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Abstract: Recently, the appeal of Hybrid Energy Storage Systems (HESSs) has been growing in
multiple application fields, such as charging stations, grid services, and microgrids. HESSs consist
of an integration of two or more single Energy Storage Systems (ESSs) to combine the benefits of
each ESS and improve the overall system performance, e.g., efficiency and lifespan. Most recent
studies on HESS mainly focus on power management and coupling between the different ESSs
without a particular interest in a specific type of ESS. Over the last decades, Redox-Flow Batteries
(RFBs) have received significant attention due to their attractive features, especially for stationary
storage applications, and hybridization can improve certain characteristics with respect to short-term
duration and peak power availability. Presented in this paper is a comprehensive overview of the
main concepts of HESSs based on RFBs. Starting with a brief description and a specification of the
Key Performance Indicators (KPIs) of common electrochemical storage technologies suitable for
hybridization with RFBs, HESS are classified based on battery-oriented and application-oriented
KPIs. Furthermore, an optimal coupling architecture of HESS comprising the combination of an
RFB and a Supercapacitor (SC) is proposed and evaluated via numerical simulation. Finally, an
in-depth study of Energy Management Systems (EMS) is conducted. The general structure of an
EMS as well as possible application scenarios are provided to identify commonly used control and
optimization parameters. Therefore, the differentiation in system-oriented and application-oriented
parameters is applied to literature data. Afterwards, state-of-the-art EMS optimization techniques
are discussed. As an optimal EMS is characterized by the prediction of the system’s future behavior
and the use of the suitable control technique, a detailed analysis of the previous implemented EMS
prediction algorithms and control techniques is carried out. The study summarizes the key aspects
and challenges of the electrical hybridization of RFBs and thus gives future perspectives on newly
needed optimization and control algorithms for management systems.

Keywords: hybrid energy storage systems; redox-flow batteries; key performance indicators;
coupling architecture; energy management system; prediction; control techniques

1. Introduction

In recent years, there has been considerable interest in Energy Storage Systems (ESSs)
in many application areas, e.g., electric vehicles and renewable energy (RE) systems. Com-
monly used ESSs for stationary applications are Lithium-Ion Batteries (LIBs), Lead–Acid
Batteries (PbAs), and Pumped Storage hydropower [1]. However, in the last decade, there
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has been a rapid rise in the use of Redox-Flow Batteries (RFBs) due to the possibility to inde-
pendently scale power and energy as well as attractive features, such as low self-discharge,
high efficiency, and long life [2,3].

In many applications such as microgrids, a single ESS is insufficient for meeting the
important system requirements. Hence, the use of multiple distinct ESSs, also known as
Hybrid Energy Storage Systems (HESSs), is needed to benefit from the complementary
characteristics of each single ESS. HESSs have received substantial interest over the previous
ten years, and research on the major aspects of HESS have been extensively carried out [4–7].
However, only a few studies have focused on HESSs based on RFBs [8,9].

While technological features such as materials, components, or stacking of ESS are
being constantly improved, stationary applications require advanced control and manage-
ment techniques to enable highly adaptable flexibility options in future grids. Management
Approaches for ESS should consider multiple decision criteria to optimize the operation
and design. Often, these criteria are only based on technical aspects written in the data
sheet, while application-oriented criteria are neglected. The technical approach focuses
on the storage technology itself and its functionality under different circumstances. The
application perspective describes how the storage system should perform and examines
the utilization purpose.

As a HESS consists of at least two electrically connected single storage components, both
the battery perspective of each component as well as the overall application perspective need to
be taken into account to develop advanced control strategies. The combination of battery and
application aspects leads to optimized dimensioning of the HESS itself. Figure 1 summarizes
the methodology presented in this study. Starting from single storage components (A/B/C...),
the evaluation of battery- and application-oriented criteria (step I/II) is performed for single
components, and the combination within the HESS results in complementary characteristics
and advantages. Moreover, the electrical layout meaning the optimized coupling architectures
for single components and design approaches are based on the selected criteria and the storage
technologies (step III). In the last step, the evaluation criteria determine the input parameters
for the Energy Management structure and optimization in step four.

Figure 1. Flow chart of the decision criteria for energy management approaches for HESS.

In this study, the proposed methodology (step one to four) is deeply studied based
on literature analysis, and results from two research projects, HyFlow and Open Mobility
Electric Infrastructure (OMEI), focusing on the hybridization of RFBs, are evaluated. The
goal is to summarize the status quo of recent developments in design and energy man-
agement approaches for HESS based on RFB. The presented methodology allows for the
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classification of ESSs based on key performance indicators (KPIs) to identify the most suit-
able candidates for hybridization (Section 2). An optimization strategy to identify optimal
electrical coupling architectures is performed using an exemplary HESS with an RFB and
an SC from one of the research projects (Section 3). Application scenarios are studied and
categorized to identify application-oriented criteria which need to be considered while
developing the Energy Management System (EMS) (Section 4.1). The energy management
structure, as core control component for all HESSs, will be studied deeply, and newly
available optimization and prediction approaches are analyzed for future perspectives
(Section 4.2).

2. Evaluation of Key Performance Indicators

KPIs help to characterize the behavior and enable comparison between different
storage technologies. They can be classified in battery- and application-oriented KPIs.
Materials or components used as well as design approaches, e.g., stacking of single cells
influence the technical specifications of a battery, are summarized according to battery-
oriented KPIs. For this study, the following KPIs are chosen: energy density in Wh/kg,
power density in W/kg, efficiency in %, self-discharge in %/day, and reaction time in
s. KPIs can also be formulated based on the application for which the ESS is used or
are a result of the application requirements. For the classification approach within this
section, the following application-oriented KPIs are used: energy- and power-related costs
in EUR/kWh and EUR/kW, lifetime in cycles, shelf life in year, storage duration, design
flexibility, ecological impact, and safety.

2.1. Classification of Single Storage Components

A comprehensive overview of existing energy storage technologies and their function-
ality divided into electrical, mechanical, electrochemical, thermochemical, chemical, and
thermal technologies can be found in various publications [7,10–12]. So-called batteries
are part of the category electrochemical energy storage technologies and can be further
categorized into primary batteries, secondary batteries, fuel cells (FCs), and electrochemical
capacitors (SC) [11]. Due to irreversible reactions, primary batteries are mostly not recharge-
able and are typically used in small portable applications, e.g., watches or thermostats [11].
Secondary battery cells are based on a reversible electrochemical process and can thus
be recharged several times depending on their technical characteristics [11]. The storage
technologies investigated within this study are summarized as follows. RFB are used as
the core storage component. Most suitable hybridization partners are LIBs, Sodium–Sulfur
Batteries (NaSs), and PbAs. Moreover, SCs and Superconducting Magnetic Energy Storage
(SMES) are added to the list of investigated technologies, due to their high power density.

2.1.1. Redox-Flow Batteries (RFBs)

In contrast to the other examples of electrochemical storage, RFBs offer independent
scalability of energy and power and thus promising storage technology. The first develop-
ments were in 1949, and further improvements were patented during the 1970s, which led
to the most commercialized Vanadium Redox-Flow Battery (VRFB) found today [2,13–15].
In general, RFBs consist of two half cells with carbon-based high surface electrodes sepa-
rated by an ion selective membrane, as shown in Figure 2 [2,3]. Commonly, a water-based
electrolyte is pumped through the half cells and stored in separated external tanks [2,3].
Typically, up to 40 cells are electrically connected in series using a bipolar stack design,
while hydraulic circuits deliver electrolyte parallel to all cells [3,16,17]. In case of the
VRFB, the electrolyte is based on a 1.6-molar solution of vanadium ions in sulfuric acid
and water [2,18,19]. For the discharging process, a consumer is connected to the electrical
circuit. Ideally, V5+ is reduced to V4+ on the cathode, while V2+ is oxidized to V3+ on
the anode. In reverse, during the charging process a current source is connected to the
electrical circuit, as highlighted in Figure 2, and the electrodes change the roles as cathode
and anode [2,18,19].
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Besides VRFBs, other types of RFBs are currently in different development or industrial-
ization states [17,20–22]. Ref. [21] provides a comprehensive review of the RFB chemistries.
In particular, the substitution of critical raw materials, such as vanadium, with abundant
material, led to further developments in the field of Aqueous Organic Redox-Flow Batteries
(AORFBs) presented in [20]. Expectations from research and industry are counting on organic
molecules to enable a higher voltage range, solubility, and stability while having reduced
losses due to crossover-mixing and fast reaction kinetics [20]. A highly ranked scientific
review [17,20–24] has already been conducted in the field of RFBs. Thus, our review does not
aim to provide a deep overview of RFBs as single storage components but, instead, will focus
on aspects of hybridization and control strategies in application-oriented EMSs.

