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Abstract: The development of a stable catalyst with excellent catalytic performance for the oxygen
evolution reaction (OER) in alkaline environments is a key reaction in various electrochemical
technologies. In this work, single-atom catalysts (SACs) systems in which scandium (Sc), a rare earth
metal, with different N/C coordination environments (ScNxC3−x@SACs and ScNxC4−x@SACs of
Sc) were systematically studied with the help of density functional theory (DFT) calculations. The
results of the structural thermodynamic stability analysis indicated that the ScNxC3−x@SACs and
ScNxC4−x@SACs systems are more stable with increasing N atom doping concentration around
Sc. The ScN3, ScN3C, and ScN4 with better stability were selected as the objects of subsequent
research. However, ScN3 and ScN4 form Sc(OH)2N3 and Sc(OH)2N4 structures with double-hydroxyl
groups as ligands because of the strong adsorption of OH species, whereas the strong adsorption
of OH species by ScN3C causes structural instability. Here, the overpotential (η) of Sc(OH)2N3 was
1.03 V; Sc(OH)2N4 had two reaction paths and the η of path 1 was 0.80 V, which was 0.30 V lower
than that of path 2. Therefore, Sc(OH)2N4 can be used as a stable and promising OER catalyst
with easy desorption of O2 and good cycle performance. The hydroxyl ligand modification of Sc-
NxC3−x@SACs and Sc-NxC4−x@SACs provides a method for studying the catalytic performance of
other rare earth elements.

Keywords: oxygen evolution reaction (OER); N/C coordination; hydroxyl ligands; DFT calculation

1. Introduction

The current society is confronted with the challenge of increasing energy demand
and the associated environmental problems caused by energy consumption. As a result,
the global research community has prioritized the search for pollution-free, sustainable,
and efficient energy production/energy conversion technologies [1–3]. In this regard,
the development of rechargeable fuel cells and metal–air battery technologies has been
perceived as a promising clean and sustainable energy technology because of its high energy
conversion efficiency and power density [4,5]. In these energy conversion technologies,
the anodic half-cell reaction, i.e., oxygen evolution reaction (OER), plays a vital role in the
efficiency of regenerative fuel cells and metal–air battery technologies [6–8]. Due to the
instability of transition-metal-based materials in acidic circumstances, electrocatalytic OER
is typically carried out in alkaline conditions [9]. Nonetheless, the OER is often deemed the
main obstacle in rechargeable fuel cell and metal–air battery technologies because of the
slow and sluggish kinetics of this four-electron transfer reaction, which restricts the high
efficiency of these energy conversions [10,11].
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Extensive research and a wide range of engineered catalysts have been proposed in
an effort to increase OER kinetics [12–15]. Among them, RuO2 and IrO2 have exhibited
excellent OER catalytic activities [16,17]. However, both are unstable during the reaction
process and are oxidized to form RuO4 and IrO3, respectively, which preferentially dissolve
in solution [18]. Furthermore, Ru and Ir are precious metals with scarce resources and high
costs, making them unsuitable for large-scale, commercial applications [19]. Thus, it is
essential to develop excellent alternative electrocatalysts for OER with better stability and
to explore affordable OER electrocatalysts with good catalytic activity.

On the other hand, carbon-based catalysts, such as graphene, have advantages such
as a large specific surface area, high acid/alkaline stability, and excellent electronic con-
ductivity [20,21]. In recent years, carbon-based catalysts have become the focus of OER
research. However, pure graphene is catalytically inert [20,22]. Heteroatom doping, es-
pecially N doping of graphene, is found to be the most effective method to improve the
intrinsic activity of the catalyst because of the variation in the spin density and charge
of the carbon atom next to the doped N atom, together with high specific surface area,
excellent conductivity, and outstanding electrochemical properties [23–26]. Single-atom
catalysts (SACs), in which a central single metal atom surrounded by different doping
atoms forms coordination and disperses in the supporting material, have gained special
interest for various catalytic reactions because of their excellent stability, maximum utiliza-
tion of the metallic electrochemically active surface area, strong metal–support interactions,
and unique properties [27–29]. Metal–organic frameworks (MOFs) have proven to be a
promising approach for SAC preparation. Carbonization of MOFs can result in N-doped
carbon materials with N/C coordination, which provides an abundance of anchor points
for the fixation of a single metal atom, resulting in SAC stability [30,31]. Accordingly, the
synthesis of single transition metal–nitrogen moiety-supported carbon catalysts (M–N–C,
M = Fe/Co, etc.) as OER catalysts has been extensively investigated, and these are the
most widely studied SACs [32,33]. Unfortunately, the instability of Fe–N–C SACs limits
their further application owing to the high Fenton catalytic activity of Fe [34]. On the other
hand, the OER overpotential in the Co-N-Gra system is 0.69 V. In addition, due to cobalt’s
toxicity, poisoning can happen during the manufacturing and recycling processes, and
cobalt leakage also results in battery damage [35].

