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Abstract: This study combines self-prepared NaTi2(PO4)3 (NTP) with commercial vapor-grown car-
bon fiber (VGCF) using a solid state calcination, then coats it with carbon to synthesize the composite
anode material NaTi2(PO4)3/VGCF@C (NTP/VGCF@C). The microstructure and electrochemical
properties of the composite material were then analyzed using microstructure analysis and electro-
chemical testing equipment. Single phase NTP shows nanoparticles with a polyhedral structure, and
there is good contact at the interface between the nanoparticles and the VGCFs. The carbon coating
formed on the NTP particles displays a nearly 6.5 nm thick layer of amorphous carbon. From the
coin-cell battery performance measurements, after 850 cycles, the composite material NTP/VGCF@C
exhibits an excellent retention rate of 96.3% compared to that of the pure NTP material when the
current density is 200 mA/g. As a result, the composite material and lithium manganate (denoted as
LMO) were assembled into an LMO-NTP/VGCF@C aqueous sodium-ion soft pack full battery system.
The full battery shows an initial capacity of 31.07 mAh at a rate of 0.5C, and a reversible discharge
capacity retention rate of 95.8% after 480 cycles, exhibiting a good long-cycle stability performance.

Keywords: aqueous sodium-ion battery; composite material; electrochemical performance

1. Introduction

With the increasing demand of the large-scale energy storage market, a rechargeable
energy storage battery has been developed and researched. Currently, the lithium-ion battery
is the most widely used chemical energy storage system, but it cannot meet the needs of
large-scale application, mainly due to the shortage of high-cost lithium resources [1–6]. In
contrast, sodium is abundant on the earth and is also much cheaper than lithium; thus,
lithium-ion batteries may be replaced by sodium-ion batteries in large-scale energy storage
applications [7–10]. However, sodium-ion has a significant impact on the deintercalation
of sodium ions due to its large ionic radius (1.02 Å) [11,12]. Therefore, it is particularly
urgent to develop suitable materials for the development of the sodium-ion battery (SIB). At
present, hard carbon is the most widely used anode material for SIB since it exhibits good
Na+ storage performance. However, hard carbon easily forms sodium dendrites when the
working voltage is lower than 0.1 V, thus causing a safety concern [13,14]. However, TiO2 is
also widely studied as a metal oxide anode materials for use in sodium-ion batteries, since
under the condition of deep discharge, the theoretical capacity of TiO2 is up to 335 mAh/g.
However, TiO2 is a semiconductor with low conductivity, leading to its low electrochemical
activity. It is necessary to combine TiO2 with highly conductive materials to achieve its
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purpose [15–19]. Therefore, it is necessary to develop a new type of electrode material
suitable for sodium-ion batteries.

It is well known that NTP contains Na super ionic conductor (NASICON), with an open
three-dimensional frame structure which facilitates ion diffusion. It consists of TiO6 octahe-
drons and PO4 tetrahedrons that are connected to each other through oxygen atoms [20–22].
The reversible sodiation and desodiation between NaTi2(PO4)3 and Na3Ti2(PO4)3, i.e., the
redox reactions of Ti3+↔Ti4+ via a two-phase reaction mechanism, can be represented

by equation: NaTi2(PO4)3 + 2Na+ + 2e−
charge−discharge←−−−−−−−−→ Na3Ti2(PO4)3 [23,24]. However,

