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Abstract: Solid-state lithium batteries have attracted considerable research attention for their potential
advantages over conventional liquid electrolyte lithium batteries. The discovery of lithium solid-state
electrolytes (SSEs) is still undergoing to solve the remaining challenges, and machine learning (ML)
approaches could potentially accelerate the process significantly. This review introduces common
ML techniques employed in materials discovery and an overview of ML applications in lithium SSE
discovery, with perspectives on the key issues and future outlooks.
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1. Introduction

Lithium batteries are indispensable energy storage devices in the growth of electronic
devices [1]. In addition, they are also expected to be the driving force for sustainability,
powering energy plants and electric vehicles as energy storage units [2]. A typical commer-
cial lithium battery contains electrodes with an electrolyte in liquid form, leading to safety
issues being a significant concern due to the flammability and narrow stability domain of
the liquid electrolyte [3,4].

Solid-state lithium batteries could be a potential solution due to the potential higher
safety measurement and large energy densities using a lithium metal anode [5]. Flammable
liquid electrolytes could be replaced by solid-state electrolytes (SSEs) with the advantage of
longer device lifetime expectations due to lower reactivity of side reactions [6]. The SSE ma-
terials need to exhibit high lithium-ion conductivity, low electronic conductivity, and large
electrochemical stability windows. In addition, they could also contribute to better stability
thermally and mechanically in a wide range of operating temperatures, such as Li2S-P2S5,
which showed no sign of degradation up to 100 cycles at a high operating temperature of
170 ◦C and low temperature down to −40 ◦C [7,8]. The known good solid-state lithium-
ion conductors could be characterised into different types depending on their composi-
tions. For example, lithium thiophosphates (e.g., Li10GeP2S12), garnet (e.g., Li7Li3Zr2O12),
NASICON (e.g., Li1.3Al0.3Ti1.7(PO4)3), perovskite (e.g., Li0.5La0.5TiO3), and argyrodite (e.g.,
Li6PS5Cl) [9–13]. These conductors exhibit fast lithium-ion conduction properties, with
relatively high ionic conductivities at room temperature (RT) compared with other lithium
conductors. However, they are still far from large-scale production and application due to
lacking well-rounded properties [14]. The early discovered lithium nitride (Li3N) has a high
ionic conductivity of 6 × 10−3 S cm−1 at RT, but it shows low electrochemical stabilities [15].
On the other hand, polymer electrolytes, such as polyethylene oxide, generally have sig-
nificantly lower conductivities than common liquid electrolytes, which are unattractive
for commercialisation [16,17]. Therefore, further research in discovering new solid-state
lithium-ion conductors are needed.

There are more significant challenges for SSEs. For example, metallic lithium from
anodes might still be able to penetrate the SEEs and could cause a similar dendrite growth and
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short-circuit issue as in the liquid electrolytes [18,19]. The contact between solids also leads
to the problem of contact maintenance, as the performance of batteries is dependent on ion
diffusion, which is more influenced by any structural changes in solid-state batteries [20–22].

Therefore, there is an urgent need to research novel materials for solid-state lithium
batteries such as SSEs. The machine-learning (ML) data-driven approach is a popular field
that many research groups are currently exploring. Hence, this perspective paper will begin
by briefly discussing a few ML techniques employed in materials discovery, followed by an
emphasis on the discovery and screening methods of new materials for SSEs. Moreover, the
recent progress in the materials discovery will be discussed with different ML approaches
and results. Finally, this paper will offer a perspective on the ML screening results with a
short outlook on challenges and future opportunities.

2. Discovery and Screening Methods of New Materials for SSEs

Computational methods have been developed over the years to accelerate material
discovery progress. For solid-state lithium batteries, atomistic simulation techniques based
on first-principles density functional theory (DFT) working with databases could perform
various accurate calculations, including interface stability and new structure predictions,
which overcome the labour-consuming and experimental limitations issues from laboratory
approaches. Most importantly, as the methods are based on the fundamentals of quantum
mechanics, ion transport mechanisms understanding could be obtained with little input
required [23–30].

The modelling of ionic mobility mechanisms could be achieved by using ab initio molec-
ular dynamics (AIMD) simulations, and the atoms in the system are driven by the atomic
forces from the first principles [31,32]. The diffusivity could be evaluated at a constant temper-
ature and volume. On the other hand, Kinetic Monte Carlo (kMC) simulation examines the
hopping mechanism at a more microscopic level with the benefit of thermodynamic factors
that could be considered in grand-canonical simulations [33–36]. There are more approaches
available for different requirements. However, these computational methods are all physics-
based and generally expensive and unsuitable for performing material screening for large
databases, and there are already other reviews on these physics-based modelling methods
for electrolyte materials of solid-state batteries [37–39].

3. Typical Machine Learning Techniques Used in Materials Discovery

Traditional approaches for materials discovery require trial-and-error methods, which
usually employ DFT simulation and/or experiments that generally take months and years
to obtain the desired properties [37]. On the other hand, ML techniques employ approx-
imated features and data to recognise the pattern or provide predictions, usually taking
a significantly shorter time combined with validations of the results [38–40]. Therefore,
ML can be used to identify new materials, predict their properties, and gain insight into
the electrochemical performance of novel battery chemistries, ML attracts attention in
material discovery for possibilities to accelerate the process and reduce the cost [39–42].
Typically, ML methods can be categorised as supervised learning, unsupervised learning,
reinforcement learning, and neural networks [43]. The ML techniques widely used in
materials discovery are supervised learning and unsupervised learning. They could be
selected based on the data quantity and data type, while the theoretical meaning of the
properties in materials science is not understood by the ML models. Therefore, this opens
opportunities for researchers to investigate a wide range of parameters in the battery design
field. For example, Jalem et al. employed a partial least squares regression model to predict
the activation energy barriers to lithium diffusion in olivine-type materials, which was a
pioneer work of data-driven approaches used in battery research [41]. The partial least
squares regression is a relatively robust model, even when the data contain significant
noise, and the sample size is small. However, the model test statistics might be unreli-
able [42]. Moreover, Sendek et al. developed an ionic conductivity classification model with
logistic regression to identify candidate lithium solids with desired fast ion conduction
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properties, which was a relatively early form of research using the supervised learning
ML model followed by further investigations using density functional theory molecular
dynamics (DFT-MD) to validate the predictions [43]. Figure 1 shows commonly employed
ML algorithms grouped in underlying mechanisms.
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Supervised learning requires labelled data, and data is split into training data and
testing data. Statistical regression is performed on training data to build the prediction
model [44]. The model performance is examined by comparing the prediction and expected
results using testing data [45]. The model then could be used to make predictions on
new input when the model performance is satisfactory for specific applications [46,47]. In
contrast, unsupervised learning could input data without labelled outputs and has been
employed in material science for applications such as pattern recognition and clustering
when the dataset is not well-labelled, with a limited quantity for training and relatively
low quality [48–52]. The goals of using an unsupervised learning model in material discov-
ery usually involve finding new suitable materials similar to the known good candidate
materials with desired properties [53].