Rare earth (RE) elements, such as Sc, Nd, Gd, and Ce, have attracted increasing
attention in the field of electrocatalytic applications because of their unique multi-electron
properties and electronic structure, high electrical conductivity, good stability, abundant
reserves, and excellent electrocatalytic activity [36–42]. In particular, Sc atoms have the
characteristics of a small atomic radius, suitability for single/double atom vacancy doping,
and multi-electron properties [43–45]. Moreover, it has been well established that SACs
with a Sc atom as the active site of the catalytic center have a good catalytic effect on
CO oxidation and the reduction of CO2 and N2 [46–48]. Sc@SACs are synthesized on
a carbon support with high yields in the literature. Catalytic activities are observed in
Sc1/NC SACs despite the fact that Sc-based nanomaterials are typically inert to room
temperature electrochemical processes. This is because N and C coordination alters the
local electronic structure of Sc single atoms. The catalytic properties of rare earth single
atoms not only showcase the miraculous impact of SACs, but also advocate for the use of
rare earth catalysts in electrochemical reactions that take place at room temperature [46–48].
Therefore, Sc@SACs systems with varied N/C coordinations as OER catalysts for increased
OER kinetics are worth investigating. However, there has been little research on the use of
Sc for OER applications. As a result, we investigated the effect of Sc and its coordination
environment on the OER in alkaline media.

In this work, Sc@SACs systems with different N/C coordination ratios (4 ScNxC3−x@SACs
and 7 ScNxC4−x@SACs) were studied in detail by performing density functional theory (DFT)
calculations. Based on the calculation of the thermodynamic formation energy, the influence of
N/C coordination on ScNxC3−x@SACs and ScNxC4−x@SACs was studied. Thermodynamic
stability screening indicated that the formation energies of the ScN3, ScN3C, and ScN4 structures
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were negative, making them more stable than other structures. Further, simulation analysis in
an alkaline environment found that ScN3 and ScN4 can exist as Sc(OH)2N3 and Sc(OH)2N4,
respectively, because of the strong adsorption of OH species. However, the Sc (OH)2N3C
structure formed by ScN3C was unstable. The catalytic reactions of Sc(OH)2N3 and Sc(OH)2N4
structures with double-hydroxyl ligand modification for the OER under alkaline conditions
were also studied. Finally, the influence of N atom doping concentration, also known as different
N/C coordination and hydroxyl ligand effects, on the catalytic performance of the structure
was described.

2. Computational Details
2.1. Methods

Dmol3 [49] is the algorithm used for any calculations involving density functional
theory with no restrictions on spin. Electronic exchange and correlation effects were
described using the generalized gradient approximation [50] with the Perdew–Burke–
Ernzerhof functional. After taking into account the ion–electron interaction in the DFT
semi-core pseudopotentials [51] and the double numerical plus polarization [52] basis
sets, we proceeded to the core treatment. Grimme’s [53] method was used to calculate
the dispersion’s share. Energy convergence tolerances were 1× 10−5 Ha, maximum force
tolerances were 0.002 Ha Å−1, and displacement tolerances were 0.005 Å. To hasten the
convergence, an orbital occupancy smear of 0.005 Ha was used. The calculations used a
cutoff radius for global orbits in actual space that was of fine quality. Electronic structure
calculations were performed on a 15 × 15 × 1 k-point grid, whereas geometry optimization
and energy calculations were performed on a 5 × 5 × 1 k-point grid in the Brillouin zone.
For this exercise, we assumed that water has a dielectric constant of 78.54 and utilized the
conductor-like screening model [54] to mimic this environment.