due to its poor electronic conductivity, the NTP anode material cannot play its proper role
in the sodium-ion battery [25]. In order to improve the electronic conductivity, several
methods have been tested: (1) introducing conductive agents to increase the conductivity
of the material [26–29]; (2) enhancing the conductivity or hydrophilicity of materials with
doping elements [30,31]; and (3) constructing nanostructures and carbon-coated structures
to improve the stability and electronic conductivity of materials [32]. For example, A sol-gel
method was reported to embed nano-NTP particles into a mesoporous carbon matrix to
artificially improve electronic conductivity [33]. The sodium-ion anode material showed
excellent electrochemical performance at the current density of 4 A/g and the high rate
of 20C. The presence of the interconnected porous carbon material effectively improved
the electrochemical performance of the sodium-ion battery anode composite material. In
addition, a three-dimensional (3D) porous structure containing fluoride NaTi2(PO4)3@C
(F-NTP@C) was created to improve the storage capacity of Na+. After 2000 cycles at
10C, the capacity retention rate was reported to be 75.5%. The addition of F-ions and the
three-dimensional porous structure design effectively enhanced the electronic conductiv-
ity and Na-ion dynamics [34]. Since graphene possesses both astonishing surface area
and conductivity, the NaTi2(PO4)3-graphene nanocomposite anode material for aqueous
sodium-ion batteries was synthesized using the solvothermal method and subsequent
high-temperature calcination [35]. Highly crystalline NaTi2(PO4)3 nanoparticles were re-
ported to be uniformly distributed on the surface of the nanographene, with good electrical
conductivity. This type of nanocomposite exhibited excellent high-rate and cycling stability
performance in a 1 mol/L Na2SO4 aqueous electrolyte; it showed high specific capacities
of 110 mAh/g at 2C rates, and the capacity retention rate was 90% after 100 cycles. In
addition to graphene, a carbon nanotube (CNT) was mixed with NaTi2(PO4)3 and graphite
by mechanical ball milling to prepare a composite material [36]. The composite showed
the best electrochemical performance when 6.2 wt.% graphite coated on NaTi2(PO4)3 and
15 wt.% CNT were used as the conductive agent, and the initial specific capacity reached
130 mAh/g at 0.1C rate. Carbon coating has been reported to be an effective strategy for
improving NTP electrochemical properties [37]. The NaTi2(PO4)3/C composite material
coated with double carbon layers using the soft chemical method yielded reversible specific
capacities of 133 and 64 mAh/g at 0.5C and 50C, respectively, showing excellent cycle
stability and rate performance. To our knowledge, the addition of nano carbon fiber into
NTP anode material has not been previously reported.

At present, the organic electrolytes used in the sodium-ion energy storage battery are
highly inflammable and explosive, resulting in a safety risk. However, the aqueous sodium-
ion battery is a safe energy storage technology because it adopts a salt water solution as
an electrolyte, which does not easily ignite or explode; thus, battery combustion and ex-
plosion accidents can be basically avoided. It is noted that the narrow thermodynamic
electrochemical window of water is about 1.23 V. This means that the voltage of the sodium-
ion battery in water under normal conditions will not exceed 1.5 V. As a result, only a few
aqueous sodium-ion battery systems have been studied. At present, the battery system match-
ing the NaTi2(PO4)3 sodium-ion anode material mainly includes NaTi2(PO4)3‖Na0.44MnO2,
NaTi2(PO4)3‖Na3V2(PO4)3 and NaTi2(PO4)3‖Prussian blue cathode [38–43]. For the aqueous
sodium-ion battery consisting of (NaTi2(PO4)3‖1 mol/L Na2SO4‖Na2CuFe(CN)6) [44], the
reversible specific capacity is 104 and 50 mAh/g at 2C and a 100C rate, and after 1000 cycles
at the 10C rate, the specific capacity and capacity retention rate are 74 mAh/g and 88%,
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respectively. As for the aqueous sodium-ion battery consisting of (NaTi2(PO4)3‖1 mol/L
Na2SO4 + 1 mol/L Li2SO4 ‖λ−MnO2), the discharge capacity of the full battery is 800 mAh
at a current density of 50 mA, and the specific capacity reaches 89% of the theoretical ca-
pacity [45]. Another aqueous sodium-ion full battery consisting of NaTi2(PO4)3‖1 mol/L
Na2SO4‖Na0.44MnO2 reveals that the reversible specific capacity is 50% of the initial spe-
cific capacity after 1600 cycles [46]. Overall, the cycle stability and energy density of an
aqueous sodium-ion full battery must be further improved in order to meet the require-
ments of existing large-scale energy storage. Therefore, the development of key materials is
very important for the application of an aqueous sodium-ion full battery for large-scale
energy storage.

In this paper, the vapor-grown carbon fiber (VGCF) was first added into the NaTi2(PO4)3
anode material and then coated with carbon to synthesize an NTP/VGCF@C composite mate-
rial. The microstructure and electrochemical performance of the composite material were
investigated. Moreover, an aqueous sodium-ion soft pack battery system was assembled
with a lithium manganate (LMO) cathode material (Daxiang Energy Technology Co., Ltd.,
Baiyin, China) and an NTP/VGCF@C anode material. This full battery showed a very
good long cycling stability. Hopefully our findings can provide useful guidance for the
industrial production of an aqueous sodium-ion battery.

