to the simulation model. Battery 1, on the other hand, does not have this function and
data, which is why several options for modifying the input data and determining the
SOC were explained in the next chapter.

(4) Differences are found in the data sets for the voltages and currents at the stacks.
The model calculates with the total voltage, which represents the average voltage
of both stacks. The data sets of Battery 1 only provide the individual stack voltages
which would allow a simulation, but only with the voltage of one stack. Since the
stacks are usually electrically connected in parallel, the voltage values differ only
slightly. Thus, a mathematical adjustment of both stack voltages of Battery 1 takes
place by forming the average value from both stacks.

(5) If the total capacity of the battery is to be determined, the total current must be entered
into the simulation. The data set of Battery 1 provides the current per stack, which is
why a conversion is made to obtain the total current. As another part of the simulation
model, a smoothing of certain raw data takes place. Unlike the raw Battery 2 data
used in development, Battery 1 is current driven. The scatter of the current values of
Battery 2 is therefore much smaller. However, no changes are made in this respect,
since the functionality is also maintained with the raw data of Battery 1.

(6) The simulation model offers the possibility to perform the calculations depending on
the temperature value of the electrolyte. For this purpose, this value is read in via the
last column of the input data set. However, since the battery system of Battery 1 does
not record a temperature value, this is left out for later consideration. A constant
value of 295.15 K (23 °C) is assumed for the temperature.
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2.4. Methods for Obtaining the SOC

The main focus for the model adjustment is the determination of the SOC, since it is
the only value that is measured differently by the two battery systems. For this purpose,
different methods to obtain the SOC of a VRFB are investigated [13–17].

The most promising and commercialized approach is the dependency of SOC on OCV
under known system conditions, e.g., electrolyte composition, by integrating a separate
cell into the electrolyte circuits. SOC and OCV can be converted from one to the other with
little variation over multiple cycles and electrolyte temperatures. In addition, the ability
to count ampere-hours over the time of charging and discharging is suitable. However,
deviations in the measured values reduce the accuracy. Starting from the OCV, the most
accurate determination of the SOC is a discharge test. The precondition for this is that the
battery is fully charged. From this point, the measurement of the quantities required for
the calculation begins [16].

The following describes each method briefly and show utilization potentials for the
model validation performed within this study.

2.4.1. Discharge Test

Discharge tests are performed for fully charged batteries (SOC = 100%) to determine
the continuous SOC based on the remaining capacity. Yet, it is difficult and prone to error
to clearly define SOC boundaries, as this depends strongly on the electrolyte used [9,17–20].
Determination of SOC boundaries can be made, among other things, by using a separate
OCV cell or UV–Vis spectroscopy of electrolyte [17,20]. The latter is time-consuming as
the information obtained is only valid for this point in time and continuous repeating is
necessary, which makes it a very costly method [17,20].

If starting points are clear, remaining capacity and thus SOC can be determined us-
ing continuous discharge time and the discharge current. This test is performed under
known system conditions in order to be able to make reliable statements about the remain-
ing capacity, is very time-consuming, and cannot be performed while the battery is in
operation [14]. Since a SOC determination at least for starting values must be made during
the measurement process, this option is not to be considered for the model validation in
this study.

2.4.2. Ampere Counting

Ampere Counting represents the most cited method in the literature. Formula (1)
describes the increase in SOC over time as the integral of the current I(t) per time step
in relation to the total capacity C0 [14]. The total capacity C0 in Ah equals the nominal
capacity as listed in the data sheet in the optimal case. In practice, this value differs from
the theoretical one due to, e.g., cross-over phenomena between the vanadium species [16].
To obtain the real capacity discharged, tests as stated above need to be performed before
Ampere Counting can be applied. This procedure guarantees accurate capacity prediction.

SOC(t) = SOC0 +

∆t∫
0

I(t) dt

C0
(1)

SOC(t) = SOC0 +

∆t∫
0

I(t)− ILoss dt

CStor
(2)

This study refers to a simulation model using the fitting parameter CStor as the
real storage capacity instead of performing discharge tests before every measurement.
The adapted Formula (2) represents the differential equations used in the simulation model.
Furthermore, a second fitting parameter ILoss is used within the simulation model to take
current losses due to internal processes e.g., shunt currents into account. The use of the
theoretical values without further corrections for I(t) and C0 leads to inaccuracies in the
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determination of the SOC(t) between the model and the raw data. These inaccuracies are
added up over the measurement or even battery run time, leading to a disadvantage in the
SOC determination which is difficult to reconstruct within the model. For that reason, the
SOC method Ampere Counting has been identified as not suitable for this study.