2.2. Models

To begin, a 5 × 5 × 1 periodic graphene supercell was built and separated by a 30 Å
vacuum layer to eliminate periodic interactions. By substituting a Sc atom for either one
or two carbon atoms, ScNxC3−x@SACs and ScNxC4−x@SACs were created. In place of
the C atoms around the central Sc atom, the extremely electronegative N atoms acted
as anchors. There were four structures with three coordinations (Sc-NxC3−x@SACs) and
seven structures with four coordinations (Sc-NxC4−x@SACs). Three distinct architectures of
ScN2C2 are depicted in Figure 1. ScN2C2-h is a hexa-atomic ring composed of two nitrogen
atoms, two carbon atoms, and a Sc metal atom, whereas ScN2C2-p is a penta-atomic ring
composed of two nitrogen atoms, two carbon atoms, and a Sc metal atom. The two N atoms
in ScN2C2-o are situated on either side of the Sc atom.

2.3. Computational Contents

(1) Formation energy (∆E f )

The ∆E f of different ScNxC3−x@SACs and ScNxC4−x@SACs structures can be calcu-
lated as follows:

∆E f = ESc−NxC3−x + (x + 1)µC − EGraphene − µSc − xµN , x = 0, 1, 2, 3 (1)

∆E f = ESc−NxC4−x + (x + 2)µC − EGraphene − µSc − xµN , x = 0, 1, 2, 3, 4 (2)

where ESc−NxC3−x and ESc−NxC4−x are the total energies of the optimized structures of
ScNxC3−x@SACs and ScNxC4−x@SACs, respectively. EGraphene represents the total energy
of a single layer of a 5 × 5 × 1 graphene supercell. µC, µSc, and µN are the chemical
potentials of C, Sc, and N atoms, respectively. µC is equal to the energy of each carbon atom
in the 5 × 5 × 1 graphene supercell, µN is the half energy of the isolation N2 molecule, and
µSc is the energy of one Sc atom, which can be obtained from the total energy of the Sc
unit cell divided by the number of atoms. x + 1, x + 2 and x are the numbers of C atoms
discharged from the original graphene and doped N atoms, respectively.
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(2) Adsorption energy (∆Eads)

The ∆Eads of intermediates can be calculated as follows:

∆Eads = E∗n − E∗ − En (3)

where E∗n, E∗, and En are the total energies of the ScNxC3−x@SACs/ScNxC4−x@SACs with
n adsorbed species, the ScNxC3−x@SACs and ScNxC4−x@SACs, and the isolated n species,
respectively.

(3) Gibbs free energy variation (∆G)

The ∆G of each reaction step can be calculated as follows [55]:

∆G = ∆E + ∆ZPE− T∆S + ∆GU + ∆GpH (4)

where ∆E, ∆ZPE, and ∆S represent the variation in the reaction energy, zero-point energy
(ZPE), and entropy, respectively. T is 298.15 K, which represents the room temperature.
∆GU = −neU, where n is the number of electron transfers during these elementary re-
actions, U is the electrode potential, and ∆GU is the free energy contribution related to
the applied electrode potential U. ∆GpH = KBT × ln10× pH, where KB is the Boltzmann
constant, and the value of pH is 14 in an alkaline environment.

(4) Reaction steps of the OER in an alkaline environment

OH + *→OH* + e (5)

OH* + OH→O* + H2O (l) + e (6)

O* + OH→OOH* + e (7)

OOH* + OH→O2 (g) + * + H2O + e (8)

* represents the adsorption sites on the catalyst surface. *OOH, *O, and *OH are the
oxygen-containing intermediate products of the OER process. g and l represent the gas and
liquid phases, respectively.

The overpotential of the OER is defined as follows (ηOER):

ηOER = [∆G1, ∆G2, ∆G3, ∆G4]max/e − 0.402 V (9)
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3. Results and Discussion
3.1. Stability of Sc and N Co-Doped Graphene