Figure 2. Principle schematic of an RFB cell during charging.

2.1.2. Lithium-Ion Batteries (LIBs)

A LIB is an example of electrochemical storage, based on the rocking chair effect of
lithium ions with reversible chemical reactions [25]. It consists of two electrodes, a separator
and the electrolyte. The fundamental materials research is due to researchers John B. Goode-
nough, M. Stanley Whittingham, and Akira Yoshino, who were awarded the Nobel Prize in
Chemistry in 2019 for their work [26].

The most commonly used electrode active materials show good hosting characteristics:
high storage capability for lithium ions as well as structure stability during intercalation and
deintercalation processes [27]. On the cathode side, Lithium–Nickel–Cobalt–Manganese
Oxide (NCM) is usually used. It is a complex oxide representing an attempt to combine
the advantages of the composed elements. Cobalt shows good electrochemical behavior as
well as a positive influence on structure stability, nickel increases the long-term reversibility,
whereas manganese is beneficial for costs as well as structure stability [27]. In most cases,
the anode consists of a graphite component as hosting material [28].

2.1.3. Sodium–Sulfur Batteries (NaSs)

In contrast to most battery types, NaS technology works at 320 °C instead of ambient
conditions. The high temperature is necessary to melt the solid electrodes. The working
principle is based on liquid electrodes: sodium on the cathode side and sulfur as the anode.
In contrast, the electrolyte is solid and consists of beta-alumina [3]. This material is capable
of conducting sodium ions for the battery reaction. Due to the sensitivity of metallic sodium
against water, the cell is hermetically sealed as well as thermally insulated to maintain the
high temperature [3].

2.1.4. Lead–Acid Batteries (PbAs)

The PbA works in ambient conditions and has a long history. The cathode consists
of lead dioxide, whereas the anode is metallic lead. During discharging, lead sulfate
is formed at both electrodes. It is nonconducting and insoluble [3]. Nevertheless, this
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reaction is reversible, and during the charging process the porous lead dioxide as well
as the metallic spongy lead are receded. For the reaction, both electrodes react with the
electrolyte composed of sulfuric acid [3].

2.1.5. Supercapacitors (SCs)

Super- or ultracapacitors belong to the category of the electrical or electrochemical
double layer capacitors [29]. These systems are composed of two carbon electrodes, a
separator (porous membrane), and an electrolyte for the ion conductivity [22]. Due to the
high power density and the comparably small energy density, SCs find application where
high C-Rates (charging and discharging current related to the capacity) and power systems
are required. The disadvantages include a high self-discharge rate and relatively high
specific storage costs [29].

2.1.6. Superconducting Magnetic Energy Storage (SMES)

Similar to the SCs, SMES systems are typically listed as a Power Component (PC), due
to the high power density. The energy is stored in magnetic form with the help of a coil.
The relative high costs, self-discharge rate and the environmental impact of the magnetic
field can be identified as the disadvantages of the system [29]. As SMES systems represent
an emerging new technology that has not been completely commercialized and, moreover,
do not offer advantages over SCs, they are not considered as a hybrid component within
this review.

2.1.7. Evaluation of Key Performance Indicators

In Table 1 , the KPIs are applied to the selected storage technologies and subsequently
evaluated for their utilization as a HESS component. The storage units are classified by
Harvey balls according to their characteristics. Positive characteristics for each KPI are
represented by filled balls, negative ones by empty balls, and medium by half-filled balls.
For example, high power density is regarded as positive (filled ball), whereas high costs
are seen as a negative characteristic (empty ball). For each battery technology, several
publications are taken into account [7,10–12,22,29–34].

The collected data are listed, and the average literature values are calculated for each
category. In some cases, minimal and maximal values for e.g., efficiency, power density,
energy density, self-discharge, or reaction time are listed. For comparison, at the first stage,
the average of literature values for minimal and maximal KPIs is calculated. Afterwards,
the total average from minimal and maximal values is used for further investigations.
The classification, as shown in the table, is then determined in relation to the overall
average between all technologies for each category: positive compared to average equals
filled balls, negative equals empty ball, and close to average equals half-filled ball. For
example, the average power density for all selected batteries based on the named literature
is 1001.25 W/kg. For SCs, the literature reveals 3508.33 W/kg, resulting in a filled ball in
the table, whereas LIB show 982.92 W/kg, which is close to the overall average represented
by a half-filled ball in the table. Average values below 200 W/kg are given by RFB, NaS,
and PbA and, thus, represented as empty balls.

In general, high values for energy density, power density, efficiency, lifetime in cycles,
shelf life, design flexibility, and safety are seen as positive, whereas low values for energy-
and power-related costs, self-discharge, reaction time (low values = fast reaction time),
and ecological impact are regarded as good. For storage duration, a wide time window is
preferred, from milliseconds to months in the best case. The need for a suitable technology
for each time slot leads to the exceptional visualization in the table without Harvey balls
but the found storage duration time window.
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Table 1. Evaluation of battery- and application-oriented KPIs for different single storage technologies,
based on data from [7,10–12,22,29–34].

LIB SC NaS PbA RFB

B
at

te
ry

or
ie

nt
ed

Energy density in Wh/kg

Power density in W/kg

Efficiency in %

Self-discharge in %/day

Reaction Time in s

A
pp

li
ca

ti
on

or
ie

nt
ed

Cost in EUR/kW

Cost in EUR/kWh

Lifetime in cycles

Shelf life in years

Design Flexibility

Ecologic impact

Safety

Storage duration min-days ms-hour min-days min-days weeks
Legend: = negative characteristics; = medium characteristics; = positive characteristics.

With regard to the types of storage considered, LIBs stand out with high efficiencies
of 90% and energy density of 150 Wh/kg [32]. Due to the relatively high power density
of 980 W/kg, the batteries have a smaller size, which is suitable for various transportable
devices, for stationary applications and for mitigation of power fluctuation applications [29].
The acquisition costs of 1750 EUR/kW, 1700 EUR/kWh, the raw material situation, as well
as safety issues impair application [10,28,32].

In contrast to LIBs, RFBs have difficulties with energy and power density with average
values of 25 Wh/kg, 143 W/kg for vanadium electrolyte as well as reaction time [32]. The
latter depends on whether the pumps are already running or need to be started for a
specific power requirement. Nevertheless, there are advantages regarding safety, ecological
impact, lifetime of 11,625 cycles on average, and very low self-discharge. Above all, RFBs
are characterized by independent scaling of power and energy, which enables an extremely
flexible design for different applications. These characteristics make the RFB suitable for
stationary storage applications [29].

NaS can be used for grid power quality regulation, voltage regulation, and peak load
shifting [7,31]. They have high energy densities of 179 Wh/kg but challenges with self-
discharge rates of 10% per day due to the high operating temperatures of up to 300 ◦C [30].
This goes along with a reduced design flexibility as well as low lifetime of 3469 cycles
on average.