2. Experimental Procedure
2.1. Sample Preparation

In this experiment, the analytically pure raw materials Na2CO3 (Chinese medicine
chemical reagent, purity 99%), TiO(OH)2 (Macklin reagent, purity ≥ 99%), and NH4H2PO4
(Macklin reagent, purity 99%) were used for preparing the NTP phase as a first step, and
then carbon fiber VGCF and citric acid were added as a second step to create a nanostruc-
tured composite NTP/VGCF@C material using the mechanical grinding + high temperature
calcination + carbon surface modification method. Specifically, sodium carbonate, metti-
tanic acid, and ammonium dihydrogen phosphate were weighed and added to a stainless
steel ball mill tank, according to molar ratio of 0.5:2:3. Then, 20 mL of alcohol containing
0.5% of the thickening agent polyvinyl butyral (PVB) was added into the stainless steel
ball mill tank and mixed for 300 rpm for 2 h to ensure full grinding and mixing. The
mixed solution was stirred and dried in a heated magnetic agitator to prepare the precursor
material of carbon composite NTP for aqueous sodium-ion batteries. The precursor powder
was pressed using a 20 MPa tablet press (size: diameter: Φ60 mm× thickness: 10 mm) and
then transferred to a muffle furnace for high temperature calcination. The high temperature
calcining process was as follows: pre-calcining at 350 ◦C for 2 h, then calcining at 800 ◦C for
9 h, with a heating rate of 3 ◦C/min, finally yielding the NTP sodium-ion anode material.
The sintered titanium-phosphate anode material was crushed and sifted by the crusher, and
the particle size was controlled below 20 µm. The NTP anode material, carbon fiber VGCF,
citric acid, and thickening agent PVB were added to the alcohol solution according to the
mass ratio of 90:0.5:8.5:1, nano-grinding and mixing were carried out in the sand mill for
5 h, and the grinding mixed solution was stirred and dried in the heated magnetic agitator.
Then, the carbon composite NTP/VGCF@C aqueous sodium-ion nano-anode material
was prepared by carbonization sintering in a tubular furnace under an argon atmosphere.
The carbonization sintering process is described as follows: presintering at 300 ◦C for 1 h,
followed by calcination at 650 ◦C for 3 h at a heating rate of 3 ◦C/min. The preparation
process of NTP and NTP/VGCF@C sodium-ion anode materials is shown in Figure 1.
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Figure 1. Schematic illustration of the preparation process for NTP and NTP/VGCF@C sodium-ion
anode materials.

2.2. Battery Assembly

The prepared active material (NTP, NTP/VGCF@C, or LMO), conductive agent (Super-
P), and binder (polyvinylidene fluoride (PVDF)) were mixed in an agate mortar at a mass
ratio of 8:1:1, and an appropriate amount of N-methyl-2-pyrrolidone (NMP) solvent was
added to prepare an evenly mixed slurry. The slurry was then evenly coated onto the
copper foil using a doctor blade and dried at 80 ◦C for 24 h. A circular electrode disc of
12 mm in diameter (the soft pack battery pole size was 60 mm× 60 mm) was prepared using
punching equipment as the research electrode and a sodium metal piece as the counter
electrode. A total of 2025-type coin-cell batteries were then assembled in a glove box. The
cutting NTP/VGCF@C anode electrode and LMO cathode electrode were assembled into
an LMO-NTP/VGCF@C soft pack full battery. The electrolyte was 2 mol/L CH3COONa
and 2 mol/L CH3COOLi, and the diaphragm was made of non-woven fabric.