First, the constructed structures (ScNxC3−x@SACs and ScNxC4−x@SACs) were opti-
mized to obtain the formation energies (∆E f ) of different Sc and N co-doped graphene
structures, which can be used to analyze the influence of the N atom doping concentration
and different coordination environments on structural stability. The formation energies of
the different structures are shown in Figure 2, and the detailed values are listed in Table S1.
The results showed that the structures of ScN3, ScN3C, and ScN4 were more stable than the
other structures because of the negative value of the formation energy. In general, lower
∆E f values indicate higher structural stability. Furthermore, with the increase in the N
atom doping concentration, the ∆E f values of the ScNxC3−x@SACs and ScNxC4−x@SACs
systems with three and four coordinations, respectively, decreased, and the structures
were more stable, which is consistent with the phenomena of other systems studied by
predecessors [56,57]. Figure 2 shows a close to negative correlation between the concentra-
tion of N atoms and formation energy, regardless of the structure of ScNxC3−x@SACs and
ScNxC4−x@SACs. Moreover, in the four-coordination ScNxC4−x@SACs system, although
the structures of the three kinds of ScN2C2 catalysts were different, their formation en-
ergies were similar, which is consistent with previous results [57]. However, Sc was not
in the same horizontal plane as the underlying graphene in either optimized structures
of ScNxC3−x@SACs or ScNxC4−x@SACs. The reason for this is that the atomic radius of
Sc is larger, and the Sc atom bulges on the surface, making some structures with less N
atom doping concentration more unstable. However, the bulge of the Sc atom in the stable
structure is more favorable for the adsorption of reactants. Because the incorporation of N
atoms can alter the structure’s electronegativity, the charge of C and N atoms coupled to Sc
is higher, which results in the structures exhibiting increased levels of stability. Moreover,
we demonstrated that the structures of ScN3 with three coordinations and ScN4 with four
coordinations were more stable. Above all, different N/C coordination affected the stability
of ScNxC3−x@SACs and ScNxC4−x@SACs, with more N atoms resulting in a more stable
structure.
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Figure 2. Formation energy (∆E f , eV) of the various structures of (a) ScNxC3−x@SACs and
(b) ScNxC4−x@SACs.

The partial densities of states (PDOS) of the ScNxC3−x@SACs and ScNxC4−x@SACs
systems are shown in Figure 3. The analysis of Figure 3 shows that all the models passed
through the Fermi level, indicating that all the structures had excellent conductivity. Fur-
thermore, an effective overlap of the s, p, and d orbitals was observed, indicating that Sc
formed bonds with the neighboring N and C atoms. In addition, the PDOS of the central
part connected to Sc was studied. The overlap of the s, p, and d orbitals in the PDOS of
the central part was more obvious, indicating that the Sc atom formed a bond with the
base. The peak value of the d orbital rose with the increase of N atom doping concentration,
which is similar to the law of formation energy in the ScNxC3−x@SACs system. However,
in the ScNxC4−x@SACs system, although the peak value of the d orbital of ScN3C was
equivalent to three types of ScN2C2 structures, it still showed an overall upward trend.
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Hence, different N/C coordination can significantly affect the electron distribution of the
structure. The higher the concentration of N atoms is, the higher the peak value of the d
orbital.
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Figure 3. Partial densities of states (PDOS) of various structures of (a–d) ScNxC3−x@SACs and
(e–k) ScNxC4−x@SACs.

Based on Mulliken charge analysis, charge transfer occurred between the Sc, N, and
C atoms. The electron transfer number is shown in Table S2, which indicates that the
ScNxC3−x@SACs and ScNxC4−x@SACs structures formed chemical bonds, and the stability
of the structure was explained from the side. In addition, different coordination structures
followed the same law: with an increase in the N atom doping concentration, more electrons
are lost by the Sc atom and gained by the N atoms, and the structure becomes more stable,
which is consistent with the law of formation energy. Mulliken charge analysis for three-
coordination ScN3 and four-coordination ScN4 with more stable and more negative values
of the formation energy is further discussed, as shown in Figure 4. The charge distribution
was symmetrical, corresponding to a symmetrical structure, which is consistent with the
conclusion reached by other scholars on the charge distribution of symmetrical graphene-
based materials [58,59]. The darker the color was, the more the charges on the structures
gain or lose.
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3.2. Adsorption Properties of the Intermediates