2.4.3. SOC–OCV Relation

The OCV can be calculated using the modified Nernst equation presented in [15].
Further simplifications, presented in [17,18,21–23], relate the SOC to the quotient of the
respective vanadium ion concentration (cV2+, cV3, cV4, cV5) and the overall vanadium
concentration cV (Equation (3) and (4)). The theoretical equation to calculate the OCV
is summarized in Equation (5) and corresponds to the algebraic equation used in the
simulation model [1]. The Faraday constant F, the universal gas constant R, the average
temperature T in Kelvin, the amount of cells per stack Ncell and the amount of electrons
transferred during the reaction z = 1 are used within the equation.

SOCc =
cV2

cV
=

cV5

cV
(3)

1− SOCc =
cV3

cV
=

cV4

cV
(4)

UStack = NcellU
′
0 +

NcellRT
zF

log
[

SoC2

(1− SoC)2

]
(5)

To apply the SOC–OCV relation, the OCV is measured by including a separate open
circuit cell into the hydraulic circuit of the VRFB. As described in Section 2.3, the original
raw data used for the simulation model were based on SOC values calculated by the BMS
of Battery 2 [1], whereas the raw data of this study (Battery 1) shows OCV values without
direct conversion to the SOC. With reference to Equation (5), the OCV measurement is
only reliable if the electrolyte is not influenced by cross-over phenomena or irreversible
side reactions [17,18]. The latter cannot be compensated by the rebalancing system and
reduce the theoretical capacity of the battery [17–20]. Thus, influencing the quality of SOC
prediction over the lifetime [9,17–20].

The continuity of the OCV–SOC relation is important for the simulation model.
Due to the algebraic equations used, the internal electrochemical phenomena are de-
scribed using a linear approximation and the model is not able to predict non-linearities
in the voltage profile correctly [1]. As shown in Figure 2, non-linearities in the volt-
age profile occur at the beginning and end of the charging and discharging process.
Linearity between the OCV and the SOC has been reported in literature within the ohmic
phase of the voltage profile [24]. As the ohmic phase occurs only between specific ranges,
the linearity is limited. Depending on the investigated literature studies, these limits can be
found between 10% and 95% SOC [24].

Figure 2. Simulated theoretical cell voltage of a VRFB between 1% and 99% SOC.

As the SOC–OCV correlation is the most promising method to generate the required
input data for the simulation model, mathematical fitting needs to be applied to the raw
data of Battery 1. The manufacturer’s specifications set the SOC–OCV limits between 20%
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and 80% corresponding to OCV of 1.24 V (20%) and 1.45 V (80%) [10]. Since the start
for the calculation is at a SOC of 20%, the manufacturer’s specification for the OCV is
necessary for the correlation process. Therefore, the overall result is distorted in case of
unknown changes in the vanadium concentration due to cross-over or side reactions and
the manufactures OCV–SOC relation limits might not represent the voltage profile correctly.
The following chapter show the results for the mathematical fitting of SOC and OCV for
Battery 1 as well as the model validation with the complete input data set.

3. Results and Discussion
3.1. OCV–SOC Conversion Results

The following chapter shows the conversion of the OCV to the SOC values of Battery 1
using different regression methods. In the first step, a linear regression is applied to the
OCV measurements for different cycles between 15 A and 35 A. The parameters of the
regression lines were calculated using Matlab numerical software. For this purpose, the
command polyfit with specification of the polynomial degree 1 is applied. The compar-
ison of the measurement data and the regression line for 15 A and 35 A is displayed in
Figure 3a,b. Shown in blue, the measured points represent the SOC over the OCV for
different preset charging currents. Shown in black are the calculated regression lines, which
are determined by linear fitting.

(a) Current Ipreset = 15 A (Pnominal = 1.44 kW) (b) Current Ipreset = 35 A (Pnominal = 3.36 kW)

(c) All currents with different regression functions.

Figure 3. OCV–SOC relation results: (a) Ipreset 15 A; (b) Ipreset 35 A; (c) data points of all measurements
from Ipreset 15 A to 35 A and different regression functions.