2.3. Microstructure and Electrochemical Properties Analysis

The microstructure of the prepared anode materials was analyzed using a field emis-
sion scanning electron microscope, model TESCAN MIRA LMS. The microstructure and
composition were analyzed by a transmission electron microscope (TEM), model JEM-2100F.
Phase analysis was conducted using the Bruker D8 Advance X-ray diffractometer (Scientific
Compass). The cyclic voltammetry (CV) and electrochemical impedance spectroscopy
(EIS) were tested using the CS310H model electrochemical workstation tester, with the CV
scanning speed of 0.02 mV/s. The electrochemical performance of the coin-cell batteries
were tested using an electrochemical cycle system (Neware Technology Co., Ltd., Shenzhen,
China). The prepared active material was used as a work electrode, while a thin sheet
of sodium was used as a reference electrode. The voltage testing range of the coin-cell
batteries was from 1.5 V to 3 V. For the LMO-NTP/VGCF@C soft pack full battery, and the
voltage testing range was from 1.2 V to 1.9 V at a 0.5C rate, and the test temperature was
maintained at a room temperature of 25 ◦C.
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3. Results and Discussion
3.1. Phase and Element Analysis

Phase analysis was carried out on the synthesized NTP and its composite NTP/VGCF@C
powder samples. These two XRD patterns are compared and shown in Figure 2a,b.
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Figure 2. XRD patterns of: (a) JCPDS Card NO.33-1296; (b) NTP anode material and (c) NTP/
VGCF@C anode composite material.

According to JCPDS Card NO.33-1296, in the diffraction range of 10◦~80◦, as shown
in Figure 2a, the characteristic diffraction peaks of pure NTP appear at 14.52◦, 20.27◦, 20.9◦,
24.25◦, 25.54◦, 29.27◦, 32.42◦, and 36.31◦, etc., corresponding to the crystal plane index
of (012), (104), (110), (113), (202), (024), (116), and (300), etc. This standard card pattern
perfectly matches the measured whole pattern obtained from the synthesized NTP powder,
as shown in Figure 2b, indicating that a single phase NTP material has been successfully
prepared. By comparison, the XRD pattern of the composite NTP/VGCF@C (Figure 2c)
is found to be very similar to that of the synthesized NTP material, indicating that the
NTP exists as a main phase in the synthesized composite material. The phase structure of
NTP does not change in the subsequent composite processing procedure, showing good
structural stability. Although no characteristic peaks of carbon materials are reflected in
the XRD pattern due to their minor amounts, the existence of VGCF nano-fiber and an
amorphous coating layer can be confirmed by TEM.

The elemental composition and chemical valence state of the NTP/VGCF@C anode
material were analyzed by XPS. It can be clearly seen from the XPS general spectrum in
Figure 3a that the NTP/VGCF@C electrode material contains Na, O, Ti, P, and C elements.
This indicates that the Na, O, Ti, and O elements come from the NTP phase, while the C
element comes from carbon material, and the signals at 134.0 eV, 284.6 eV, 531.8 eV, and
1072.3 eV correspond to the P2p, C1s, O1s, and Na1s components separately. In the Ti 2p
spectrum shown in Figure 3b, it can be seen that NTP/VGCF@C exhibits two peaks at
459.4 eV and 465.0 eV. These two peaks correspond to the characteristic peaks of Ti 2p3/2
and Ti 2p1/2 of Ti4+ in the NTP/VGCF@C anode material [47–49]. It is proved that Ti exists
at the +4 valence in the NTP/VGCF@C anode material, indicating that no phase transition
occurs in the subsequent process of the NTP anode material.
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Figure 3. NTP/VGCF@C (a) total XPS spectrum, and (b) Ti 2p XPS spectrum.

3.2. Microstructure Analysis

Microstructure analysis was carried out on the prepared NTP/VGCF@C composite
material. The SEM morphology, TEM morphology, EDS element distribution, and corre-
sponding selective region electron diffraction (SAED) images of the prepared composite
NTP/VGCF@C composite material are shown in Figure 4a–d.

It can be seen from Figure 4a that the prepared NTP/VGCF@C composite material
shows polygonal particles ranging from 50–350 nm in size. The carbon fiber VGCF is
evenly distributed among the particles, acting as a “bridge” connection between them.
This is helpful for the construction of an effective conductive network. According to
the TEM image (Figure 4b) analysis, the VGCF carbon fiber seems to be bound on the
interface of the composite. The corresponding elemental distribution images are shown in
Figure 4(b-1)–(b-5), and the qualitative test results of Na, Ti, P, O, and C in NTP/VGCF@C
are 5.12, 26.2, 14.95, 39.08, and 14.16wt.%, respectively. The high amount of carbon and its
whole area elemental distribution suggest that the carbon element mainly comes from the
carbon coating on the NTP particles in the NTP/VGCF@C composite material.