These are characteristics that also challenge the PbA. Nevertheless, they are a popular
storage choice for power quality and UPS, used in commercial and large-scale energy
management applications due to their low cost of 429 EUR/kW and 246/kWh as well
as high reliability [30]. However, when comparing the storage type with other batteries,
the limited energy/power density of 37 Wh/kg and 193 W/kg as well as relatively low
lifetime of 1146 cycles become apparent, especially at low temperatures [30,32]. In addition,
the use of lead also results in high maintenance requirements and ecological as well as
safety issues regarding toxicity [12,32].

In contrast to battery storage, SCs impress with high efficiency, high power density,
and a fast response time of less than 10 milliseconds [10]. Additionally, a lifetime of
228,571 cycles and ecological as well as safety issues are positive aspects of SCs. The main
drawbacks of SCs are high energy losses due to self-discharge of 20% per day as well
as low energy density of 112 Wh/kg [30,32]. Due to these characteristics, SCs are not
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used for large-scale applications but for short-term storage and support [22]. Exemplary
applications are lifts, distribution grids, microgrids, or automotive applications [7].

There are many storage systems available, and as shown for the selected types and
KPIs, every technology shows advantages and drawbacks. On the one hand, depending
on the individual use-case requirements, some KPIs can be more important than others,
e.g., energy and power density for mobile applications. On the other hand, in some cases
of combining different use cases, especially for stationary storage applications, there is
a need to fulfill versatile KPIs in the best way possible. Thus, a combination of storage
technologies and their KPIs can be a useful tool to enlarge the capability and advantages of
the installed system.

2.2. Classification of HESSs
2.2.1. Definition of a HESS

Electrical hybridization of EESs refers to the combination of two or more single
storage components into a system called a HESS. By carefully choosing the components,
optimized overall characteristics of energy, power, lifetime, or costs can be achieved to meet
the various requirements in complex use-cases. By combining two storage technologies,
various single applications as well as multiple applications can be realized at once, and
disadvantages of the individual storage types can balance each other out.

On the hardware side, the storage components are electrically connected via cables
and power electronics, while on the software side, a so-called EMS is applied to control the
power flow between the storage components and optimize the behavior within a system
application, e.g., the grid. Depending on the electrical connections, the HESS itself can
have the following grid connection options. In case the EESs are combined on a Direct
Current (DC) level, the HESS has one grid connection point. If the EESs are connected
on Alternating Current (AC) level, it is possible to have either separate connection points
for every AC converter or one connection point for all converters. Both aspects, electrical
hardware and software, need to be optimized for each HESS and application scenario to
enable the best operation modes.

For HESS, two clusters of ESS can typically be distinguished based on ESS technical
characteristics [34]:

1. Primarily ESS cluster: has to satisfy the requirements of higher peak power demand
and has to handle the fast transient fluctuations, e.g., load or Renewable Energy
Sources (RES) production. This cluster is marked by fast response time, high power
peaks, high efficiency, and high cycle lifetime.

2. Secondary ESS cluster: has to comply with the requirement of high storage duration.
This cluster is characterized by a low self-discharge rate and high efficiency.

Generally, all storage technologies—electrical, mechanical, electrochemical, thermo-
chemical, chemical, and thermal—can be hybridized. Within this study, only the electrical
hybridization of RFBs is investigated. Based on the results of two research projects (HyFlow,
OMEI) and a comprehensive literature review [7,10–12,22,29–34], recent developments and
challenges of HESS based on RFBs are presented. As there are only a few demonstration
projects and publications of HESS with RFB, this consideration represents a recent and
innovative effort. For the areas of applications and possibilities, literature reviews for
different technologies are included.

2.2.2. Evaluation of Key Performance Indicators

The idea of a HESS is to combine different technologies in one system to meet the
various requirements in complex use-cases. Therefore, storage technologies with comple-
mentary characteristics are hybridized to enable a broader operation and performance
range. Complementary characteristics could be opposing as well as similar. For example, a
combination of high with low power density is a beneficial opposing characteristic. Life-
time is seen as beneficial if combined technologies show similar characteristics, because the
lifetime of the combined system depends on the limiting technology. The KPIs regarded



Batteries 2023, 9, 211 8 of 29

as beneficial if the single batteries show opposing features are energy and power density,
reaction time and storage duration. Similar high characteristics are preferred for efficiency,
lifetime, shelf life, design flexibility, and safety, whereas similar low characteristics are
favored for self-discharge, energy- and power-related costs as well as ecological impact.

The main criterion for hybridization is the beneficial combination of storage duration,
power density, and reaction time resulting in five hybrid systems selected for the evaluation.
In four hybridization cases, SCs were selected as a fast response and high power component
with high lifetime. The respective secondary ESSs, operating as energy components, are
LIBs, NaSs, PbAs, and RFBs. The fifth combination, LIB+RFB, is selected as LIBs can
perform a similar role to SCs in some application scenarios. The combination is used within
the research project OMEI to operate RES and electric charging infrastructure.

The evaluation summary is shown in Table 2. The Harvey balls for the hybrid system
are formed out of the single system evaluation from Table 1. Besides those from the previous
illustration of results with Harvey balls, the other colors are invented this time as a second
evaluation characteristic. The Harvey balls are marked in green if the combination of two
storage technologies has a positive influence on the respective KPI, in blue for medium
to neutral influence, and red for negative influence. For example, the SC has a filled ball
for power density whereas the RFB power density is shown as an empty ball. The result
of the combination of both in one hybrid system is a half-filled ball. As described, power
density is seen as beneficial if two opposing systems with high and low characteristics
are combined in a HESS. This is illustrated with the color green. Another example is the
KPI safety for the hybrid system LIB+RFB. This is a combination of a safe system (filled
ball) with a system with safety issues (empty ball), also resulting in a half-filled ball for the
hybrid evaluation. Nevertheless, the combination leads to potential safety issues in the
hybrid system. Thus, the combination has a negative influence for the hybrid system and is
marked in red.

Table 2. Evaluation of different hybrid storage combinations based on complementary battery- and
application-oriented KPIs.

SC+LIB SC+NaS SC+PbA SC+RFB LIB+RFB

B
at
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ed

Energy density in Wh/kg

Power density in W/kg

Efficiency in %

Self-discharge in %/day

Reaction time in s

A
pp
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ca

ti
on
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Cost in EUR/kW

Cost in EUR/kWh

Lifetime in cycles

Shelf life in years

Design flexibility

Ecologic impact

Safety

Storage duration ms-days ms-days ms-days ms-weeks min-weeks
Hybrid influence: positive influence no/medium influence negative influence
Legend: = negative = medium = positive

+ = + ; + = + ; + =

Table 2 shows that a combination with an SC or LIB as a power component has a
positive influence in the combination with NaS, PbA, and RFB as they both show high
power densities with 3508 and 983 W/kg, respectively. Thus, the combination of SC+LIB has
only a neutral influence on the power density as a standalone solution, which is superior
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compared with other technologies. While comparing self-discharge between different
hybrid configurations, it becomes clear that combinations with RFB and PbA benefit from
their low self-discharge rates of 0.13% and 0.23% per day. The combination of SC+RFB has
the highest lifetime benefit, as both technologies on their own show high average values of
228,571 cycles for SC and 11,625 cycles for RFB. According to this evaluation methodology
based on the given literature data, the best HESS is revealed to be a combination of SC
with RFB. This system shows the most filled balls, positive features, as well as green colors,
indicating beneficial characteristics due to the hybridization. The combination results in a
storage system that shows high lifetime by the widest window of storage duration from
minutes to weeks and a medium energy density with complementary power and reaction
time elements for a medium cost level. In addition, the positive aspects of design flexibility,
safety, and ecological impact are also preserved in the hybrid system. Thus, the following
section dealing with coupling architectures of HESSs focuses the combination of SC with
RFB.