In Figure 3a good proportionality characteristics can be identified in a first approxima-
tion. At the upper end of the SOC boundary, the measurement points are congruent with
the regression line. The proportional behavior becomes increasingly worse at the lower
limit of the SOC, where potentially non-linear activation overpotentials occur. Within the
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SOC of 20 to 24%, the measured values and the regression line are no longer congruent,
with a discrepancy of 0.014 V of the OCV. By increasing the current from 15 to 35 A the OCV
is increasingly inadequately mapped at the lower limit as well as the upper limit of the SOC
and a parabolic shape becomes increasingly apparent. With the highest possible current of
35 A, the curved-shape of the blue measured values is at a maximum. The regression line
is only congruent with the linear function in the range from SOC 28.3 to 35.9% and from
60.8 to 71.2%. This equates to a percentage error of 2.68%. The error between the regression
line and the calculated single points in the middle of the SOC range is 0.013 V.

In order to quantitatively evaluate the change in slope and axis intercept of the linear
equations for all available currents, these and the corresponding OCV values at 20% and
80% are summarized in the table below:

The given linear equations show that the current has no significant effect on the slope
and the intercept. The limit of the OCV at 20% marginally rises with increasing current,
but can be omitted from consideration at a maximum difference of 0.011 V. The maximum
difference of SOC80 among the measured OCV with different charging currents is 0.012 V.
In the direct comparison of the deviations of the OCV of SOC20 and SOC80 occurring
between one another, the difference is 0.001 V. The results from the previous figures and
the table of linear equations indicate that there is no shift in the OCV–SOC dependence,
only a curvature that needs to be corrected. The model itself can represent the OCV–SOC
relation properly using a linear approximation. To enhance the OCV prediction itself, it
is recommended to evaluate the electrolyte imbalance during the battery operation and
use a rebalancing system. Thus, battery functionality and state of health are preserved.
In case electrolyte imbalance occurred, OCV boarders applied to the battery control can
shift and SOC prediction can be increasingly inaccurate. A shift within the OCV values does
not change the characteristic shape of the OCV, which is mapped by the simulation model.
The model itself can represent the OCV–SOC relation properly, even if imbalances shift the
SOC range. SOC boarder can be adjusted to values beyond 20 to 80%.

The simulation model has to be universally applicable for all preset currents after
one-time parameterization [1]. In the second step, all previously measured points are
summarized in yellow in Figure 3c. The linear regression line, calculated from the all
OCV measurement points, is shown in black. It forms the mean values of the linear
equation previously shown in Table 3. However, the absolute level of the OCV values
at the borders has still remained unconsidered. The manufacturer of Battery 1 specifies
an OCV of 1.29 V at 20% and 1.45 V at 80% SOC [10]. With the linear function, SOC20 is
1.299 V and SOC80 is 1.453 V, which are within the manufacturer’s measurement tolerance.
Compared to the yellow point cloud, however, the straight line does not show an opti-
mal shape. Therefore, we switch from linear regression to polynomial regression in the
third step. With polynomial degree 2, shown in blue color in Figure 3c, the SOC–OCV
correlation is improved. The limits are 1.294 V for SOC20 and 1.464 V for SOC80 and these
voltages are still within an optimal range. Thus, the conversion of the OCV to the SOC
is carried out using the function with degree 2, which minimizes the error caused by this
calculation operation.

Table 3. Parameters after linear regression of the individual measurement tests.

Preset Charge and
Discharge Current Linear Equation OCV at 20% SOC OCV at 80% SOC

15 A OCV(SOC) = 0.253x2 + 1.245 1.296 V 1.448 V
20 A OCV(SOC) = 0.260x2 + 1.243 1.295 V 1.451 V
25 A OCV(SOC) = 0.260x2 + 1.243 1.296 V 1.456 V
30 A OCV(SOC) = 0.258x2 + 1.253 1.395 V 1.459 V
35 A OCV(SOC) = 0.256x2 + 1.247 1.307 V 1.460 V
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3.2. Parametrization and Optimization of the Redox Flow Model

The following chapter shows results from each modeling step: raw data extraction (1),
raw data modification (2), optimized parameter calculation (3) and model validation (4).
The fitting parameters total capacity (CStor), current loss (ILoss), cell resistance (Ri) and cell
voltage (U0) are optimized following the mathematical approach in [1]. After successfully
parameterizing the model, the accuracy between the model and the raw data is validated.

3.2.1. Raw Data Extaction

Due to the existing simulation model, major differences are occurring between the raw
data and the actual data required for the model. The SOC limits of the simulation model
are at 20% and 80%. As the grey box model from [1] is linear, it provides the most accurate
values within the linear region of the status variables (e.g., SOC). Non-linearities are fitted
with a linear approximation of a self-discharge current. The pauses between measurement
series as well as lead times and other interruptions are removed from the raw data. Thus,
discharge cycles immediately transition to charge cycles and vice versa.