Reinforcement learning optimises the output by influencing the environment without
labelled supervised samples and changes parameters based on feedback [54]. It may
be considered a time-delayed version of supervised learning. On the other hand, neural
networks are complex interconnected networks of many parameters, and theoretically, more
parameters mean more model capacity and more complicated learning can be processed.
Complex models are represented by deep learning, which uses neural networks with
many layers [55,56]. It is worth noting that reinforcement learning and deep learning
are advancing quickly in multiple research areas, showing promising potential for future
materials discovery research. However, on the topic of lithium SSE materials discovery,
these advanced ML techniques have not been used as much as other supervised and
unsupervised learning approaches and more research focus in these areas are expected, and
ML techniques and applications discussed later will focus on supervised and unsupervised
learning. Figure 2 shows simplified framework for SSE materials discovery using ML
data-driven approaches.
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3.1. Supervised Learning

Generally, frequently used supervised learning algorithms could be categorised into
regression and classification. Regression is used to estimate the relationship between
independent variables and a dependent variable using functions connecting data points and
making predictions. On the other hand, classification is based on common characteristics
and usually produces a label or probability as the output for the predictions [55–57].

Support vector machine (SVM) is a popular algorithm with capabilities in both regres-
sion and classification. It demonstrates effectiveness in high dimensional spaces even when
the sample size is not sufficiently big compared to the feature size [58,59]. The mathematics
theories are complex; however, in simple terms, the SVM mechanism divides space in
order to group data points into different categories [60]. In the process, hyperplanes are
generated in high dimensional space, and different Kernel functions could be employed to
solve the problem by adding new dimensions [61]. Applying the technique requires careful
consideration of Kernel functions and regularisation terms, as inappropriate choices might
lead to unnecessary dimensions and overfitting [62]. Overfitting should be avoided as the
model will perform poorly on testing data and application inputs despite having high-score
performance on the training data [63–65]. To solve this problem, a trial-and-error method
on standard functions and cross-validation may be needed, which is time-consuming [66].
Overall, it is an effective technique due to its versatility in function selections and strength
in predictive power, with a relatively small number of samples required [67,68].

3.2. Unsupervised Learning

Clustering is an important concept in unsupervised learning, and the goal is grouping
similar unlabelled input data points together in clusters based on selected methods [69,70].
Different clustering algorithms could be chosen carefully based on the application needs
and sample size. K-means, spectral, and hierarchical clustering are some of the most
common methods.

K-means clustering is general purpose, and the algorithm separates samples into
clusters with equal variance, minimising the within-cluster sum-of-squares criterion [71].
It usually requires a very large sample size and a medium number of clusters input with
advanced knowledge of the number of resultant clusters [69,72]. On the other hand, spectral
clustering performs well for inputting a small number of clusters and medium size sample
size. The mechanism is based on graph distance, employing eigenvalues of the similarity
matrix [73–76]. These techniques are relatively straightforward to implement, giving
the existing packages in multiple programming languages, such as Python, obtaining
documentation and examples to follow. However, these clustering algorithms usually
suffer from initialisations, and the cluster number is needed before running the codes [77].
There are papers in the computer science field suggesting methods, such as the global
k-means algorithm from Likas et al. [78], using an incremental approach to dynamically
add cluster centres. Nevertheless, it is difficult to find use cases in the material discovery
that implement advanced methods in order to tackle this issue, and usually, extra steps to
estimate the number of clusters is needed, which is not optimal [77].



Batteries 2023, 9, 228 5 of 12

Hierarchical clustering does not require pre-specifying the number of clusters, and
the mechanism could be stopped at any number of clusters [79]. The algorithm merges
or splits clusters successively, and the result could be visualised as a dendrogram [80].
It does not require a very large sample size to perform well, and a range of pairwise
distance metrics could be selected as a criterion for clustering results. For the parameters,
Euclidean is a typical distance metric used to measure the distance between [81] clusters
and is simply the straight-line distance between two points. Additionally, the standard
linkage criterion parameter ‘ward’ minimises the variance of the clusters being merged as a
cluster dissimilarity measurement [53,82].

4. Machine Learning Applications for Materials Discovery of SSEs

ML algorithms offer a wide range of options for SSEs research, as the models them-
selves input data points without understanding the underlying physical meanings as
humans do. Any properties, in theory, could be featured, and this, indeed, could be
reflected in the diversity of ML applications. Typically, SSEs could be categorised into
organic and inorganic materials, as well as, more specifically, into groups based on their
compositions, such as oxides, halides, etc. As this perspective emphasises ML techniques,
the following section will cover recent advances in applications considered with their
ML methods.

Fujimura et al. employed an ML technique combined with DFT data to estimate the
lithium-ion conductivity values at 373 K [83]. The datasets contain both theoretical and
experimental data, and the support vector regression (SVR) was applied with a Gaussian
kernel, along with bootstrapping method error optimisation. Input features included the
diffusivity at 1600 K, the average volume of disordered structures, transition tempera-
tures from simulations and experimental temperatures. The predicted ionic conductivity
was obtained for 72 compositions, and γ-Li4GeO4 had the highest predictive conduc-
tivity at 373 K, which was reported as approximately 5.5 × 10−4 S cm−1 from the ML
model. It could potentially exceed the conductivity of LISICON (Li3.5Zn0.25GeO4) by a
significant amount. However, primarily due to the difficulties in synthesising γ-Li4GeO4,
further experiments are expected for the prediction validations to evaluate this candidate
as one of the next-generation SSE materials. Guo et al. mapped the lithium thiophos-
phate (LPS) phase diagram by combining first-principles and artificial intelligence (AI)
methods, integrating DFT, artificial neural network potentials, genetic algorithm sampling,
and ab initio molecular dynamics simulations [84]. Based on the discovered trends in the
LPS phase diagram, Guo et al. propose a candidate solid-state electrolyte composition,
(Li2S)x(P2S5)1−x (x~0.725), that exhibits high ionic conductivity of >10−2 S cm−1, demon-
strating a design strategy for amorphous or glassy/ceramic solid electrolytes [84].