The adsorption capacity of the intermediates on the catalysts reflects their catalytic
performance. Therefore, a series of adsorption configurations was obtained by constructing
different intermediates and optimizing them in an alkaline environment. The adsorption
of OH species was the first priority, and it indicated the availability of the reaction. In
an alkaline environment, owing to the existence of a large amount of OH species and
H2O in the solution, the adsorption of OH species occurs as the first step in the OER. The
detailed adsorption structures for different numbers of OH species and H2O molecules
are shown in Table S3. Therefore, calculation of the adsorption energy of ScNxC3−x@SACs
and ScNxC4−x@SACs for OH species and H2O and the comparison of adsorption capacity
are prerequisites for subsequent work. As shown in Table S4, the value of the adsorption
energy of different structures for OH species was greater than that for water, which also
indicates that during the follow-up of the reaction process, H2O can be desorbed in the
structure to facilitate the reaction cycle. Moreover, with an increase in the concentration of
doped N atoms, the adsorption capacity of the ScNxC3−x@SACs structures for OH species
also increased. Although the rule of the ScNxC4−x@SACs system was not obvious, it still
showed a similar general rule. Among them, N/C coordination in all N environments had
the strongest adsorption capacity for OH species in ScNxC3−x@SACs and ScNxC4−x@SACs.
The results are shown in Figure 5.
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Figure 5. Adsorption energy (∆Eads, eV) of various (a) ScNxC3−x@SACs and (b) ScNxC4−x@SACs
structures with adsorbed OH species.

However, based on the structures of the model, we found that the structures had
a strong adsorption capacity for OH species. As the amount of OH species adsorption
increased, some structures in addition to ScN3 and ScN4 in the ScNxC3−x@SACs and
ScNxC4−x@SACs systems became increasingly unstable, as illustrated in Table S3. This
structural instability resulted in structural deformation, which is not conducive to the
study of the reaction and increases the experimental difficulty. However, after absorbing
sufficient OH species, the structures of ScN3 and ScN4 could exist stably as Sc(OH)2N3
and Sc(OH)2N4. When the structure adsorbed enough OH species, further adsorption of
OH species no longer occurred on the Sc atom, and they reacted with the ligand OH to
generate intermediate products, as shown in Table S3. The detailed results are as follows:
through structural optimization and DFT calculations, we found that three-coordination
ScN3 could adsorb up to three OH species, whereas four-coordination ScN4 could adsorb
up to four. When ScN4 adsorbed a fifth OH species, it no longer adsorbed it on the Sc
atom as a ligand but formed an OOH structure with a hydroxyl ligand and generated H2O.
While the ScN3 structure with three coordination groups adsorbed a fourth OH species, it
no longer adsorbed it on the Sc atom. As the number of adsorbed OH species increased,
the adsorption capacity of both for OH species decreased, as shown in Figure 6. Hence,
modification of the hydroxyl ligand weakened the adsorption strength of the structure to
OH species.
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Figure 6. The adsorption energy (∆Eads, eV) of ScN3 and ScN4 with different numbers of OH species.

Therefore, ScN3 and ScN4 structures are two types of bases that can stably exist
with two hydroxyl ligands modified in an alkaline environment and can be regarded as
Sc(OH)2N3 and Sc(OH)2N4, respectively. A structural diagram of both is shown in Figure 7.
Owing to the modification of the two hydroxyl ligands, the OH species adsorption capacity
of the structure was reduced, which is beneficial for promoting the next reaction. Catalysts
modified with hydroxyl ligand clusters displayed excellent OER performance [60,61].
Therefore, follow-up studies should be conducted.
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The cyclicity of the OER is highly dependent on the desorption of the product O2,
and as the reverse process of adsorption, the degree of desorption is determined by the
adsorption energy. The more positive the value of the adsorption energy is, the easier
the product desorption. Next, the adsorption energies of O2 on two bases with different
numbers of OH ligands were calculated, and the adsorption configurations are listed in
Table S5. Among them, the desorption of O2 occurred in two forms: one was side-on (both
oxygen atoms formed bonds with Sc atoms), and the other was end-on (only one oxygen
atom formed a bond with the Sc atom). As shown in Figure 8, the ScN3 and ScN4 structures
with double-hydroxyl ligands effectively desorbed O2 so that the catalytic reaction was
repeated. Moreover, both were more favorable for O2 desorption with an increase in the
number of hydroxyl ligands, and the value of the adsorption energy of O2 adsorbed by
Sc(OH)2N4 was positive, as shown in Table S6. In addition, an adsorption model of the
intermediates was constructed, as shown in Table S7. It can be seen from the optimized
structures (Table S7) that the adsorption configurations of Sc(OH)2N3 and Sc(OH)2N4