Figure 4 visualizes the raw data (shown in yellow and blue) of the charging and dis-
charging currents from 15 to 35 A, starting with the lowest preset current.
Positive slopes represent the charging, the remaining ones the discharging process.
Marked with the yellow gradient are those measuring points which are actually used
in the simulation model. The limits at which the model should cut off the data are marked
by black horizontal lines at 20% and 80% on the y-axis of the figure.

Figure 4. Visualization of the original and edited data from the simulation model.

Validations between the original source code published in [1] and the now modified
source code allow the first data set to be used independent of charging or discharging.
Thus, the data of the first charging cycle (hour 0 to 1.25) are included in the later parameter-
ization. The measurement failures occurring at hour 8.6; 14.4 and 14.6 express themselves
in jumps and are automatically excluded.

3.2.2. Raw Data Modification

In the next step, the raw data for SOC, voltage, and current is modified and values
are smoothed. This reduces the total data points for the following optimization routine to
20 values and thus saves calculation time. Consequently, the information from SOC and the
stack voltage is also limited to the same number. Representative for all recorded charging
and discharging processes, the following figures preset the smoothing of three parameters;
SOC, stack voltage and charge current for the 30 A cycle.
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The left side of Figure 5a shows in blue fluctuations due to the SOC–OCV conversion.
The fluctuations increase slightly up to 3% as the SOC increases. The smoothed values,
consisting of a total of 20 individual points, are shown in yellow. Due to the generally small
fluctuations of the raw data, the straight line from the smoothed values does not represent
a large deviation from the original data.

(a) Charging phase

(b) Discharging phase

Figure 5. Comparison of the raw data and modified data of the 30 A cycle for the: (a) charge phase;
(b) discharge phase.

The blue line in the middle of Figure 5a shows the raw data of the stack voltage over
time. During charging, the stack voltage has a proportional behavior in the range from
57.45 to 59.05 V. After that, the transition from Constant Current (CC) to Constant Voltage
(CV) takes place, which can be seen by the turn after hour 1.1. Shown in yellow are the
smoothed values, which only deviate from the raw data in the flattening transition to CV
(hour 1.1) until its end. The discrepancy here is 0.2 V.

The figure on the right describes the current of the charging process, indicated by the
negative signs with a maximum 60 A for two stacks. Contrary to the power-controlled
Battery 2, Battery 1 is current-controlled, thus a smaller fluctuation of the current value is
noticeable (c.f. Section 2.2). Therefore, the smoothing function in the current curve repre-
sents a very small deviation. During the CC phase, a constant current with fluctuations of
less than 0.3 A has been identified.
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Figure 5b illustrates the discharge process in contrast to the previous Figure 5a.
The fluctuations in SOC in blue are similar to those of the charging process. The du-
ration of the two processes is different, as the discharge time is around half an hour shorter
than the charging time.

In the discharge phase, proportionality of the stack voltage (middle figure) prevails in
the range from 51.90 to 48.70 V, whereby the voltage peak at one hour is to be neglected,
since it occurred due to a measuring device error. If the battery reaches the SOC value
of 36.94%, the voltage decreases faster. The smoothed curve is almost identical to the
measured values in the period from the start point to hour 1.5. With rising slope (hour
1.5 to 2.5) the modified data deviates from the raw data. The maximum deviation occurs at
hour 2.2 with a value of 2.1 V.

The right diagram of Figure 5b shows the sum of the currents of both stacks over
time. These current fluctuates in a range of 0.3 A, which is corrected by the smoothing
function. In the period from hour 0 to 2.2, the battery discharges with constant progression.
In this range, the voltage decreases from 60.7 to 52.9 A up to the end of the discharging
process. As in the stack voltage, the course of the raw data coincides with the smoothed
data over the entire course, except at the time when the current values start to decrease.
The maximum difference between the original and smoothed data is higher than 3.93 A
after 2.2 h, which corresponds to a deviation of 6.49%. Overall, the fluctuations in the raw
current values increase with increasing currents.

Using the smoothed data, the optimization process, presented in the following chapter,
calculates optimal values for the fitting parameters total capacity (CStor), current loss (ILoss),
cell resistance (Ri) and cell voltage (U0).

3.2.3. Calculating the Optimization Parameters

Due to the modified battery system and raw data, changes take place in the starting
conditions for the optimization steps and their step size. The selection of the realistic
initial values is essential for the optimization of the simulation model. The cell voltage,
total capacitance, current losses and cell resistance are the four optimization parameters.
The loop index and the step size influence the accuracy of the optimized parameters, as
these parameters define the frequency of the model calculation.