For the case of unsupervised ML applications, Zhang et al. utilised data entries from
Inorganic Crystal Structure Database (ICSD) and processed 528 modified X-ray diffraction
(mXRD) quantitative representations as the training dataset [53,85]. An agglomerative
hierarchical clustering model was first trained, and the clustering results showed good
differentiations between the clusters. Then, an additional spectral clustering model and a
third model with limited information were employed to confirm the results. All methods
showed that the most already-known fast-conducting examples in the input data were
aggregated into two clusters out of seven, which means the clustering models were highly
likely to successfully draw boundaries between the promising and bad candidates for SSEs.
The materials in these two clusters were further investigated using AIMD simulations.
Three structures, Li8N2Se, Li6KBiO6 and Li5P2N5, had conductivities exceeding the best-
known lithium fast-conductors, which showed the effectiveness of the clustering techniques.
However, some materials did not exhibit high conductivity values in the simulation, and
the clustering results might be improved by further research in the featurisation of the
clustering input. In addition, experimental validations are required to investigate the
fast-conducting SSE candidates from the AIMD simulation.
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While ICSD is the most extensive database for completely identified inorganic crystal
structures, the Materials Project provides data on diverse properties of inorganic mate-
rials with an easy-to-use interface, which is also a popular choice for solid-state battery
research [86]. Sendek et al. employed an ML model with DFT-MD simulations to perform
material discovery for SSEs based on ionic conductivity [87]. A logistic regression model
was used to predict the possibility of an input material exhibiting superionic behaviour at
RT based on its atomic and electronic structure data with a 0.1 mS cm−1 boundary of ionic
conductivity. The model predicted 317 fast-ion lithium-conducting materials from over
12,000 inputs, and 21 crystalline compounds were identified as promising candidates with
desired structural and electrochemical stability. Only one false positive material prediction
was reported as LiCl obtains poor conduction properties from the literature. DFT-MD
was then performed for identified candidates with unknown conductivity at 900 K to
evaluate the performance of the ML model. With scaling to RT based on the Arrhenius
relationship, eight candidates exhibit high ionic conductivity at RT. In particular, Li5B7S13
exhibited a conductivity of 74 mS cm−1, which is many times higher than the best-known
lithium conductors. In addition, the ML-based approach showed a much higher efficiency
and accuracy for predicting superionic materials compared with a random selection from
317 materials and Ph.D. student screening [87]. With further experimental research, these
eight candidates could be promising materials for SSEs.

Due to the limited availability of a large volume of data in the materials design field,
Cubuk et al. demonstrated that it is difficult to apply standard learning methodologies
using genetic descriptors on small data [88]. A linear SVM model was initially trained
with 40 data points and 30 elemental descriptors using the leave-one-out cross-validation.
Then, a model with physically motivated descriptors using structural information was
compared using validation error. The performance showed a trade-off between the model
accuracy and the potential for screening previously uncharacterised materials. A novel
transfer learning approach was suggested, and an accurate ML model was trained with
structural information descriptors on the lithium-ion conductivity measurements from the
experimental literature. Predictions were made on the Materials Project database, and these
predictions were used as labels to train a new model referred to as esML with elemental
descriptors. An accurate esML model could screen all possible element combinations for
novel materials with only composition information, approaching nearly 90% validation
accuracy. The model was able to provide a screening for 20 billion ternary and quaternary
lithium-containing compounds at an extremely fast speed compared with DFT calcula-
tions. Overall, the methods allow for training models on available datasets and provide
predictions about other tasks with unavailable datasets. A number of promising lithium-
ion conductors were suggested after screening 20 billion materials, including LiPO3 and
Li2MgO2. While some compounds were studied before, further investigations are required
for other candidate materials. Table 1 summarises the algorithms and approaches used in
the literature and compares their advantages and disadvantages.

Table 1. Algorithms and approaches used in the literature and their comparisons.

Approaches Advantages Disadvantages

Support vector regression
(SVR) [89,90]

Effective models for small quantities of data, multiple Kernel
functions available based on applications, and relatively high
predictive power in supervised learning models.

Require careful research for
function selections to
avoid overfitting.

Agglomerative hierarchical
clustering [91,92]

No prior knowledge of the number of clusters is required; the
approach does not require very large sample sizes to
perform well.

Relatively large computational
costs are required.

Spectral clustering [93] Perform well on small numbers of clusters and medium
sample sizes.

Require prior knowledge of the
number of clusters.

Logistic regression [94] The approach can be employed relatively easily in classification.
Non-linear problems are not
applicable, but linear boundary
data is relatively rare.



Batteries 2023, 9, 228 7 of 12

It is worth noting that there are other challenges for solid-state lithium batteries
developing into high-performance large-scale production applications. For example, the
interface electrochemical stabilisation [95], interfacial physical contact maintenance during
cycling [96], and cathode materials performance improvement [97]. ML applications for
these issues were also explored by researchers. Eckhoff et al. constructed a DFT-based high-
dimensional neural network potential which could predict a range of properties, including
lattice parameters, volume changes, phase transition, lithium diffusion barriers, and phonon
frequencies for electrode material lithium manganese oxide spinels [98]. Furthermore, Gao
et al. utilised an AI scheme via the swarm-intelligence-based crystal structure analysis
with particle swarm optimisation method to predict heterogeneous interface structures
and investigate the lithium-ion transport mechanism at the cathode/SSE interface [99].
ML data-driven approach could potentially accelerate the research process for tackling
these problems and aid the commercialisation of solid-state lithium batteries. Promising
cathode materials need to have a high voltage against lithium, a high capacity, and high
energy density while keeping the cathode volume as stable as possible without excessive
expansion, which may cause mechanical stress to the SSE. Hence, putting the battery pieces
together, cathode and SSE, is needed to make sure they are compatible with each other and
use ML to predict the time and extent of degradation that occurs.