High-resolution TEM (HRTEM) image analysis was conducted to obtain more mi-
crostructural information regarding the presence of carbon in the NTP/VGCF@C composite
material. As shown in Figure 4c, there is a layer of amorphous carbon coated on the NTP
particle with the interplanar spacing d(104) = 0.437 nm. The carbon layer was measured to
be about 6.5 nm. In addition, the carbon structure of the VGCF carbon fiber (002) plane
(d = 0.341 nm) shows a stack of linear lamellae parallel to the carbon fiber surface. The
diameter size of the carbon fiber is about 4.3 nm. From a higher magnification image
(Figure 4(c-0)), it can be clearly seen that the VGCF lamellae structure is overlapped with
the NTP lattice fringes, indicating a good contact at the interface between the carbon fiber
and the nanoparticles in the NTP/VGCF@C composite material. This type of structure is
helpful for increasing the interfacial strength of the connection between them, as well as
the superiority of electron transport in the NTP/VGCF@C composite material.

The selective area electron diffraction (SAED) was used to obtain structural informa-
tion for the aggregates of the NTP nanoparticles. The SAED pattern from the nanoparticle
aggregates (Figure 4(d-0)) shows many discrete spots forming a series of rings, as shown in
Figure 4d. Three discontinuous diffraction rings are selected and marked with a dotted line
circle. According to the radius data obtained from these three circles, three d-values were
calculated to be d1 = 0.210 nm, d2 = 0.170 nm, and d3 = 0.131 nm and indexed as (119),
(137), and (336) crystal planes of the NTP phase. Overall, the synthesized NTP/VGCF@C
composite material is composed of NTP, VGCF, and amorphous carbon.
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NTP/VGCF@C composite material is composed of NTP, VGCF, and amorphous carbon. 

Figure 4. NTP/VGCF@C SEM morphology (a), TEM bright field image (b) and dark field image
(inset, b-0), TEM-EDS scanning elements distribution (b-1–b-5), HRTEM lattice fringe images (c,c-0),
TEM image showing a selected area of nanoparticle aggregates (d-0), and corresponding SAED
pattern (d).
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3.3. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy Analysis

The cyclic voltammetry curves of the NTP/VGCF@C anode composite material are
shown in Figure 5a. The Nyquist plots of the pure NTP and the NTP/VGCF@C anode
composite materials are shown in Figure 5b.
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From the curves of the first three cycles of cyclic voltammetry shown in Figure 5a,
two broad peaks at 0.92 and 0.28 V can be seen during the initial discharge, but these
are not present in subsequent cycles, when the potential range is 0.01–3.0 V vs. Na/Na+,
and the scanning rate is 0.1 mV/s. These irreversible peaks are attributed to electrolyte
breakdown and SEI film formation, causing the initial capacity loss. In addition, there
are two distinct redox reaction peaks at 2.23/1.85 V and 0.55/0.27 V. 2.23/1.85 V, which
correspond to the reversible oxidation/reduction process of Ti4+↔Ti3+, while the redox
peaks at 0.55/0.27 V correspond to the reversible oxidation/reduction process of Ti3+↔Ti2+.
It should be noted that almost all CV curves overlap each other in subsequent cycles,
indicating a good electrochemical reversibility. It can be determined from the Figure 5b
that the SEI film resistance (RSEI) and electrode/electrolyte interface resistance (Rct) values
of NTP/VGCF@C are lower than those of the NTP. The electrochemical impedance results
show that the addition of carbon fiber VGCF and amorphous carbon has a great effect on
the structure of the entire electrode material, providing a better electrode dynamic process.
The ionic mobility of the NTP/VGCF@C was significantly improved because the VGCF
formed a conductive network in the anode composite material, and the VGCF, acting as
a “bridge”, was attached by the amorphous carbon material between the active materials.
The electrochemical properties of the materials can be improved. Moreover, the Warburg
coefficient (Zre) values of the NTP and NTP/VGCF@C are 31.92 Ω·S−1/2 and 11.79 Ω·S−1/2,
respectively (as shows in Figure 5b) [50]. This indicates that the presence of the VGCF and
the amorphous carbon coating layer has a significant influence on the electron transport in
the composite material; the conductivity of the NTP/VGCF@C electrode was significantly
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improved. Therefore, the long cycle and rate performance of the NTP/VGCF@C anode
composite material could be further improved.