These adjustments present themselves as an iterative process and the re-adjustment
of start parameters takes place as often as necessary until suitable values are found.
Especially, the total capacity (CStor) plays an important role, as will be shown in more
detail later. The calculation of the start parameters provides a good starting point for the
iterations of the parameter optimization. The former and new initial values and step sizes
are shown in the following Table 4.

Table 4. Comparison of the preset parameters of the simulation model.

Current Values [1] New Values

Total capacity CStor [As] 8,700,000 (2416.67 Ah) 1,000,000 (277.78 Ah)
Current loss ILoss [A] 10.0 2.0
Cell voltage U0 [V] 1.375 1.2

Cell resistance Ri [Ω] 0.00075 0.0010
Loop index [%] 5 50
Step size k [-] 30 30

The total capacity is calculated using the data from the data sheet of Battery 1.
With a total capacity of 10 kWh and an average measured stack voltage (36 V), the ca-
pacity CStor of the battery is calculated. As the leakage current is an optimized value
representing internal electrochemical phenomena, it can not be measured by sensors.
The theoretical cell voltage cannot have a large deviation from the original value of
Battery 2, as both systems are based on vanadium electrolyte. The start value of the
cell voltage is therefore set only a minimum lower than the previous value. After the first
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attempts of optimization, a slightly higher value for the internal resistance Ri and for the
capacity CStor is obtained and the starting value is slightly increased. While the calculated
battery capacity from the manufacturer is set to 10 kWh (208.33 Ah, 48 V), the optimized
start value is set 25% higher. Due to some iterations in advance, the initial value of CStor
changes from previously 749,988 As (208.33 Ah) to 1,000,000 As (277.78 Ah).

The step size, on the other hand, has a large influence on the screening rage of the
capacity during the iterations. To determine the smallest possible error between model and
raw data, the screening range and thus the resolution is increased from 5 to 50% for this
study. The step size remained at the original value. An automation or calculation of the
step size and the loop index is not possible. For this, a minimum of the model error must
be found, without exact knowledge about its position.

According to the simulation model explained by [1], three optimization iteration steps
take place. These are marked in Figure 6 by s1 to s3. These steps are used to minimize
the deviation error between model and raw data for different values of CStor. As the error
calculation is based on the method of the least square sum (LSS) and is added for all state
variables (current, voltage, and SOC) it is unitless. The first two iterations s1 and s2 occur
with a fixed step size, while s3 changes depending on the step size parameter.

Figure 6. Finding the local minimum of the parameter CStor after the three optimization steps.

The progress of LSS within the screening rage of CStor during s1 is illustrated in
yellow in Figure 6. The simulation model is given an initial value for the screening range
of CStor, which represents the theoretically possible capacity of the battery system. The
loop index kCStor is used to set the resolution of the screening as a percentage of the start
value. In the case of the first battery system, this extends from 138.5 Ah to 415 Ah (starting
value = 277.77 Ah; kCStor = 0.5). In general, the reduction of the step size causes an increase
of the scan range.

The blue data points in Figure 6 indicate the local minimum of the CStor between
250 Ah and 275 Ah. In step s3, the model error (LSS) is minimized from initially 28,000 to
around 16,000. After completion of the three steps, the local minimum is calculated at
a value of CStor of 255.66 Ah.

The results do not show a Gaussian bell curve shape for the optimization steps, as the
original results of the dissertation by Zugschwert using Battery 2 might have suggested [9].
The optimization results of this study indicate a rapid left-shaped optimization, while the
right side of the curve increases more slowly.
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Figure 7 visualizes the third and thus most exact optimization step of the variables
CStor and ILoss over the preset step size of k = 60. For each step size the differential-algebraic
equation system is solved with the respective parameters.

Figure 7. Third optimization step of CStor and ILoss with preset step size of k = 60 .

Due to the pre-programmed values of the CStor, its course in this figure is a linear
progression (red line). With the limitation to the step size, the number of measuring
points of CStor and ILoss is also limited to 60 values. For the fitting parameters (internal
resistance Ri, cell voltage U0, current losses ILoss) an optimization function is used to solve
the differential-algebraic equation system with a minimal LSS. The blue line shows the
progress of the current losses ILoss over the step width. The vertical black dashed line
shows the minimum of the calculated model deviation. During the screening range the
value ILoss ranged from 1.97 to 4.24 A. The value with the smallest deviation from ILoss is
4.24 A. Associated with this is the smallest error of CStor at a value of 255.66 Ah. The latter
is a battery-specific value and is lower than the manufacturer’s value due to various factors.
These include the reduction in capacity due to secondary reactions.