5. Conclusions and Future Directions

In this perspective, brief introductions about screening techniques for materials discov-
ery are presented with emphasis on ML approaches and their applications on SSE materials
discovery. Employing ML techniques significantly accelerates the screening process com-
pared with experimental and DFT-based methods and provides a promising future for
design acceleration with new lithium fast-conductors.

However, substantial research effort is required for follow-up validations of the ML
prediction results, including more computational simulations and experimental investiga-
tions. The newly discovered SSE candidates must go through a long research period before
reaching applications. A range of properties should be evaluated, including interfacial and
electrochemical stability when in contact with electrodes. These parameters are critical for
feasibility in large-scale production beyond the lab and will likely take a lot more research
efforts than the initial electrolyte discovery stages. Although the overall development
process is usually accelerated by ML, the new potential electrolyte materials candidates
from the discovery results would not be meaningful if lacking in practical validations. As
mentioned in the previous section, some recent ML applications of material discovery of
SSEs gave promising candidates that have high possibilities of performance exceeding
current SSEs and also potentially provide well-rounded properties for a wide range of
applications. Unfortunately, in most cases, necessary follow-up research has not been
carried out to the experimental investigation stage yet or struggles to synthesise the specific
composition of the candidate materials from the modelling results.

Moreover, the ML models do not understand the physical meaning of the features but
investigate the correlations and patterns of the input data. Obtaining a pattern from the
results is difficult and requires significant research effort to find the optimal models for
the specific data sets. Nevertheless, understanding the physical reasons behind the results
is even more challenging. After arriving at the results from the ML discovery stages, the
questions of why the candidate materials are standing out arise. Why does this specific
composition obtain high ionic conductivity? Which is the crystallographic structure at
what temperature? Are the physical reasons related to lithium-ion diffusion channels? At
what conditions will the desired ionic conductivity and stability no longer exist? Therefore,
ML techniques should be used with caution, and the output quality hugely relies on the
data quantity, which makes data pre-processing and model selection critical. Extensive
research training on ML models and their mechanisms is required before implementing
ML data-driven approaches and a robust understanding of the fundamental principles of



Batteries 2023, 9, 228 8 of 12

electrolyte applications needs to be obtained to ensure the results are relatively reliable for
inspiring further research.

Applying ML models to lithium SSE materials discovery is still a niche research
area. For future outlooks, attention to both materials databases and ML models is sug-
gested. More established databases are great sources for ML training, e.g., PubChem [100],
NIST [101], Open Quantum Materials Database (OQMD) [102,103], also ICSD and the Ma-
terials Project, as mentioned in the previous section, as these datasets usually provide good
quality and quantity data. At the same time, web interfaces are often more user-friendly
and can be connected to the programming environment. Therefore, more exploration of
these databases is suggested. In general, no matter what databases are chosen, the most
important step is the featurisation of the data. The representation of the properties needs to
be effective in order to summarise the specific properties of the molecules with the lowest
dimensions possible.

Finally, advanced ML models, including reinforcement learning, can be employed
to aid the discovery. ML is a very popular research topic constantly developing in the
computer science field, with more advanced concepts and models becoming available for
more accurate and higher predictive power applications. These complex models gener-
ally require more understanding before implementation. Utilising these advanced ML
techniques with an improved understanding of their effectiveness on materials science
databases would be a potential solution to accelerate further the design process. Therefore,
collaboration with experts in the ML field might be a new trend for materials discovery in
order to drive the development of next-generation SSEs.
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4. Pigłowska, M.; Kurc, B.; Galiński, M.; Fuć, P.; Kamińska, M.; Szymlet, N.; Daszkiewicz, P. Challenges for Safe Electrolytes Applied
in Lithium-Ion Cells—A Review. Materials 2021, 14, 6783. [CrossRef] [PubMed]

5. Lin, D.; Liu, Y.; Cui, Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206.
[CrossRef]

6. Xu, L.; Tang, S.; Cheng, Y.; Wang, K.; Liang, J.; Liu, C.; Cao, Y.C.; Wei, F.; Mai, L. Interfaces in Solid-State Lithium Batteries. Joule
2018, 2, 1991–2015. [CrossRef]

7. Ogawa, M.; Yoshida, K.; Harada, K. All-Solid-State Lithium Batteries with Wide Operating Temperature Range. SEI Tech. Rev.
2012, 74, 88–90.

8. Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries. J. Power
Sources 2018, 389, 198–213. [CrossRef]

9. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto,
K.; et al. A Lithium Superionic Conductor. Nat. Mater. 2011, 10, 682–686. [CrossRef]

10. Kumazaki, S.; Iriyama, Y.; Kim, K.H.; Murugan, R.; Tanabe, K.; Yamamoto, K.; Hirayama, T.; Ogumi, Z. High Lithium Ion
Conductive Li7La3Zr2O12 by Inclusion of Both Al and Si. Electrochem. Commun. 2011, 13, 509–512. [CrossRef]

11. Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Ionic Conductivity and Sinterability of Lithium Titanium Phosphate
System. Solid State Ion. 1990, 40–41, 38–42. [CrossRef]

12. Ibarra, J.; Várez, A.; León, C.; Santamaría, J.; Torres-Martínez, L.M.; Sanz, J. Influence of Composition on the Structure and
Conductivity of the Fast Ionic Conductors La2/3−xLi3xTiO3 (0.03 ≤ x ≤ 0.167). Solid State Ion. 2000, 134, 219–228. [CrossRef]

13. Boulineau, S.; Courty, M.; Tarascon, J.M.; Viallet, V. Mechanochemical Synthesis of Li-Argyrodite Li6PS5X (X = Cl, Br, I) as
Sulfur-Based Solid Electrolytes for All Solid State Batteries Application. Solid State Ion. 2012, 221, 1–5. [CrossRef]

14. Zhu, Y.; He, X.; Mo, Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic
Analyses Based on First-Principles Calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693. [CrossRef]

15. Lapp, T.; Skaarup, S.; Hooper, A. Ionic Conductivity of Pure and Doped Li3N. Solid State Ion. 1983, 11, 97–103. [CrossRef]
16. Edman, L.; Ferry, A.; Doeff, M.M. Slow Recrystallization in the Polymer Electrolyte System Poly(Ethylene Oxide)n-LiN(CF3SO2)2.