3. Coupling Architecture Optimization Strategy
3.1. Coupling Architectures of Hybrid Storage Systems

The different ESSs of a HESS must be coupled in such a way that energy exchanges
between them are possible. Given a set of ESSs and a required power exchange capability,
there are several possible ways of interconnecting the involved ESSs and related power
converters. Each one of these coupling architectures offers different features in terms of
cost, efficiency, or performance. One of the main decisions is whether to use AC or DC links
on the interconnection between devices. DC grids offer several advantages over AC grids:
most common energy storage systems are already DC by nature, energy management is
much simpler in DC than in AC, DC grids do not present the stability problems that are
typical in AC grids, and the power density of a DC grid is higher than of an AC grid.
Therefore, DC grids are the best option when interconnecting different energy storage
devices. The involved DC/DC converters must face several requirements: (1) they must
be bidirectional, (2) they must interconnect ports with a broad range of input or output
voltage values, (3) the voltage gain can be low or very large, and (4) sometimes galvanic
isolation is required.

The efficiency and cost of a DC/DC converter depends mainly on the required input
to output voltage gain. When dealing with common non-isolated DC/DC converters
(e.g., buck, boost, buck–boost), the ratio between the power switched by semiconductors
and the converted power is equal to the input-to-output voltage gain. Therefore, the
higher the input-to-output voltage ratio, the higher the converter cost and the lower
its efficiency. On the other hand, isolated DC/DC converters perform input-to-output
impedance matching. This way, the converted power is close to the switched power, and
high efficiency levels are possible at a reasonable cost. An input-to-output voltage ratio
around 4 can be considered the frontier at which the non-isolated DC/DC converter is less
competitive than the isolated one.

In this section, a HESS application example is used in order to explain a possible
coupling architecture optimization strategy. In this particular case, the HESS must exchange
energy with a low-voltage (400 VAC) three-phase industrial grid and contains two ESSs:
a 5 kW RFB with a voltage between 40–68 V and a 25 kW SC bank that must be able to store
up to 25 kJ of energy. The voltage of the SC bank is not defined and is one of the degrees of
freedom of the optimization.

Figure 3 shows the possible three interconnection strategies for the HESS. Option (a) is
the most evident and straightforward to propose: each ESS has its own converter. Anyway,
considering that the voltage gain is a paramount parameter when selecting a converter
and therefore has an important impact on the cost, it could be interesting to explore other
options such as (b) and (c) architectures, where the DC/DC converters are in cascade and
therefore individual input-to-output voltage ratio can be reduced.
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(a) Active DC coupling.

(b) Semi-active DC coupling with interconnected SCM.

(c) Semi-active DC coupling with interconnected VRFB.

Figure 3. Three possible configurations for HESS coupling architecture.

In all possible configurations, the HESS is connected to the grid through a standard
Active Front End (AFE) that is linked with a 700 V DC side. SCM is the supercapacitor
module, SCC and BC are the supercapacitor and battery converters, and VSC is the voltage
at the supercapacitor module.

In order to compare these three architecture proposals, several design parameters have
been considered, as seen in Table 3.

In topology (a), the voltage ratio of SCC is to be defined and has no impact on any
other parameter. In topology (b), the SCC voltage ratio conditions the BC voltage ratio.
The maximum power with low voltage ratio is the power that can be converted by a non-
isolated converter cheaper than the isolated full converter option. The minimum power
processed with a high voltage ratio denotes the conversion of power with a high conversion
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cost. It is important to recall that conversion with low voltage ratio is cheaper than the
conversion with a high voltage ratio. The first conclusion can be stated. Considering the
total amount of power to be converted, topology (c) is not well suited, as it is required to
convert 55 kW compared with only 30 kW of the topology (a). Moreover, the minimum
power processed with high voltage ratio in topology (c) is six times bigger than that of (a).
Therefore, we can remove topology (c) from the analysis.

Table 3. Comparison of different system architectures.

Architecture Proposal
Design Parameter a b c

Power converted by SCC (kW) 25 30 25
Power converted by BC (kW) 5 5 30
Overall conversion power installed (kW) 30 c35 55
Voltage ratio SCC TBD H L L
Voltage ratio BC H L H H
Maximum power processed with low voltage ratio (kW) 25 5 30 25
Minimum power processed with high voltage ratio (kW) 5 30 5 30

Topology (b) offers the degree of freedom of the voltage at the SCM. If a low voltage
is chosen, a high voltage ratio is needed at SCC and a low voltage ratio will be enough for
the BC. On the other hand, a low SCC voltage ratio leads to a high BC voltage ratio. As
there is more power to convert at the SCC, it is interesting to choose a high SC voltage, i.e.,
the second column of topology (b). Anyway, (b) always requires an overall conversion
power that is 5kW higher than the topology (a), and does not offer any advantage in terms
of voltage ratios that could lead to any cost improvement. Additionally, topology (a) is
more flexible than (b), as it can handle any modification on the power or voltage values of
any of the storage devices without any implications in the conversion chain of the other
storage device. Thus, topology (a) is selected as the optimum architecture.

3.2. HESS Optimization Strategy

The BC does not require optimization, as there is no degree of freedom but the type of
converter. Input–output voltages as well as the power to be converted are already defined.
The input-to-output voltage ratio is high, so an isolated DC/DC converter is directly
selected. In the case of the SCM and SCC, there are two degrees of freedom to be optimized
(see Figure 3a). The nominal (or maximum) voltage of the SCM, VSCmax, is the maximum
voltage value at which the SC will be charged. Depending on this value, more or less SCs
in series are required, and each SC must be larger or smaller. Therefore, this parameter has
an impact on the cost of the SCM. It can also have an impact on the cost of the SCC. On the
other hand, for a given amount of discharged energy ∆W, the minimum operating voltage
VSCmin depends on the capacitance C of the SCM. The lower the capacitance C, the lower
the voltage at which the energy is discharged and therefore, the larger the current. As the
cost of the SCC is directly related to the supercapacitor current (ISC), the capacitance of C
has a direct impact on the cost of the DC/DC converter. Obviously, the capacitance value
also impacts on the cost of the SCM.

Figure 4 depicts the procedure of the optimization of the SCM and SCC. The procedure
is based on the analysis of the performance of a large number of different capacitance and
voltage values at the SCM.

The input data is a broad range of possible C, VSCmax pairs. Considering the maximum
current at the converter and the cost function of the converter, it is possible to compute the
cost of the SCC. In the same way, thanks to the knowledge of the capacitance C and the
maximum voltage at the SCM, it is possible to compute the number of SC cells in series
and the capacitance of each one of them. These last data, combined with the cost per joule
and per capacitance of the SC, lead to the cost of the SCM. Finally, both the cost of the
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SCM and the SCC are added and the optimum one with the minimum cost is identified.
Figure 5a shows the cost per joule of the SC depending of the cell size.

Both SCC and BC share the same high-voltage DC-CCP at 700 V. Figure 5b illustrates
the estimated cost per 5 kW of full power isolated (Isol) and not isolated (Non Isol) converter
as a function of the low-side current side current. As it can be observed the estimated cost
is constant in the case of the isolated technology whereas the non isolated one increases its
cost as the low-side current side current increases. One of the advantages of the DC/DC
converters is that they can easily be connected in parallel, so it is straightforward to scale
power keeping almost the same cost per kilowatt figure. Figure 6 shows the estimated
overall cost of the SCM plus SCC pack, considering both not isolated (Figure 6a) and
isolated (Figure 6b) converters. As can be observed, the minimum cost of the non isolated
case is lower than the isolated converter that is selected. The minimum cost is around EUR
4000 and is achieved with a maximum SC voltage of 650 V. At the minimum cost point the
maximum SC and converter current is 58.2 A. The capacitance of the overall module that
optimizes the cost is 0.21 F, built with 542 cells of 114 F each.

Figure 4. Flow chart of the optimization procedure.

(a) Cost per joule for each cell size (b) Estimated cost of converters @VHS = 700 V/P = 5 kW

Figure 5. Cost of elements: (a) cost per joule for each cell size and (b) estimated cost of converters as
a function of technology and low-voltage side current.



Batteries 2023, 9, 211 13 of 29

(a) Estimated cost of SC+non-isolated DCDC (b) Estimated cost of SC+isolated DCDC

Figure 6. Estimated overall cost considering the SCM and the SCC for (a) non-isolated converter and
(b) isolated converter.