Figure 8 shows the optimization parameters Ri and U0 over the pre-configured step
size of k = 60. Shown in blue is the calculation of the cell internal resistance Ri, which varies
between 1.75 mΩ and 2.05 mΩ for the third optimization step. The calculated optimum is
at 1.8 mΩ. The optimum of the cell voltage U0 is set at a value of 1.33 V with.

The two parameters are mostly dependent on the battery system and hence comparable
with the dissertation of Zugschwert [9]. By considering single cells, the starting and
optimum values must be close to those given in the thesis. In this respect, the calculated
results of the optimization parameters allow a first plausibility check. In order to check
the determined internal resistance Ri and the cell voltage U0, the optimum parameters
calculated in Figure 8 with 0.645 Ω and 1.376 V. are applied for the comparison. While the
deviation between the thesis in [1] and this study is 155% for the internal resistance, the
cell voltage is only 24.7% lower than the optimum value according to the thesis [1].

The reasons for the deviations are versatile. Zhou et al. [25] shows that the stack
voltage is dependent on various parameters. These include the SOC, the current density
and the flow rate. Thus, the starting parameters for determining the internal resistance
are within the voltage range of 1.05 to 1.8 V. The range of application is between 10% and
90% SOC. For the selection of the start parameters, the approach is intended that the start
parameters are set at the lower limit of the voltage range. This should ensure that the
determination of the correct minimum takes place over the entire calculation range [25].

Moreover, the internal resistance is influenced by numerous factors and parame-
ters. The electrode has the most influence, followed by the membrane and the electrolyte.
Due to the electrolyte, the cell resistance is also dependent on the SOC [26]. Since the individ-
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ual cell components are not known, only a qualitative plausibility check of the cell resistance
can be performed. Recent studies provide a cell resistance between
0.87 Ωcm2 and 1.5 Ωcm2 [27–29]. Multiplication of the calculated value for Ri of
0.18 mΩ with the surface size of the single cell approximated with 682 m2, results in
1.23 Ωcm2. The resistance Ri calculated by the model is in the range determined by other
studies and is therefore trustworthy.

Figure 8. Third optimization step of U0 and Ri with preset step size of k = 60.

3.3. Validation of the Simulation with Real Measurement

In order to be able to make conclusions about the quality of the simulation model,
the measured data and the calculated data are compared in Figure 9. The stack voltages
and the SOC, calculated by the simulation model, are shown in blue. The raw data are
shown in green, which are directly derived from the measurement tests and were used for
parameterization. This represents the final step of the validation and clearly visualizes the
deviation between the model and the real data.

Regarding the stack voltages, it becomes apparent for all current curves that the
simulation corresponds only very vaguely to the real measured data. Both curves are only
slightly congruent or not congruent at all. However, the voltage curves over the entirety of
the preset measurement voltages have one thing in common: the slope of the simulation
lines is almost parallel to the CC phases of the charging processes. Thus, the assumption
arises that the mathematical optimization routine is not suitable for the calculation of
a charging process with CC and CV phase. More details are shown in the next figure, which
illustrates the difference between simulated and measured data.

The influence of the current strength is essential for the amount of discrepancy between
simulated and actual data [9]. This is where the real complexity of the Nernst equation
becomes apparent. Linear and non-linear regions exist over the course of the voltage.
During the discharge, mass transport phenomena occur at the transition of the electrolyte
to the electrode [30]. These non-linearities are particularly noticeable in the range of 30 A
and 35 A discharge cycles. There, the voltage decreases almost linearly to a value of 46.6 V.
After that, a sharp drop in this value can be seen. The approximated simulated value
is nevertheless linear, which represents a considerable discrepancy between simulation
and real data. This further limits the scope for the application, and thus narrows the SOC
limits. Zugschwert [9] assumes that no limiting current densities and extreme states of the
voltage profile are reached near the SOC limitations limiting the prediction capabilities of
the model.
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(a) Voltage with Ipreset= 15 A. (b) SOC with Ipreset= 15 A. (c) Voltage with Ipreset= 20 A. (d) SOC with Ipreset= 20 A.

(e) Voltage with Ipreset= 25 A. (f) SOC with Ipreset= 25 A. (g) Voltage with Ipreset= 30 A. (h) SOC with Ipreset= 30 A.

(i) Voltage with Ipreset= 35 A. (j) SOC with Ipreset= 35 A.