J. Mater. Res. 2000, 15, 1950–1954. [CrossRef]
17. Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature 1998, 394,

456–458. [CrossRef]
18. Porz, L.; Swamy, T.; Sheldon, B.W.; Rettenwander, D.; Frömling, T.; Thaman, H.L.; Berendts, S.; Uecker, R.; Carter, W.C.; Chiang,

Y.M. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes. Adv. Energy Mater. 2017, 7, 1701003.
[CrossRef]

19. Bai, P.; Li, J.; Brushett, F.R.; Bazant, M.Z. Transition of Lithium Growth Mechanisms in Liquid Electrolytes. Energy Environ. Sci.
2016, 9, 3221–3229. [CrossRef]

20. Koerver, R.; Zhang, W.; de Biasi, L.; Schweidler, S.; Kondrakov, A.O.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W.G.;
Janek, J. Chemo-Mechanical Expansion of Lithium Electrode Materials—On the Route to Mechanically Optimized All-Solid-State
Batteries. Energy Environ. Sci. 2018, 11, 2142–2158. [CrossRef]

21. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J.O.; Hartmann, P.; Zeier, W.G.; Janek, J. Capacity Fade
in Solid-State Batteries: Interphase Formation and Chemomechanical Processes in Nickel-Rich Layered Oxide Cathodes and
Lithium Thiophosphate Solid Electrolytes. Chem. Mater. 2017, 29, 5574–5582. [CrossRef]

22. Bucci, G.; Talamini, B.; Renuka Balakrishna, A.; Chiang, Y.M.; Carter, W.C. Mechanical Instability of Electrode-Electrolyte
Interfaces in Solid-State Batteries. Phys. Rev. Mater. 2018, 2, 105407. [CrossRef]

23. De Pablo, J.J.; Jackson, N.E.; Webb, M.A.; Chen, L.-Q.; Moore, J.E.; Morgan, D.; Jacobs, R.; Pollock, T.; Schlom, D.G.; Toberer, E.S.
New Frontiers for the Materials Genome Initiative. Npj Comput. Mater. 2019, 5, 41. [CrossRef]

24. Yang, K.; Setyawan, W.; Wang, S.; Buongiorno Nardelli, M.; Curtarolo, S. A Search Model for Topological Insulators with
High-Throughput Robustness Descriptors. Nat. Mater. 2012, 11, 614–619. [CrossRef] [PubMed]

25. Wang, S.; Wang, Z.; Setyawan, W.; Mingo, N.; Curtarolo, S. Assessing the Thermoelectric Properties of Sintered Compounds via
High-Throughput Ab-Initio Calculations. Phys. Rev. 2011, 1, 021012. [CrossRef]

26. Curtarolo, S.; Hart, G.L.W.; Nardelli, M.B.; Mingo, N.; Sanvito, S.; Levy, O. The High-Throughput Highway to Computational
Materials Design. Nat. Mater. 2013, 12, 191–201. [CrossRef]

27. Yu, L.; Zunger, A. Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials.
Phys. Rev. Lett. 2012, 108, 068701. [CrossRef]

28. Greeley, J.; Jaramillo, T.F.; Bonde, J.; Chorkendorff, I.; Nørskov, J.K. Computational High-Throughput Screening of Electrocatalytic
Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. [CrossRef]

29. Nørskov, J.K.; Bligaard, T.; Rossmeisl, J.; Christensen, C.H. Towards the Computational Design of Solid Catalysts. Nat. Chem.
2009, 1, 37–46. [CrossRef]

30. Jain, A.; Shin, Y.; Persson, K.A. Computational Predictions of Energy Materials Using Density Functional Theory. Nat. Rev. Mater.
2016, 1, 15004. [CrossRef]

31. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications; Elsveier: Amsterdam, The Netherlands,
2001; ISBN 9780080519982.

https://doi.org/10.3390/ma14226783
https://www.ncbi.nlm.nih.gov/pubmed/34832183
https://doi.org/10.1038/nnano.2017.16
https://doi.org/10.1016/j.joule.2018.07.009
https://doi.org/10.1016/j.jpowsour.2018.04.022
https://doi.org/10.1038/nmat3066
https://doi.org/10.1016/j.elecom.2011.02.035
https://doi.org/10.1016/0167-2738(90)90282-V
https://doi.org/10.1016/S0167-2738(00)00761-X
https://doi.org/10.1016/j.ssi.2012.06.008
https://doi.org/10.1021/acsami.5b07517
https://doi.org/10.1016/0167-2738(83)90045-0
https://doi.org/10.1557/JMR.2000.0281
https://doi.org/10.1038/28818
https://doi.org/10.1002/aenm.201701003
https://doi.org/10.1039/C6EE01674J
https://doi.org/10.1039/C8EE00907D
https://doi.org/10.1021/acs.chemmater.7b00931
https://doi.org/10.1103/PhysRevMaterials.2.105407
https://doi.org/10.1038/s41524-019-0173-4
https://doi.org/10.1038/nmat3332
https://www.ncbi.nlm.nih.gov/pubmed/22581314
https://doi.org/10.1103/PhysRevX.1.021012
https://doi.org/10.1038/nmat3568
https://doi.org/10.1103/PhysRevLett.108.068701
https://doi.org/10.1038/nmat1752
https://doi.org/10.1038/nchem.121
https://doi.org/10.1038/natrevmats.2015.4


Batteries 2023, 9, 228 10 of 12

32. Marx, D.; Hutter, J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods; Cambridge University Press: Cambridge, UK,
2009; ISBN 9780521898638.