4. Energy Management System (EMS) for HESS

Besides optimal electrical hardware as presented above, HESS need to be optimized in
terms of software and management approaches (EMS). Figure 7 illustrates the schematic
of a HESS including all power, information, and sensor connections between storage
components and the grid. The classification system to choose the best fitting storage
technologies for hybridization has been discussed in Section 2. Within this study, RFBs as
an energy component (EC) are studied in an hybrid approach using a complementary PC.
The optimal electrical connections of two single storage application in one hybrid system
has been discussed in Section 3. The EMS acts now as central control unit for the HESS
communicating with all storage components, loads, generation, and forecasting units as
highlighted in Figure 7. The Battery Management System (BMS) is mostly developed by
the battery manufacturers and, thus, is not part of this review. In the following section,
the EMS will be deeply studied. Beginning with an outline of the EMS structure and a
definition of typical application scenarios, the EMS control techniques are presented based
on their control and optimization parameters. The optimization of EMS strategies is then
presented with a focus on prediction and currently used control techniques.

4.1. Energy Management Structure for HESS

The structure of a general energy management system can be realized in different ways.
The norm ISO 50001, for example, serves a basic structure and can be used as a support
for implementation. The standard provides a process to identify necessary framework
conditions from collecting all the necessary data, setting strategic and operational energy
targets to plan and structure the documentation [35].

The controlling structure for an EMS for HESS is similar to EES systems. The specific
parameters and limit values have to be defined for the different application scenarios.
Figure 8 shows a method to structure an EMS for HESS. The first step is to define the
EMS goals in the specific application scenario. These can be subdivided into system goals
and application goals. The applications scenarios are described in Section 4.1.1. The legal
framework conditions and operating limits must be taken into account in advance [36].
Adapted to the EMS goals, the requirements, coupling architecture, and dimension can be
set on the system components specific to the EC and PC. This results in safety boundaries for
the system, for example system limitation values for power, current, and temperatures [37].
In particular, for efficient operation of RFBs, it is important to limit these values. Exceeding
these ranges can lead to decreased battery performance, reduced efficiency, and even safety
risks such as electrolyte leakage [15]. The control parameters for the application and system
specific optimization have to be defined within a permissible operation range. These are
explained in Section 4.1.2. Depending on the complexity and number of optimization
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parameter, the EMS control technique should be defined. In the first instance, classical and
intelligent techniques are differentiated. Section 4.2.2 describes the optimization methods
and refers to examples.

Figure 7. Principle schematic of a HESS including all power, information, and sensor connections
between storage components and the grid.

Figure 8. Methods of an energy management structure for HESS.

4.1.1. Application Scenarios

The specific application scenarios serve as input for the EMS design and implementa-
tion and especially influence the optimization or control parameters. Applications for EES
are widely presented in the literature. To obtain a high amount of data, the investigations of
the application fields includes not only RFB but also other stationary storage technologies.
This study aims to show which electrical storage applications RFB can cover and how these
can be technically and economically optimized specifically through hybridization.

By reviewing 22 publications within this study [1,10,38–57], over 80 different types
of stationary application have are first identified. Mobile applications are excluded from
this study. As different descriptions where referring to similar applications, a classification
system developed in [58] has been applied. Duplications are reduced, and the applications
are evaluated to sort them into universal application scenarios. Eleven application scenarios
with different purpose, placement, duration, as well as control parameters applicable for a
HESS based on RFBs are summarized in Table 4.

Applications with different descriptions but the same technical specifications or goals,
e.g., frequency stability and frequency control, have been summarized. Moreover, some
for which the control parameters are not clearly described, e.g., capacity support, capacity
firming, or electric supply capacity, are formulated with more specific terms relying on
already defined system services in the interconnected grid [45]. Some applications, such as



Batteries 2023, 9, 211 15 of 29

grid flexibility, are too general, and universal control parameters cannot be found, or some
are more related to the grid operators business and not yet clearly defined as EES scenarios,
e.g.,investment deferral in grids or operational grid management. These applications are
omitted from the final summary. Newly developed applications, such as Grid Booster,
are also not listed in Table 4 but could be added once demonstration projects have been
completed. The remaining 13, now referred to as application scenarios, are classified by
their purpose, placement, and control level, as suggested by [58]. Newly added items also
classify the duration, control parameters, and required controller rate for the EMS.

The application purpose of using a EES is summed up in three categories:

1. System (S) describes storage usage for the general stability and maintenance of inter-
connected grids and the used stability products, e.g., defined in [45,58].

2. Grid (G) describes the local grid operation mode maintaining power quality in distri-
bution grids [58].

3. Manage (M) sums up all end-user applications aiming at balancing power flows within
their system boundary, which must be smaller than a network section [58].

The physical placement influences, on the one hand, the used infrastructure and
involved stakeholders. On the other hand, the placement includes not only the physical
placement but also the spatial distribution of control variables for the management system,
e.g., frequency, voltage, and power [58]. Both physical and control placement are often
combined, e.g., in home storage. For some applications, the placement is not specifically
determined e.g., black start or island grids. Therefore, physical placement is categorized as
follows [58]:

1. Transmission grid (T);
2. Distribution grid (D);
3. Behind the meter at end-user locations (E-U).

The control level is the summarized decision parameter for a management system to
decide which operation mode of the ESS is used at which time and how long it is used.
Power (P) summarizes all objective functions of EES that are controlled by a power-specific
parameter, while Energy (E) describes all those controlled by a energy-specific parame-
ter [58]. All scenarios in Table 4 can be applied to single storage systems or HESSs. By
using a HESS, it is even possible to combine different application scenarios complementary
to the HESS characteristics. For example, the combination of an energy-based (E) and a
power-based (P) application scenario is a commonly used approach in hybrid systems.

The duration describes the average operation time and can also be described as the
time during which the energy storage system has the same control command. The duration
of energy storage has been categorized based on the definition of system services in the
grid starting with momentary reserve in milliseconds as immediate grid services, followed
by primary, secondary, and tertiary reserve in minutes until exchange within one balancing
group starts. The latter describes the smallest unit of the energy market model and refers
to a virtual energy account to balance any number of energy inputs and outputs [59]. The
duration is only fixed for system services, e.g., frequency control [45]. Other application
scenarios, e.g., peak shaving or energy time shifting, show only suggestions of applicable
time scales and can be seen as a start of the art from the studies literature data base. Similarly
to combining different control levels, e.g., power or energy, HESS can enlarge the usable
storage duration by adding a short term storage e.g., SC to a mid- to long-term storage
e.g., RFB. Thereby, application scenarios as, e.g., momentary reserve and energy time
shifting can be combined. Both state-of-the-art research projects, HyFlow and OMEI, built
up demonstrators by combining different application scenarios and durations. HyFlow
focuses on four different applications scenarios, whereby a combination of high-power and
high-energy component is always foreseen [60]. Thus, momentary reserve, peak shaving,
and energy time shifting are foreseen for industry grids, weak distribution grids, and
UPS [60]. Within OMEI, the HESS is used to balanced fast-charging infrastructure and
perform peak shaving as well as energy time shifting of renewable generations and load.
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The control parameter describes the exact values that are used for the management
system. These parameters need to be optimized with the momentary load and generation
to satisfy the purpose of the storage usage and are thus application-oriented control param-
eters. Additionally, the used storage systems also have system-oriented control parameters
for each battery used in a HESS, as described in the section above. Both need to be taken
into account and prioritized for EMS and optimization techniques. The controller rate or
sample rate shows the reaction rate of the EMS and thereby defines the communication
and electrical requirements of a HESS. Moreover, this is also the time frame in which the
optimal operation mode needs to be calculated and raw data from the application case, e.g.,
load or generation need to be measured. If the duration of the application is typically low,
the controller rate needs to be high, e.g., 20 ms for momentary reserve.

Based on the application scenarios, the following sections describe which optimization
routines are applied to identify an optimal power flow within a HESS.