3.4. Cycling Performance

The effects of pure NTP and its composite material on the cyclic stability and rate
properties are shown in Figure 6a,b. The NTP/VGCF@C composite material is assembled
as an anode, with LMO as a cathode, to create a 32 mAh LMO-NTP/VGCF@C aque-
ous sodium-ion soft pack battery system. The full battery cyclic performance is shown
in Figure 6c.
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Figure 6. (a) Cycle performance of NTP and NTP/VGCF@C; (b) discharge/charge voltage profiles
of NTP/VGCF@C in the 1st and 850th cycle; (c) rate performance of NTP and NTP/VGCF@C;
(d) discharge/charge voltage profiles of an LMO-NTP/VGCF@C aqueous sodium-ion soft pack
full battery in the 1st and 480th cycle; (e) cycle performance of an LMO-NTP/VGCF@C aqueous
sodium-ion soft pack full battery.

The initial specific capacity of the pure NTP and NTP/VGCF@C composite material
is 120.6 mAh/g and 118.4 mAh/g at a current density is 200 mA/g, respectively. After
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200 cycles of charge and discharge, the reversible discharge capacity retention rates of NTP
and NTP/VGCF@C are 91.6% and 99.2%, respectively. Obviously, the addition of carbon
material increases the capacity retention by 7.6%. After 850 cycles of charge-discharge, the
discharge capacity retention rate of the NTP/VGCF@C anode composite material is 96.3%
(3.565 mAh/3.702 mAh), showing a better cycle stability (see Figure 6a,b). The rate capacity
of these two materials at different current densities of 200 mA/g, 1A/g and 1.5A/g is
shown in Figure 6c. When charging and discharging at a small rate to a large rate, and
then returning to a small rate, the capacity of the composite material can be restored to the
discharge capacity of 200 mA/g (117.4 mAh/g). However, pure NTP reverts to a small
rate charge and discharge, and its capacity is only 84% of the initial capacity, showing
a very poor rate performance. This suggests that the combination of carbon fiber and
carbon coating not only maintains a robust structure for the composite material, but also
acts as a conductive connection “bridge” between the NTP particles to ensure electronic
transport between them. As for the full battery performance, the initial capacity of the
LMO-NTP/VGCF@C aqueous sodium-ion soft pack full battery is 31.07 mAh at a rate
of 0.5C, as shown in Figure 6d,e. After 480 cycles of charge and discharge, its reversible
discharge capacity is 29.77 mAh, the discharge capacity retention rate is 95.8%, and its
charging and discharging efficiency has been maintained at nearly 100%. Therefore, the
LMO-NTP/VGCF@C aqueous sodium-ion battery system shows a long-term cycle stability
performance, demonstrating a promising technique for green large-scale energy storage.

4. Conclusions

The composite anode material NaTi2 (PO4)3/VGCF@C is prepared in two steps: pure
NTP synthesis, followed by the addition of VGCF and carbon coating. The microstruc-
ture and electrochemical properties of the composite material have been analyzed. The
conclusions are as follows:

(1) The synthesized anode composite material is composed of NTP nanoparticles, VGCF,
and an amorphous carbon coating layer. The VGCF nanofiber has a good interfacial
contact with the NTP particles in the NTP/VGCF@C composite. The combination of
VGCF with carbon coating makes the composite material more robust and conductive
than pure NTP material.

(2) After 200 cycles of charge-discharge, the reversible capacity retention rates of NTP
and NTP/VGCF@C are 91.6% and 99.2% at a current of 200 mA/g, respectively;
the addition of carbon material increases the capacity retention by 7.6%, and after
850 cycles of charge-discharge, the capacity retention rate of NTP/VGCF@C is 96.3%,
which is much better than that of pure NTP.

(3) The initial capacity of an LMO-NTP/VGCF@C aqueous sodium-ion full battery is
31.07 mAh at a rate of 0.5C. The reversible discharge capacity is 29.77 mAh after
480 cycles, and the discharge capacity retention rate is 95.8%. According to the results
of this study, the LMO-NTP/VGCF@C aqueous sodium-ion full battery can be applied
for large-scale green and safe energy storage.
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