33. van der Ven, A.; Ceder, G.; Asta, M.; Tepesch, P.D. First-Principles Theory of Ionic Diffusion with Nondilute Carriers. Phys. Rev. B
2001, 64, 184307. [CrossRef]

34. van der Ven, A.; Thomas, J.C.; Xu, Q.; Swoboda, B.; Morgan, D. Nondilute Diffusion from First Principles: Li Diffusion in Lix TiS2.
Phys. Rev. B-Condens. Matter Mater. Phys. 2008, 78, 104306. [CrossRef]

35. Bulnes, F.M.; Pereyra, V.D.; Riccardo, J.L. Collective Surface Diffusion: N-Fold Way Kinetic Monte Carlo Simulation. Phys. Rev E
1998, 58, 86. [CrossRef]

36. Voter, A.F. Introduction to the Kinetic Monte Carlo Method. Radiat. Eff. Solids 2007, 235, 1–23. [CrossRef]
37. Chen, W.; Li, Y.; Feng, D.; Lv, C.; Li, H.; Zhou, S.; Jiang, Q.; Yang, J.; Gao, Z.; He, Y.; et al. Recent Progress of Theoretical Research

on Inorganic Solid State Electrolytes for Li Metal Batteries. J. Power Sources 2023, 561, 232720. [CrossRef]
38. Baktash, A.; Reid, J.C.; Yuan, Q.; Roman, T.; Searles, D.J.; Baktash, A.; Reid, J.C.; Yuan, Q.; Roman, T.; Searles, D.J. Shaping the

Future of Solid-State Electrolytes through Computational Modeling. Adv. Mater. 2020, 32, 1908041. [CrossRef]
39. Hao, F.; Mukherjee, P.P. Mesoscale Analysis of the Electrolyte-Electrode Interface in All-Solid-State Li-Ion Batteries. J. Electrochem.

Soc. 2018, 165, A1857–A1864. [CrossRef]
40. Bo, Z.; Li, H.; Yang, H.; Li, C.; Wu, S.; Xu, C.; Xiong, G.; Mariotti, D.; Yan, J.; Cen, K.; et al. Combinatorial Atomistic-to-AI

Prediction and Experimental Validation of Heating Effects in 350 F Supercapacitor Modules. Int. J. Heat Mass Transf. 2021, 171,
121075. [CrossRef]

41. Jalem, R.; Aoyama, T.; Nakayama, M.; Nogami, M. Multivariate Method-Assisted Ab Initio Study of Olivine-Type LiMXO4 (Main
Group M2+-X5+ and M3+-X4+) Compositions as Potential Solid Electrolytes. Chem. Mater. 2012, 24, 1357–1364. [CrossRef]

42. Pirouz, D.M.; Student, D. An Overview of Partial Least Squares; University of California: Los Angeles, CA, USA, 2006.
43. Sendek, A.D.; Yang, Q.; Cubuk, E.D.; Duerloo, K.A.N.; Cui, Y.; Reed, E.J. Holistic Computational Structure Screening of More

than 12000 Candidates for Solid Lithium-Ion Conductor Materials. Energy Environ. Sci. 2017, 10, 306–320. [CrossRef]
44. Sendek, A.D.; Ransom, B.; Cubuk, E.D.; Pellouchoud, L.A.; Nanda, J.; Reed, E.J. Machine Learning Modeling for Accelerated

Battery Materials Design in the Small Data Regime. Adv. Energy Mater. 2022, 12, 2200553. [CrossRef]
45. Regonia, P.R.; Pelicano, C.M.; Tani, R.; Ishizumi, A.; Yanagi, H.; Ikeda, K. Predicting the Band Gap of ZnO Quantum Dots via

Supervised Machine Learning Models. Optik 2020, 207, 164469. [CrossRef]
46. Pei, J.-F.; Cai, C.-Z.; Zhu, Y.-M.; Yan, B. Modeling and Predicting the Glass Transition Temperature of Polymethacrylates Based on

Quantum Chemical Descriptors by Using Hybrid PSO-SVR. Macromol. Theory Simul. 2013, 22, 52–60. [CrossRef]
47. Fang, S.F.; Wang, M.P.; Qi, W.H.; Zheng, F. Hybrid Genetic Algorithms and Support Vector Regression in Forecasting Atmospheric

Corrosion of Metallic Materials. Comput. Mater. Sci. 2008, 44, 647–655. [CrossRef]
48. Balachandran, P.V.; Theiler, J.; Rondinelli, J.M.; Lookman, T. Materials Prediction via Classification Learning. Sci. Rep. 2015,

5, 13285. [CrossRef] [PubMed]
49. Isayev, O.; Fourches, D.; Muratov, E.N.; Oses, C.; Rasch, K.; Tropsha, A.; Curtarolo, S. Materials Cartography: Representing and

Mining Materials Space Using Structural and Electronic Fingerprints. Chem. Mater. 2015, 27, 735–743. [CrossRef]
50. Zhou, Q.; Tang, P.; Liu, S.; Pan, J.; Yan, Q.; Zhang, S.C. Learning Atoms for Materials Discovery. Proc. Natl. Acad. Sci. USA 2018,

115, E6411–E6417. [CrossRef]
51. Long, C.J.; Hattrick-Simpers, J.; Murakami, M.; Srivastava, R.C.; Takeuchi, I.; Karen, V.L.; Li, X. Rapid Structural Mapping of

Ternary Metallic Alloy Systems Using the Combinatorial Approach and Cluster Analysis. Rev. Sci. Instrum. 2007, 78, 072217.
[CrossRef]

52. Kireeva, N.; Baskin, I.I.; Gaspar, H.A.; Horvath, D.; Marcou, G.; Varnek, A. Generative Topographic Mapping (GTM): Universal
Tool for Data Visualization, Structure-Activity Modeling and Dataset Comparison. Mol. Inform. 2012, 31, 301–312. [CrossRef]

53. Zhang, Y.; He, X.; Chen, Z.; Bai, Q.; Nolan, A.M.; Roberts, C.A.; Banerjee, D.; Matsunaga, T.; Mo, Y.; Ling, C. Unsupervised
Discovery of Solid-State Lithium Ion Conductors. Nat. Commun. 2019, 10, 5260. [CrossRef]

54. Alharin, A.; Doan, T.N.; Sartipi, M. Reinforcement Learning Interpretation Methods: A Survey. IEEE Access 2020, 8, 171058–171077.
[CrossRef]

55. Zhou, Z.-H. Machine Learning; Springer Singapore: Singapore, 2021; ISBN 978-981-15-1966-6.
56. Bell, J. Machine Learning; John Wiley & Sons, Inc.: Indianapolis, IN, USA, 2014; ISBN 9781119183464.
57. Matloff, N. From Linear Models to Machine Learning Regression and Classification, with R Examples; University of California:

Los Angeles, CA, USA, 2017.
58. Utkin, L. An Imprecise Extension of SVM-Based Machine Learning Models. Neurocomputing 2019, 331, 18–32. [CrossRef]
59. Battineni, G.; Chintalapudi, N.; Amenta, F. Machine Learning in Medicine: Performance Calculation of Dementia Prediction by