Table 4. Classification of storage application scenarios by their application purpose (S: System; G:
Grid; M: Manage), placement (T: Transmission; D: Distribution), control level (P: Power; E: Energy),
duration, control parameters, and controller rate. Literature review from [1,10,38–58].

Source Application Purpose Placement Control Duration Control
Parameter

Controller
Rate

[38,46–50] Momentary
Reserve

S T P t < msec f_AC 1 <20 ms

[1,38,43,46,47,49,50,53,54] Primary Control S/G T P t < msec P_AC
f_AC 1

<30 s

[10,38,42] Secondary Control S/G T P s < t > 15 min P_AC
f_AC 1

<5 min

[10,38,42] Tertiary Control S/G T P min
< t > 60 min

P_AC
f_AC 1

<15 min

[10,38,42] Black Start S - P s <t > min ∆P 3

f_AC 1

U_AC

1–10 s

[1,10,38,42,44,55] Island Grid 4 S - E s < t > days ∆P 3 1 s–1 min

[1,38,42] Transmission
Support
and Stability

S T E t > h ∆P 3 1 s–1 min

[10,38,42,49,56,57] Voltage Support G /S T/D P 15 min < t >h ∆U 2 1–15 min

[1,10,38,42,43,46,49,50,52] Distribution
Power Quality

G /S D P s < t > min ∆P 3 1 s–1 min

[10,38,43,44,52] Peak Shaving
(all time scales)

M /G E-U P s < t > 15 min ∆P 3 30 s–1 min

[38] Uninterruptible
Power Supply

M E-U P/E s < t > h P
f_AC
U

<20 ms

[38,46,47,49,50,52,56,57] Energy Time
Shifting

M E-U E 15 min < t
> days

∆P 3

t
1–15 min

[1,38,43] Energy Trading,
Arbitrage

M - E 15 min < t > h ∆P 3

EUR/kW
EUR/kWh

1–15 min

1 Allowed frequency range within the German grid 50 Hz +− 0,02 Hz according to DIN EN 50160 [61,62].
2 Allowed voltage range within the German grid 230 V+−10% according to DIN EN 50160 [61,62]. 3 Residual
power ∆P refers to the difference of power demand and supply. 4 Including mini, micro, military, emergency
grids or similar.

4.1.2. Control and Optimization Parameters

The application categories in the literature show the potential for HESS. Due to the
combination of storage systems, not only technical and economical advantages but also
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application extensions and combinations can be achieved. Table 5 shows the advantages
and objectives for HESS of the application categories and combinations in the considered
literature. The table indicates system and application goals. First and foremost, the storage
systems are designed to achieve the application objectives. On the technical side, for
example, the parameters of storage capacity demand, power limits, power electronics, and
time requirements are used for this purpose.

Table 5. Map of optimization parameters and EMS goals for the hybrid storage application categories
(PC: Power Component; EC: Energy Component).

Application Voltage Support Distribution Power
Quality Peak Shaving Energy Time Shifting

Hybrid
Component PC PC PC PC/EC

Island grids EC

Improving transient
response, increase

efficiency/performance
and lifetime of the EC,
grid (voltage) quality,

supply security [63–65]

Operational limits
operation, self

sufficiency, economic
efficiency, efficiency,

reduce energy
costs [66,67]

Uninterruptible
Power Supply EC

Utilization of UPS EC,
economic efficiency,
stability of power

system [68]

Peak Shaving EC

Minimizing the power
fluctuation,

self-sufficiency, grid
quality, optimizing the

capacity ratio of EC,
PC [69]

Dimensioning, efficiency,
economic efficiency,

lifetime, smoothing the
current of EC [70]

Energy time
shifting EC

Dimensioning, efficiency,
economic efficiency,

lifetime, smoothing the
fluctuation of RE [71]

Self-sufficiency, reduce
of max. power consump-

tion/generation,
utilization of RE,

efficiency, dimensioning,
lifetime [72]

Energy Trad-
ing/Arbitrage EC/PC

Economic efficiency
(operational costs),

efficiency, reduce energy
costs [73]

The use of HESSs has the advantage of combining the application goals with the option
to optimize the system and the operation process by using a hybrid operation strategy.
Optimization targets for the PC and EC are dimensioning, efficiency, lifetime and economic
efficiency. These parameters are intended to optimize the HESS systems for the specific
application goals. Therefore, control parameters such as capacities, power demand and
supply, grid quality values (frequency, voltage), response times, and energy prices play a
major role.

Based on this map, the potentials of RFB as EC in the considered applications can also
be classified. The analysis of the applications and the KPI from Table 1 show optimization
potentials in the operational efficiency, increased lifespan, and economic viability of RFB
through hybridization. In particular, the combination with a PC such as a SC and the specific
optimization of operation result in technical and economic advantages in implementation.
Furthermore, an expanded spectrum of application areas can be defined where a single
RFB system is not optimally applied.

Additionally, through the optimization and operation of the HESS, the targets for
multiple applications can be achieved. A prerequisite is that the intended purpose takes
place at the same placement as shown in Table 4.
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4.2. Energy Management Optimization for HESS

The main goal of EMS for HESS is to execute the operation strategy in real time
and in an optimal manner. This target is reached by increasing the input variables to
the HESS by predicting data that fit the technical HESS requirements and is achieved by
selecting a suitable EMS control technique. Figure 9 depicts the real-time architecture of
an EMS. This architecture is composed of three steps: (1) prediction, (2) optimization, and
(3) HESS component. The prediction model uses historical data such as RE production
and weather to forecast important data, e.g., load demand and supply. The optimization
model takes as inputs the predicted data, the system parameters and regulations as well
as other information tightly linked to the system aims. Once the optimization is carried
out, the HESS implements the calculated operation strategy. Finally, an evaluation and
improvement process is executed to assess whether the desired changes or objectives have
being achieved, or whether there has been progress toward meeting the system goals.

VRFB Lithium

OPTIMISATION

Historical data
• RE production 
• Weather 
• etc. 

EMS control techniquesAI

HESSPREDICTION

Real data
• SoC 
• Temperature 
• etc.

• Power demand 
• Supply 
• etc.

Predicted data Operation strategy

Evaluation and improvement

• System parameters 
• Market data 
• Regulations

Figure 9. Real-time EMS architecture [74].

4.2.1. Prediction

An optimal EMS not only depends on the current external factors and in the present
HESS status but also on prediction of the future system behavior at a particular time based
on historical data (see Figure 9). The predicted data, that differ from one application to
another, should be identified according to the system specific requirements and goals and
should be as faithful as possible, since they will be used to forecast the application status
and conditions. RE production, ESS capacity, and weather information are the most widely
evaluated types of data in the last few years [75–79].

Many prediction techniques for ESSs are defined in the literature, as highlighted in
Table 6. Mixed Integer Linear Programming (MILP) and Neural Network (NN) and its vari-
ants Artificial Neural Network (ANN), Recurrent Neural Networks (RNN), and Convolu-
tion Neural Networks (CNN) are among the most commonly adopted techniques [77,79,80].
NN is able to achieve accurate results at high speed and is used in many domains, e.g.,
prediction and optimization. Recently, there is considerable interest in using Reinforcement
Learning (RL) in multiple fields, especially in automatic control system, due to its accurate
results and high control performance [78,79].

Once built, the performance of any prediction technique should be evaluated. Several
evaluation metrics have been standardized in order to give a clear and comprehensive
picture of the prediction technique behavior. A set of evaluation metrics are defined in the
literature and the well-known metrics are Mean Absolute Percentage Error (MAPE) and
Root-Mean-Square Error (RMSE) [75–79]. As the optimization of an EMS is closely related
to the quality of the predicted data, minimization of the prediction error is required. This
goal can be reached using several methods, including the selection of the best prediction
horizon length and the combination of multiple prediction techniques.