Batteries 2023, 9, 175 9 of 14

for O2 all existed in end-on model. With the modification of two hydroxyl ligands, the
adsorption capacity of the base for the next OH species was greater than that for water. The
adsorption energies of Sc(OH)2N4 and Sc(OH)2N3 structures for intermediate products
(OOH, O, and OH) are shown in Table S8. The values expressed that the intermediate
products (OOH, O, and OH) could be effectively adsorbed on the base. The stability of Sc
atoms with multiple adsorbates is shown in Table 1. This shows that the catalytic process
of the formation of intermediate products (O, OH, and OOH) was stable, and the formation
energy was negative.
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Figure 8. Adsorption energy (∆E, eV) of ScN3 and ScN4 with different numbers of OH ligands for
adsorbed O2.

Table 1. Formation energy data (∆E f , eV) of reactive species on Sc(OH)2N3 and Sc(OH)2N4.

∆Ef*OH ∆Ef*O ∆Ef*OOH ∆Ef*O2(endon) ∆Ef*H2O

Sc(OH)2N3 −2.44 −2.98 −1.21 −0.05 −0.70
Sc(OH)2N4 −1.89 −2.67 −0.94 0.25 −0.51

3.3. The Catalytic Activity of Sc(OH)2N3 and Sc(OH)2N4

To further investigate the catalytic performance of the Sc(OH)2N3 and Sc(OH)2N4
catalysts for the OER process, the Gibbs free energy change (∆G) and overpotential (η) of
each step of the reaction were calculated. First, ∆G*+OH→*OH and ∆G*OH+OH→*2OH were
calculated, and the results are listed in Table S9. These values clearly indicated that ScN3 and
ScN4 spontaneously generated Sc(OH)2N3 and Sc(OH)2N4, respectively, with two hydroxyl
groups as ligands in an alkaline environment. It was further proven that ScN3 and ScN4
have a strong adsorption capacity for OH species. Figure 9 lists the ∆G and η of Sc(OH)2N3
and Sc(OH)2N4 catalysts for each step of reaction in the OER, and the detailed data are
shown in Table S10. The potential determining step (PDS) of the reaction with Sc(OH)2N3
as the catalyst was *OH + OH→*O, and the overpotential was 1.03 V. This could be related
to the strong adsorption of OH species on the catalyst. Because of the strong adsorption
of OH species, formation of *O became more difficult, resulting in a higher overpotential.
Two reaction paths were found when Sc(OH)2N4 was used as the catalyst. In the second
step, there were two reaction pathways: *OH + OH→*O and *OH + OH→*2OH. The first
reaction path was the same as that of the Sc(OH)2N3 catalyst, and the second reaction path
changed to *2OH + OH→*OOH in the third step. The potential determining step of both
reaction paths was the second step: path 1: *OH + OH→*O, path 2: *OH + OH→*2OH. The
overpotentials were 0.80 V and 1.10 V, respectively. Additionally, because the ∆G2 of path
1 was 1.20 eV, which was 0.3 eV smaller than that of path 2, the reaction tended to proceed
to the first reaction path when Sc(OH)2N4 was used as the catalyst. It can be concluded that
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Sc(OH)2N4 with the reaction path *→*OH→*O→*O + *OH→*OOH + *OH→* is a suitable
catalyst for the OER.
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In addition, the possibility of producing H2O2 via side reactions was analyzed. For
Sc(OH)2N3, the *OOH + OH→*O + H2O2 reaction (∆G = 3.58 eV) was endothermic and
required more energy than the *OOH→*(∆G = −0.00 eV) reaction, which was exothermic.
For Sc(OH)2N4, the product of H2O2 was *OOH + OH→*O + H2O2 (∆G = 3.56 eV) and
*2OH + OH→*OH + H2O2 (∆G = 2.23 eV), nor is it greater than the energy needed for
*OOH→* (∆G = −0.34 eV) and *2OH + OH→*OOH (∆G = 0.17 eV). The specific ∆G values
are listed in Table S11. Hence, the likelihood of side reactions forming H2O2 was very low.
Therefore, Sc(OH)2N4 is a promising catalyst for the OER in alkaline environment.