Support Vector Machines (SVM). Inform. Med. Unlocked 2019, 16, 100200. [CrossRef]
60. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2000. [CrossRef]
61. Noble, W.S. What Is a Support Vector Machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
62. Gavriilidis, A.; Velten, J.; Tilgner, S.; Kummert, A. Machine Learning for People Detection in Guidance Functionality of Enabling

Health Applications by Means of Cascaded SVM Classifiers. J. Frankl. Inst. 2018, 355, 2009–2021. [CrossRef]
63. Kotenko, I.; Saenko, I.; Branitskiy, A. Improving the Performance of Manufacturing Technologies for Advanced Material

Processing Using a Big Data and Machine Learning Framework. Mater. Today Proc. 2019, 11, 380–385. [CrossRef]

https://doi.org/10.1103/PhysRevB.64.184307
https://doi.org/10.1103/PhysRevB.78.104306
https://doi.org/10.1103/PhysRevE.58.86
https://doi.org/10.1007/978-1-4020-5295-8_1
https://doi.org/10.1016/j.jpowsour.2023.232720
https://doi.org/10.1002/adma.201908041
https://doi.org/10.1149/2.1251809jes
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121075
https://doi.org/10.1021/cm3000427
https://doi.org/10.1039/C6EE02697D
https://doi.org/10.1002/aenm.202200553
https://doi.org/10.1016/j.ijleo.2020.164469
https://doi.org/10.1002/mats.201200072
https://doi.org/10.1016/j.commatsci.2008.05.010
https://doi.org/10.1038/srep13285
https://www.ncbi.nlm.nih.gov/pubmed/26304800
https://doi.org/10.1021/cm503507h
https://doi.org/10.1073/pnas.1801181115
https://doi.org/10.1063/1.2755487
https://doi.org/10.1002/minf.201100163
https://doi.org/10.1038/s41467-019-13214-1
https://doi.org/10.1109/ACCESS.2020.3023394
https://doi.org/10.1016/j.neucom.2018.11.053
https://doi.org/10.1016/j.imu.2019.100200
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1038/nbt1206-1565
https://doi.org/10.1016/j.jfranklin.2017.10.008
https://doi.org/10.1016/j.matpr.2018.12.162


Batteries 2023, 9, 228 11 of 12

64. Zhao, H.; Ezeh, C.I.; Ren, W.; Li, W.; Pang, C.H.; Zheng, C.; Gao, X.; Wu, T. Integration of Machine Learning Approaches for
Accelerated Discovery of Transition-Metal Dichalcogenides as Hg0 Sensing Materials. Appl. Energy 2019, 254, 113651. [CrossRef]

65. Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide Spatial Modeling: Introducing New Ensembles of ANN,
MaxEnt, and SVM Machine Learning Techniques. Geoderma 2017, 305, 314–327. [CrossRef]

66. Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. (TIST) 2001, 2, 1–27.
[CrossRef]

67. Anusha, K.S.; Ramanathan, R.; Jayakumar, M. Link Distance-Support Vector Regression (LD-SVR) Based Device Free Localization
Technique in Indoor Environment. Eng. Sci. Technol. Int. J. 2020, 23, 483–493. [CrossRef]

68. Yu, C.; Fan, W.; Yu, H.; Si, F. A Machine Learning NOxemission Model for SCR System Considering Mechanism Knowledge and
Catalyst Deactivation. E3S Web Conf. 2020, 194, 04064. [CrossRef]

69. Jain, A.K.; Dubes, R.C. Algorithms for Clustering Data; Prentice Hall: Hoboken, NJ, USA, 1988; ISBN 978-0-13-022278-7.
70. Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis; Kaufman, L., Rousseeuw, P.J., Eds.; Wiley

Series in Probability and Statistics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1990; ISBN 9780470316801.
71. Jain, A.K. Data Clustering: 50 Years Beyond K-Means. Mach. Learn. Knowl. Discov. Databases 2008, 1 Pt 19, 3–4. [CrossRef]
72. Alhawarat, M.; Hegazi, M. Revisiting K-Means and Topic Modeling, a Comparison Study to Cluster Arabic Documents. IEEE

Access 2018, 6, 42740–42749. [CrossRef]
73. von Luxburg, U. A Tutorial on Spectral Clustering. Stat. Comput. 2007, 17, 395–416. [CrossRef]
74. Zhao, J.; Li, X.; Yu, D.; Zhang, J.; Zhang, W. Lithium-Ion Battery State of Health Estimation Using Meta-heuristic Optimization

and Gaussian Process Regression. J. Energy Storag. 2023, 58, 106319. [CrossRef]
75. Zhuzhunashvili, D.; Knyazev, A. Preconditioned Spectral Clustering for Stochastic Block Partition Streaming Graph Challenge.

In Proceedings of the 2017 IEEE High Performance Extreme Computing Conference, Waltham, MA, USA, 12–14 September 2017.
[CrossRef]

76. Bolla, M. Spectral Clustering and Biclustering: Learning Large Graphs and Contingency Tables; John Wiley & Sons, Ltd.: Hoboken, NJ,
USA, 2013; pp. 1–268. [CrossRef]

77. Sinaga, K.P.; Yang, M.S. Unsupervised K-Means Clustering Algorithm. IEEE Access 2020, 8, 80716–80727. [CrossRef]
78. Likas, A.; Vlassis, N.J.; Verbeek, J. The Global K-Means Clustering Algorithm. Pattern Recognit. 2003, 36, 451–461. [CrossRef]
79. Murtagh, F.; Contreras, P. Algorithms for Hierarchical Clustering: An Overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.

2012, 2, 86–97. [CrossRef]
80. Espinoza, F.A.; Oliver, J.M.; Wilson, B.S.; Steinberg, S.L. Using Hierarchical Clustering and Dendrograms to Quantify the

Clustering of Membrane Proteins. Bull. Math. Biol. 2012, 74, 190. [CrossRef]
81. Sasirekha, K.; Baby, P. Agglomerative Hierarchical Clustering Algorithm-A Review. Int. J. Sci. Res. Publ. 2013, 83, 83.
82. Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?