Only a small number of studies have addressed the issue of predicting data to optimize
an EMS, and nearly all of these studies adopted a single ESS. Further studies should
investigate multiple challenges, in particular, regarding prediction data specifically for
HESS based on RFB, the identification of the appropriate data to predict and the selection
of the best prediction technique.
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Table 6. Classification of predicted data.

Predicted Data Prediction Techniques Evaluation Metrics

Charging demand [80–82] CNN, LSTM, RNN MAPE, MAE, NRMSE

RE production [75–77,79] CNN, MILP, NN, RNN, ARIMA, GAN, MLP,
LSTM

MAPE, RMSE

ESS Capacity [78,79] MILP, MINLP, NN RMSE

Charging scheduling and pricing
[83,84]

MILP, RL, ANN N/S

Charging station placement
[85,86]

GA, RL, Linear Regression, Decision Trees N/S

N/S: Not specified.

4.2.2. EMS Control Techniques

The selection of the optimal EMS control technique depends on the pre-defined op-
timization function (or goal) of the application. Based on the EMS architectural level,
optimization functions can be classified into low-level optimization functions and high-
level optimization functions [6,7]:

1. Low-level optimization functions control the AC/DC bus voltage and the electric
current flow.

2. High-level optimization functions control many energy management strategies, among
which are power performance, SoC monitoring, ESS charge/discharge cycles, and en-
ergy cost reduction.

The majority of studies, presented in Table 7, focus on high-level optimization func-
tions, especially for power allocation strategy. Furthermore, for HESS based on RFB, power
is not the only important variable that needs to be studied, but other parameters such as
energy and SoC also have to be considered.

Different control techniques have been proposed in the literature to attain the main
objectives of HESS, including system performance optimization, system stability improve-
ment, and computation cost reduction [6,7]. Figure 10 represents in depth classification of
EMS control techniques for HESS. These techniques are classified into two groups: classical
techniques and intelligent techniques.

1. Classical control techniques mainly include filtration-based control, dead beat con-
trol, droop control, and sliding mode control. These techniques are the most used in
the literature, as demonstrated in Table 7, and are mainly applied for offline imple-
mentation independently of the filtration-based control technique.

2. Intelligent control techniques are classified into rule-based techniques and optimization-
based techniques. Rule-based techniques are among the most widely adopted in pre-
vious work due to their simplicity in implementation (see Table 7). However, these
techniques are still far from perfect, as they require deep knowledge of the domain and
the definition of rules for a complex system is a challenging task. Recently, there has been
considerable interest in real-time optimization techniques, with a rapid rise in the use
of Deep Learning (DL) and Machine Learning (ML) algorithms, e.g., Neural Network
(NN) and Reinforcement Learning (RL). ML techniques deliver accurate results in real
time, but on the other hand, they require a lot of training data and suffer from high
computational complexity.

More details on these techniques can be found in [7].
As the majority of the current HESS-based applications are implemented online,

Table 8 summarizes the advantages and limits of real-time control techniques. Based on
Table 8, it is recommended that real-time optimization techniques be adopted for complex
systems when accurate results are required.
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Table 7. Classification of HESS studies.

Optimization
Paper Energy Storage System Electric Topologies Optimization Function Real Time General Control Techniques Used Data

[9] (H2/Br2) RFB, SC DC coupled Power Yes Mathematical model Microgrids

[87] Battery, SC DC coupled Power allocation of different ESS Yes Classical
Real-time optimization Microgrids/Simulated

[4] Battery, SC DC coupled Reduces measurement inaccuracies N/S Classical N/S

[8] VRFB, SC Active topology Current, SoC No Classical
Fuzzy logic EV charging park/Real

[5] Li-Ion battery, SC DC coupled N/S N/S Fuzzy logic Ships

[88] VRFB, SC Active topology Power thresholds No Rule-based Industrial grid—Real/Synthetic
EV charging park

[63] Batteries, SC DC coupled Constant voltage to the DC bus No Classical PV, AC- and DC Loads/Simulated

[89] Battery, SC DC coupled N/S N/S Global optimization
Real-time optimization Electric vehicle

[90] Li-Ion battery, SC DC coupled Meet power demand
Reduce the cost of energy storage device Yes Classical

Real-time optimization Ship load

[91] Battery, SC DC coupled Power allocation Yes Classical
Rule-based EV application

[64] Fuel cell, Battery, SC DC coupled
Provide power for load in time
Good tracking performance of HESS current
Obtain a stable voltage of the dc bus

Yes Projection operator adaptive law N/S

[69] Battery, SC DC coupled Minimizing the power fluctuation
Optimizing the capacity ratio of each ESS Yes Real-time optimization N/S

[92] Battery, SC N/S N/S Yes
Rule-based
Global optimization
Real-time optimization

Electric vehicle

[93] battery, SC DC coupled Power
Charge/Discharge cycle Yes Real-time optimization PV power generation

[67] Li-Ion battery, SC AC coupled Optimize the cycle life of the HESS Yes Mathematic model Microgrids

[72] Battery, SMES DC coupled Control charge/discharge
prioritization No Classical Off-grid load profile/Simulated

Sea wave energy conversion/Simulated

[68] Battery, fuel cell, AC coupled, On grid Power N/S N/S Grid data/Real

[94] Battery, SC Three-level NPC Converter N/S N/S Classical Electric vehicle

[71] Battery
Superconducting magnetic ESS

One DC/AC converter
Two DC/ DC converters Smoothing the fluctuations of the wind power output N/S Device/system-level control strategies Wind power generation

[95] Battery, SC DC coupled N/S N/S Rule-based Electric vehicle
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Table 7. Cont.

Optimization
Paper Energy Storage System Electric Topologies Optimization Function Real Time General Control Techniques Used Data

[73] Battery, fuel cell, electrolyzer DC coupled, On grid AC Energy costs, power N/S Rule-based Predicted daily data

[66] Fuel cell, battery, SC DC coupled, Off grid Power Yes Real-time optimization Grid data/Real

[65] Battery, SC DC coupled N/S N/S Microgrid

[96] PbA and Li-Ion battery, SC Three different architectures Maintain the grid power and voltage No Classical Residential load/Literature data

[97] battery, SC DC coupled Current, voltage Yes Real-time optimization N/S

[98] Fuel cell, SC DC converters Voltage No Classical Electric vehicle/Simulated

[70] Battery, SMES DC coupled, On grid Current N/S N/S Grid data/Real

[99] Fuel cell, Battery, Electrolyzer AC bus and DC bus considered N/S Yes Real-time optimization Residential load
N/S: Not specified
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Previous research on the HESS based on RFB can only be considered a first step toward
a more profound understanding of the best optimization parameters to be adopted and the
optimal EMS control techniques to be used. For complex HESS based on RFB, the power
distribution between the different batteries that make up the HESS, as well as the reaction
time, represent the most important optimization parameters. On the other hand, the recent
HESSs based on RFB are intended for real-time applications, and the appropriate control
techniques to achieve this goal are DL algorithms, e.g., NN and RL.

EMS Control Techniques of 
HESS

Classical Intelligent

Rule-based Optimisation-based

Deterministic Fuzzy Logic Global optimisation Real-time optimisation

• Filtration based control 
• Dead beat control 
• Droop control 
• Sliding mode control

• Thermostat (On-Off) 
• Power Follower 
• State Machine

• Typical Fuzzy Logic 
• Fuzzy Predictive 
• Fuzzy Adaptive

• Linear Programming 
• Dynamic Programming 
• Stochastic DP 
• Genetic Algorithm  
• Adaptive Fuzzy Rule Based 
• Evolutionary Methods 
• Simulated Annealing 

• Frequency Decoupling 
• Robust Control  
• Optimal Predictive 
• Supervised Learning Machine  
• Neural Network 
• Reinforcement Learning 
• Gradient Descent 
• Particle Swarm Optimisation 
• Model predictive Control

Figure 10. EMS control techniques of HESS [7].

Table 8. A summary of the main real-time EMS control techniques.