3.4. The Origin of Catalytic Activity of Sc(OH)2N3 and Sc(OH)2N4

The PDOS of Sc(OH)2N3 and Sc(OH)2N4 and that of other atoms connected to Sc
are shown in Figure 10. The two structures passed the Fermi level, proving the electrical
conductivity of Sc(OH)2N3 and Sc(OH)2N4. In addition, by studying the PDOS of s, p, and
d orbitals, it is found that there is a certain degree of overlap between p and d energies,
indicating that the two hydroxyl ligands formed bonds with the Sc atoms. By comparing
the PDOS in the central region of Sc(OH)2N3 and Sc(OH)2N4, the peak shape of the p
orbital of Sc(OH)2N3 was found to be sharper than that of Sc(OH)2N4. This is because
the coordination number of Sc(OH)2N4 and the number of doped N atoms are greater.
The number of electrons obtained by the N atom was higher in the Sc(OH)2N4 structure,
which is consistent with the structure obtained by Mulliken charge analysis, as shown in
Figure S1.

Moreover, by comparing the PDOS of Sc(OH)2N3 and Sc(OH)2N4 with ScN3 and ScN4,
we found that the number of electrons in the p orbital of the structure decreased with the
modification of the two hydroxyl ligands, which can be obtained by comparing the area of
the PDOS of the two structures. The peak deformation of the p orbital was sharper with
the double-hydroxyl ligand modification. Second, the analysis of the PDOS comparison of
Sc(OH)2N4 with ScN4 and Sc(OH)2N3 with ScN3 shows that the peaks of the 3d orbitals
of Sc(OH)2N3 and Sc(OH)2N4 moved to the right, and the peak value dropped by almost
three times. The structure without double-hydroxyl ligands had sharper 3d orbital peaks.
This indicates that the presence of hydroxyl ligands can effectively change the properties of
the structure and enhance its catalytic activity. In addition, a charge chromatic difference
diagram was created by analyzing the Mulliken charges of Sc(OH)2N3 and Sc(OH)2N4,
as shown in Figure S1. Compared with the results of Mulliken charge analysis of ScN4
and ScN3, the symmetry of the electron gain and loss distributions of Sc(OH)2N3 and
Sc(OH)2N4 decreased under the modification of double-hydroxyl ligands. Compared with
the Mulliken charge analysis structures of Sc(OH)2N3 and Sc(OH)2N4, the gain and loss
charges of the main atoms were similar. Each N atom in the structure lost approximately
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the same amount of charge, but the N atom in Sc(OH)2N4 gained charge by a factor of three
compared to the N atom in Sc(OH)2N3. All these conclusions can be drawn from Table S12.
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(d) Sc(OH)2N4.

4. Conclusions

In this study, we explored the potential of Sc as an OER catalyst. Through DFT calcula-
tions, the structures of the ScNxC3−x@SACs and ScNxC4−x@SACs systems were optimized.
We concluded that the structures of both the ScNxC3−x@SACs and ScNxC4−x@SACs sys-
tems were more stable with increasing N concentration. Hence, the concentration of N
atoms can significantly affect the structural stability. In consideration of the N/C coordina-
tion in all N environments of ScNxC3−x@SACs and ScNxC4−x@SACs systems, ScN3 and
ScN4 were the most stable structures. Moreover, the ScNxC3−x@SACs and ScNxC4−x@SACs
systems exhibited a strong adsorption capacity for OH species in alkaline environments,
and Sc(OH)2N3 and Sc(OH)2N4 structures with double-hydroxyl ligands could exist stably
in alkaline environments. Sc(OH)2N3 and Sc(OH)2N4 could effectively desorb O2 and
H2O to ensure a repeated catalytic sequence for the OER. The potential determining step
(PDS) of Sc(OH)2N3 was *OH + OH→*O, and its overpotential (η) was 1.03 V. Sc(OH)2N4
had two reaction paths, and the potential determining steps of the two paths were as
follows: path 1: *OH + OH→*O; path 2: *OH + OH→*2OH (η1 = 0.80 V; η2 = 1.10 V).
In conclusion, Sc(OH)2N4 can be used as an effective catalyst for the OER because of its
reasonable overpotential and structural stability. Meanwhile, PDOS and charge transfer
analysis showed that double-hydroxyl ligands, as special modified ligands, could improve
the catalytic activity of the reaction. Furthermore, different coordination structures affect
catalytic activity. The method of preparing SACs based on metal–organic frameworks
makes possible the experimental study of Sc@SACs. It is expected that our research will
promote the development of rare earth catalysis.
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