Figure 9. Comparison of the original raw data with the simulation data with preset current Ipreset

from 15 A to 35 A based on SOC and voltage.

Concerning the SOC, the simulated values almost completely map the progression of
the measured data. Since the raw data are similar to a linear course, the previous assump-
tion is confirmed that straight-line developments of the parameters can be reproduced
much better.

Accordingly, the limits of the simulation model are as follows. At lower currents, the
behavior between 20% and 80% can be reproduced very well. As the current increases, the
accuracy of the model decreases towards the end of the discharge process due to increasing
non-linearities in the voltage profile. The validity range is reduced to a SOC between 20%
and around 70%. In order to be able to assess the discrepancy and its effects during the
charging phase more accurately. The previously described assumption is examined to
see how the accuracy between simulation and measured data differs when the horizontal
voltage curve (CV phase) is removed. The modified measured data was then re-extracted,
smoothed and parameterized. The result is illustrated and discussed in more detail below.
All separate illustrations are shown in Figure 10.

Over all current levels, it becomes apparent in the CC range of the charging phase that
the discrepancy increases with time. This is shown in Figure 11a from the beginning of
each graph to their first maximum. The error here is between 1.73 V and 3.64 V. As already
mentioned, this discrepancy increases with rising charge current, since the CV phase also
becomes higher. The difference between simulation and measured data drops between 0 V
and 2.3 V at the end of the charging phase. If the CV phase is reached during the charging
process, its constant voltage value ensures a reduction of the deviation between model and
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measured data. Since the calculated course of the voltage is almost linear, the measurement
error also reduces with constant behavior.

(a) Voltage with Ipreset= 15 A. (b) SOC with Ipreset= 15 A. (c) Voltage with Ipreset= 20 A. (d) SOC with Ipreset= 20 A.

(e) Voltage with Ipreset= 25 A. (f) SOC with Ipreset= 25 A. (g) Voltage with Ipreset= 30 A. (h) SOC with Ipreset= 30 A.

(i) Voltage with Ipreset= 35 A. (j) SOC with Ipreset= 35 A.

Figure 10. Comparison of raw data with simulation data with preset current Ipreset from 15 A to 35 A
based on SOC and voltage with CV phase excluded.

All curves show better results for the discharge cycles than for the charge cycles.
However, this statement does not apply to the end of the discharge phase, since the voltage
falls drastically at high discharge currents. The curves show a discrepancy of only 0 to
1.00 V, especially in the lower current range. Focusing on the end of the discharge phase
at currents of 30 A and 35 A, the voltage drop explained above can only be represented
very poorly in the model. The maximum deviation between the simulation model and the
measured data is just over 8 V.

The difference between the measurement series and the simulation model are shown
in Figure 11a,b. A time shift of the discharge cycles takes place by removing the CV phase
of the in the charge cycle. The comparison between the errors in voltage prediction with
and without CV phase clearly show that the discrepancy between simulation and raw data
decreases. Thus, the error without CV phase is at a maximum of less than 1 V. Prior to this, it
was at 3.64 V, which represents a discrepancy reduction of 72.5%. These results corroborate
the conclusion that the simulation model can be parameterized less accurately with a CV
phase. The previously mentioned discrepancy between raw data and simulation model at
the end of the discharge process illustrates this effect. As this discrepancy depends on the
linear approximation used in the model, non-linearities cannot be mapped adequately. At
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discharge currents of 30 A and 35 A, the difference decreases with 0.17 V and 0.52 V, but
increases by 0.1 A at discharge current of 25 A.

(a) Original Data.

(b) Modified data without CV phase.

Figure 11. Error deviation from the simulation model to the raw data with the: (a) original data;
(b) modified data without CV phase.

Overall, the accuracy of the model without CV phase is similar to the results ob-
tained in [9]. The deviation curve presented in the dissertation is very close to those in
Figure 11b. Furthermore, with the data sets of Battery 2, the accuracy decreases at high
currents towards the end of the discharge cycles. The same can be observed in the results
with data sets of Battery 1. CV phases do not exist in the raw data of Battery 2 data because
the upper cut-off voltage of 63 V is not reached [12]. As a result, the model is designed
to have a linear approximation of the charge and discharge curve and shows inaccuracies
associated with CV phases [1,9].

In order to evaluate the effects of removing the CV phase from the data set, the
following Table 5 compares the optimization parameters.