Real-Time
EMS Control Techniques Advantages Limitations

C
la

ss
ic

al

Filtration [91] • Widely adopted for real-time application
• Highly computational efficiency
• Straightforward

• Complexity of designing filters
• Requires an accurate mathematical model
• Inefficient in reducing the peak power demand

In
te

ll
ig

en
t

R
ul

e-
ba

se
d

Fuzzy logic [88,91,92,95]

• Simple implementation
• Faster response
• Efficient hybrid control strategy
• High reliability
• Low computational complexity

• Rules are defined based on an expert of the
domain
• Real-time implementation is the control strategy
• Sensitive to changes in system parameters and
components

R
ea

l-
ti

m
e

op
ti

m
iz

at
io

n MPC [7,92,97]

• Accurate real-time application
• Prediction of application future behavior
• Avoiding problems
• High-scale application control
• Easy incorporation of constraints

• Require accurate mathematical model
• Sensitive to model parameter variations
• High computational complexity

NN [7,77]
• Accurate real-time application
• Low computational complexity
• High speed to process results

• Require lots of training data
• The prediction accuracy depends on the data
sample quality

RL [85]
• Accurate real-time application
• High control performance

• It is data-hungry
• It requires a lot of computation

PSO [69,89]
• Accurate real-time application
• Easy implementation
• Limited number of parameters

• High computational complexity
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5. Related Work

A large number of existing surveys in the broader literature have examined HESS
technology. This section outlines the recent reviews on this topic.

In [34], an overview of the different HESS aspects is given. After a brief definition, the
author presents the significant advantages and application prospects of HESS. This study
shows that HESS is gaining increasing attention in several domains, including smart grid,
electric vehicles, and RE park power management. Additionally, it is demonstrated that
LIBs play a big part in most of the current HESS applications and they are adopted either as
“high energy” or “high power” storage. Then, the different coupling architectures in HESS
are investigated, and it turns out that “the two DC/DC converters connected in parallel”
is the most commonly used configuration due to its better use of storage capacity. This
paper also examines the EMS control techniques and classifies them into rule-based and
optimization-based techniques according to power as main control variable. This study
briefly points out the main aspects of HESS.

In [7], two fundamental aspects of HESS, namely (1) coupling topologies and (2) EMS
control techniques, are investigated. The first part of this work focuses on the architecture,
advantages, and limitations of the following coupling topologies: “passive”, “semi-active”,
and “active”. The widely used topology in HESS and especially in power systems is
“active”. The remainder of this study is devoted to an analysis of existing EMS control
techniques. The authors identified many techniques and classified them into two groups:
classical and intelligent. For each technique, the principle, the features as well as the
application domains are specified. Examples of classic techniques are filtration-based
control and sliding mode control, and for instances of intelligent techniques, we have
robust control, Model Predictive Control (MPC), and hierarchical control. Although this
paper mainly presents intelligent control techniques for EMS, research on the technical
characteristics of HESS remains limited.

In [6], a survey of SC-based HESSs for standalone DC microgrids is carried out. The
paper begins by outlining the different HESS coupling topologies, e.g., passive, semi-active
and full active. Furthermore, EMSs are investigated. After identifying the goals and the
structure of EMSs, intelligent control techniques are discussed. They are classified into
rule-based control techniques and optimization-based techniques. This study explores one
type of coupling topology and describes just a few examples of EMS control techniques.

Previous surveys on HESS have mainly investigated the coupling topologies between
distinct ESSs and the selection of the suitable EMS control techniques without particularly
focusing on a specific type of ESS. Furthermore, RFB have gained increasing interest in the
last decade in multiple application domains. Thus, the purpose of this paper is to study the
different aspects of HESS based on RFB.

6. Conclusions

HESSs offer high potential to optimize stationary storage applications. The analysis of
the KPIs shows the advantages and disadvantages of the different EESs. In many cases, the
requirements in the application do not fit perfectly to one storage characteristic of a system.
Frequently, the energy and power density limits the operation scenarios. In individual
applications, this can usually be compensated by over-dimensioning of the storage system.
However, this has negative effects due to the sustainable or economic requirements of the
system. Therefore, specific combination of the different storage systems offers a feasible
solution. RFB technology profits from combination of SC or LIB in many KPIs (described
in Table 2), resulting in high lifetime by the widest window of storage duration, a medium
energy density with complementary high power, and fast reaction time for a medium cost
level. In this HESS, the RFB acts as an energy component (secondary cluster), while SC or
LIB take the role of the power component (primary cluster).

Depending on hybrid components and application scenarios, the coupling architecture
of the system has to be optimized. A DC coupled system offers several advantages regard-
ing efficiency and system prices and is selected as an optimized solution for an RFB–SC
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combination. A coupling architecture optimization strategy is proposed for the selection of
the SC module as well as the converter to optimize efficiency, voltage, and costs.

According to the technical system design, the control strategies for the specific appli-
cations offer further optimization potential for HESS. The structure of an EMS is similar
to that of an EES, but the possibilities and also the complexity increase. In the first place,
the application specific goals have to be defined. Application examples and the control
parameters to realize these are summarized in Table 4. In addition, hybridization enables
the possibility to add system specific operation goals such as optimizing the dimensioning,
efficiency, or the economic rentability. As a supplement, Table 5 shows a map where HESS
systems are used for a combined application scenario described in the literature.

Due to the complexity and capabilities of HESS applications, intelligent control tech-
niques such as artificial intelligence are used. As a supplement to real-time operation,
prediction data are used to optimize operational efficiency and achievement of the remain-
ing EMS goals.

The use and advantages of HESSs in different combinations and applications are
reported in numerous publications. In Table 7, considered publications are listed and
itemized according to application specifications. A number of gaps and shortcomings
regarding EMS for HESS remain to be addressed:

• The advance of real-time optimization of EMS came at a very high computational cost.
One solution to address this issue is the use of the Digital Twin (DT) concept. DT uses
real-world data to create a simulation that predicts system future performance [100].
DT has been recently adopted in many application fields due to several advantages, in
particular energy management and operation optimization improvement.

• In the majority of research carried out on HESS, two distinct ESSs are mainly adopted,
as illustrated in Table 7, and only three studies have included an RFB [8,9,88]. Further
work needs to be conducted on HESS that contain more than two distinct ESSs and
at least one RFB.
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AORFB Aqueous Organic Redox-Flow Battery
ARIMA Auto Regressive Integrated Moving Average
BC Battery Converter
BMS Battery Management System
CNN Convolution Neural Networks
D Distribution Grid
DC Direct Current
DT Digital Twin
E Energy
EC Energy Component
EES Electrical Energy Storage
EMS Energy Management System
ESS Energy Storage System
E-U Behind the Meter at End-User Locations
FC Fuel Cell
GA Gradient Descent
GAN Generative Adversarial Network
HESS Hybrid Energy Storage System
ISC Supercapacitor Current
Isol Isolated
G Grid
KPI Key Performance Indicator
LIB Lithium-Ion Battery
LSTM Long Short Term Memory
M Manage
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MDPI Multidisciplinary Digital Publishing Institute
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Nonlinear Programming
MLP Mixed Linear Programming
MPC Model Predictive Control
NaS Sodium–Sulfur Battery
NCM Lithium–Nickel–Cobalt–Manganese Oxide
NN Neural Network
Non Isol Not Isolated
NRMSE Normalized Root-Mean-Square Error
N/S Not Specified
OMEI Open Mobility Electric Infrastructure
P Power
PbA Lead–Acid Battery
PC Power Component
PSO Particle Swarm Optimization
RE Renewable Energy
RES Renewable Energy Sources
RFB Redox-Flow Battery
RL Reinforcement Learning
RMSE Root-Mean-Square Error
RNN Recurrent Neural Networks
S System
SC Supercapacitor
SCC Supercapacitor Converter
SCM Supercapacitor Module
SoC State of Charge
SMES Superconducting Magnetic Energy Storage
T Transmission Grid
UPS Uninterruptible Power Supply
VRFB Vanadium Redox-Flow Battery
VSC Voltage at Supercapacitor Module
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