J. Classif. 2014, 31, 274–295. [CrossRef]
83. Fujimura, K.; Seko, A.; Koyama, Y.; Kuwabara, A.; Kishida, I.; Shitara, K.; Fisher, C.A.J.; Moriwake, H.; Tanaka, I. Accelerated

Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms.
Adv. Energy Mater. 2013, 3, 980–985. [CrossRef]

84. Guo, H.; Wang, Q.; Urban, A.; Artrith, N. Artificial Intelligence-Aided Mapping of the Structure-Composition-Conductivity
Relationships of Glass-Ceramic Lithium Thiophosphate Electrolytes. Chem. Mater. 2022, 34, 6702–6712. [CrossRef]

85. Bergerhoff, G.; Hundt, R.; Sievers, R.; Brown, I.D. The Inorganic Crystal Structure Data Base. J. Chem. Inf. Model. 1983, 23, 66–69.
[CrossRef]

86. Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary:
The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [CrossRef]

87. Sendek, A.D.; Cubuk, E.D.; Antoniuk, E.R.; Cheon, G.; Cui, Y.; Reed, E.J. Machine Learning-Assisted Discovery of Solid Li-Ion
Conducting Materials. Chem. Mater. 2019, 31, 342–352. [CrossRef]

88. Cubuk, E.D.; Sendek, A.D.; Reed, E.J. Screening Billions of Candidates for Solid Lithium-Ion Conductors: A Transfer Learning
Approach for Small Data. J Chem. Phys. 2019, 150, 214701. [CrossRef]

89. Ma, Y.; Guo, G. Support Vector Machines Applications; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783319022994.
90. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge

University Press: Cambridge, UK, 2000; ISBN 9780521780193.
91. Miyamoto, S. Theory of Agglomerative Hierarchical Clustering; Behaviormetrics: Quantitative Approaches to Human Behavior;

Springer Singapore: Singapore, 2022; Volume 15, ISBN 978-981-19-0419-6.
92. Erbacher, M. Cluster Analysis; Atkinson, P., Delamont, S., Cernat, A., Sakshaug, J.W., Williams, R.A., Eds.; SAGE Publications Ltd.:

New York, NY, USA, 2020; ISBN 9781529748222.
93. Liu, J.; Han, J. Spectral Clustering. In Data Clustering; Chapman and Hall/CRC: Boca Raton, FL, USA, 2018; pp. 177–200.

ISBN 9781315373515.
94. Hosmer, D.W.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression, 3rd ed.; Wiley: New York, NY, USA, 2013;

ISBN 9781118548387.
95. Richards, W.D.; Miara, L.J.; Wang, Y.; Kim, J.C.; Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 2016, 28, 266–273.

[CrossRef]

https://doi.org/10.1016/j.apenergy.2019.113651
https://doi.org/10.1016/j.geoderma.2017.06.020
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.jestch.2019.09.004
https://doi.org/10.1051/e3sconf/202019404064
https://doi.org/10.1007/978-3-540-87479-9_3
https://doi.org/10.1109/ACCESS.2018.2852648
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1016/j.est.2022.106319
https://doi.org/10.1109/HPEC.2017.8091045
https://doi.org/10.1002/9781118650684
https://doi.org/10.1109/ACCESS.2020.2988796
https://doi.org/10.1016/S0031-3203(02)00060-2
https://doi.org/10.1002/widm.53
https://doi.org/10.1007/s11538-011-9671-3
https://doi.org/10.1007/s00357-014-9161-z
https://doi.org/10.1002/aenm.201300060
https://doi.org/10.1021/acs.chemmater.2c00267
https://doi.org/10.1021/ci00038a003
https://doi.org/10.1063/1.4812323
https://doi.org/10.1021/acs.chemmater.8b03272
https://doi.org/10.1063/1.5093220
https://doi.org/10.1021/acs.chemmater.5b04082


Batteries 2023, 9, 228 12 of 12

96. Luntz, A.C.; Voss, J.; Reuter, K. Interfacial Challenges in Solid-State Li Ion Batteries. J. Phys. Chem. Lett. 2015, 6, 4599–4604.
[CrossRef]

97. Huo, S.; Sheng, L.; Xue, W.; Wang, L.; Xu, H.; Zhang, H.; Su, B.; Lyu, M.; He, X. Challenges of Stable Ion Pathways in Cathode
Electrode for All-Solid-State Lithium Batteries: A Review. Adv. Energy Mater. 2023, 2204343. [CrossRef]

98. Eckhoff, M.; Schönewald, F.; Risch, M.; Volkert, C.A.; Blöchl, P.E.; Behler, J. Closing the Gap between Theory and Experiment
for Lithium Manganese Oxide Spinels Using a High-Dimensional Neural Network Potential. Phys. Rev. B 2020, 102, 174102.
[CrossRef]

99. Gao, B.; Jalem, R.; Ma, Y.; Tateyama, Y. Li+ Transport Mechanism at the Heterogeneous Cathode/Solid Electrolyte Interface in an
All-Solid-State Battery via the First-Principles Structure Prediction Scheme. Chem. Mater. 2020, 32, 85–96. [CrossRef]

100. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem in 2021:
New Data Content and Improved Web Interfaces. Nucleic Acids Res. 2021, 49, D1388–D1395. [CrossRef] [PubMed]

101. Materials Data Repository Home. Available online: https://materialsdata.nist.gov/ (accessed on 7 March 2023).
102. Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials

Database (OQMD): Assessing the Accuracy of DFT Formation Energies. Npj Comput. Mater. 2015, 1, 15010. [CrossRef]
103. Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density

Functional Theory: The Open Quantum Materials Database (OQMD). JOM 2013, 65, 1501–1509. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1021/acs.jpclett.5b02352
https://doi.org/10.1002/aenm.202204343
https://doi.org/10.1103/PhysRevB.102.174102
https://doi.org/10.1021/acs.chemmater.9b02311
https://doi.org/10.1093/nar/gkaa971
https://www.ncbi.nlm.nih.gov/pubmed/33151290
https://materialsdata.nist.gov/
https://doi.org/10.1038/npjcompumats.2015.10
https://doi.org/10.1007/s11837-013-0755-4

	Introduction 
	Discovery and Screening Methods of New Materials for SSEs 
	Typical Machine Learning Techniques Used in Materials Discovery 
	Supervised Learning 
	Unsupervised Learning 

	Machine Learning Applications for Materials Discovery of SSEs 
	Conclusions and Future Directions 
	References