Basically, the parameters CStor and U0 do not show a large deviation between both
parameterizations. The total capacity CStor decreases by 0.65 Ah (0.25%) without CV phase.
The parameter U0 decreases by 0.03 V, which corresponds to 2.21% when there is no CV
phase in the data set. Larger deviations are shown for ILoss, which is 0.41 A higher with CV
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phase. This results in a difference of 9.67%. The situation is even higher for cell resistance
Ri. This is 0.0006 Ω (25%) higher after parameterization with CV Phase than with the
original data.

Table 5. Comparison of the optimization parameters with and without CV phase after parametrization.

With CV Phase Without CV Phase

Total capacity CStor [Ah] 255.66 255.01
Current loss ILoss [A] 4.24 3.83
Cell voltage U0 [V] 1.33 1.36

Cell resistance Ri [Ω] 0.0018 0.0024

4. Conclusions

Using the new data of a 5 kW VRFB, the simulation model proposed in [1] is validated.
Differences in the experimental design between the new raw data (Battery 1) and the
original measurements from [1] (Battery 2), make it impossible to use the model without
modification. Thus, it has been identified that a universal approach for the experimental
design is necessary to enable model functionality independent of the VRFB and BMS used.

As the model validation and optimization is based on the state variables current,
voltage and SOC, these informations are essential. The SOC is not measured directly, but
some VRFBs convert other data, e.g., OCV measurements within the BMS. In Battery 2
the SOC has been accessible via the BMS. Contrary, the BMS of Battery 1 did not calculate
the SOC internally and only OCV data are measured during the cycles. For this purpose,
possibilities are presented to calculate the SOC for VRFB systems and the usability of these
methods is prioritized within the scope of this study.

Most suitable is the SOC–OCV relation, as OCV data has been recorded in high resolu-
tion during the measurement campaign of Battery 1. Although a linear relation between
SOC and OCV has been reported in literature within defined boarders, measurements from
Battery 1 show an increasingly non-linear behavior at the SOC boarders (20% and 80%)
with increasing current. Starting with a linear regression, the SOC–OCV relation could not
be mapped adequately for all currents. A polynomial regression is applied using all data
sets and SOC–OCV conversion has been performed to enable further model validation.

Originally the simulation model was based on four modeling steps; (i) raw data extrac-
tion, (ii) raw data modification, (iii) optimization and parameter fitting, and
(iv) model validation. The comparison and conversion of experimental design described
above has been added as a raw data preparation step. After adapting the data set to
the input schematics of the simulation model, the parameterization can be performed by
calculating the four optimization parameters; ILoss, CStor, Ri, and U0. Consecutive itera-
tion loops lead to a minimal error between raw and simulated data for voltage, current,
and SOC and associated optimization parameters are stored. In the last modeling step,
time-dependent analysis of voltage, current, and SOC between the model and raw data is
performed. Compared to the original modeling results from [1], raw data can be mapped
inaccurately for all voltage profiles.

For this purpose, a new parameterization was carried by excluding the CV phase
from the voltage raw data. As the original VRFB system was power-controlled, no
CV phase has been present in [1]. The results show that the model represents the raw
data sufficiently. As the mathematical description of the battery only map linear behavior,
the transition from CC to CV phase in the voltage profile during charging lead to a parallel
displacement and low accuracy of the model. During the discharge phase no CV has been
present and the voltage profile can be mapped comparable to [1]. As already discussed
in [1], non-linear voltage drops at the end of the discharge cycle cannot be mapped due to
linear approximation.

The experimental design of two different VRFB systems has been analyzed to enable
model functionality independent of the input data used. Besides stack voltage and current,
the experimental design should either use OCV with subsequent SOC–OCV or conversion
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or SOC values from the BMS. In case OCV measurements are used, it is recommended to
clarify the electrolyte composition to avoid incorrect SOC assessment due to cross-over
phenomena or irreversible side reactions. Moreover, power-controlled operation mode
without transition from CC to CV phase improved model prediction. If current-controlled
operation is present, it is recommended to separate CC and CV for adequate simulation of
the voltage profile.

For future research, the differential-algebraic system can be improved to map the non-
linear behavior of the battery at the end and beginning of the cycles.
Additionally, the accuracy of the simulation model can be investigated if the CV phase is
automatically removed and subsequently parameterized for the original data sets used.
The analysis of electrochemical phenomena for the OCV–SOC behavior lies beyond the
scope of this work and could be investigated within another study. The authors would
recommend repeating the OCV measurements under different currents and in the best case
to include electrolyte analysis to clarify and understand the parabolic trend and potential
shifts in the electrolyte due to cross-over.
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