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Abstract: In this paper, the methods used to enhance the conductivity of LiBH4, a potential electrolyte
for the construction of solid-state batteries, are summarized. Since this electrolyte becomes conductive
at temperatures above 380 K due to a phase change, numerous studies have been conducted to lower
the temperature at which the hydride becomes conductive. An increase in conductivity at lower
temperatures has generally been obtained by adding a second component that can increase the
mobility of the lithium ion. In some cases, conductivities at room temperature, such as those
exhibited by the liquid electrolytes used in current lithium-ion batteries, have been achieved. With
these modified electrolytes, both lithium metal and lithium-ion cells have also been constructed, the
performances of which are reported in the paper. In some cases, cells characterized by a high capacity
and rate capability have been developed. Although it is still necessary to confirm the stability of
the devices, especially in terms of cyclability, LiBH4-based doped electrolytes could be employed to
produce solid-state lithium or lithium-ion batteries susceptible to industrial development.
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1. Introduction

Lithium-ion batteries have made possible a technological leap in the electrification
process due to their superior efficiency compared to other types of batteries [1–4]. A further
step in the electrification process could be represented by the production of solid-state
batteries. In fact, these batteries could have higher safety and stability than current organic
liquid electrolyte batteries [5]. The focal point in the development of a solid-state battery
is the solid-state electrolyte (SSE). In fact, the SSE must ensure high ionic conductivity
and, simultaneously, must be stable with both the anode and the cathode of the battery.
Despite the large number of SSEs that have been studied, they can be grouped into three
main categories: solid inorganic electrolytes (both ceramic or glass) [6–8], solid polymer
electrolytes [9,10], and their hybrids [11,12]. Among them, ceramic/glass materials have
proven to be good conductors for lithium ions. These include crystalline [13,14] or glass [15]
sulfide, oxides [16], halides [17], and a mixture of metal oxide/metal halides [18,19]. One
of the problems that arises due to the use of the ceramic oxide system as an electrolyte in
alkaline batteries is correlated to the high resistance of the grain boundary [20]. In fact,
these SSEs are manufactured starting from the particles of the respective materials through
a hot or cold pressure process. Therefore, their ionic conductivities are usually far lower
than those of their bulk phase counterparts [21]. This significant decrease in conductivity is
precisely linked to the numerous grain boundaries that are created during the preparation
process, which greatly hinder the transfer of lithium ions [22]. This is a common problem
for all SSEs, as ion transfer processes typically occur through a short distance hopping
mechanism [23]. Furthermore, the SSE can react with the cathode [24] or the anode [25],
and this leads to instability in the battery performance. These issues have prompted further
efforts to search for a new solid-state electrolytic system.

During their studies on the process of the dehydriding of LiBH4 by microwave irradi-
ation, Japanese researchers lead by Orimo found that at 380 K, this material undergoes a

Batteries 2023, 9, 269. https://doi.org/10.3390/batteries9050269 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9050269
https://doi.org/10.3390/batteries9050269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://doi.org/10.3390/batteries9050269
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9050269?type=check_update&version=2


Batteries 2023, 9, 269 2 of 20

reversible phase change from orthorhombic to hexagonal. This phase change is followed
by an increase in the conductivity of the material, resulting in a rapid acceleration of the
dehydriding rate [26]. Permittivity measurements allowed to understand that LiBH4 in the
orthorhombic phase is an insulator, while it becomes thermally conductive in the hexagonal
phase. This allows the hexagonal phase to be heated rapidly, facilitating its dehydriding.
Furthermore, since a covalent bond holds hydrogen and boron together to form the boro-
hydride anion whose charge is stabilized by the lithium ion, it has been hypothesized that
Li+ and not H+ is responsible for the rise in conductivity. This intuition prompted the
investigation of LiBH4 as an ionic conductor for lithium ions.

In the past, LiBH4 has been used for different applications. LiBH4 was first synthe-
sized in 1940 by Schlesinger and Brown with the aim of finding new volatile compounds of
uranium of low molecular weight for isotopic purification [27]. They first prepared LiBH4
from diborane B2H6 [28] and subsequently extended this procedure in the synthesis of
the borohydride of sodium and that of potassium [29]. In addition to their normal use
as reducing agents in organic chemistry [30,31], alkali metal borohydrides have found
application for hydrogen storage [32,33] because of their extremely high gravimetric hydro-
gen capacities [34]. The unexpected increase in the thermal conductivity observed in the
hexagonal LiBH4 opened a new field of applications for this material as an ionic conductor
for lithium ions. Indeed, the ionic conductivity measures have shown that, for temperatures
above 380 K, this compound has an electric conductivity like that of liquid electrolytes [35].
The discovery of the high electric conductivity of LiBH4 has opened the field to numerous
studies on the conduction properties of various borohydrides and the mixture of these with
other compounds to increase their ionic conductivity [36]. In this review, the main results
obtained in relation to using borohydride-based materials as SSEs for alkali metal batteries
are reported.

2. Solid-State Electrolytes

In the original work of Orimo [35], the conductivity of LiBH4 was measured before
and after the phase change. For both phases, the frequency response in the impedance
graphs shows the presence of a single arc. This means that the response deriving from
the electrode/electrolyte interface and that relating to the grain boundary are both absent.
The resistance measured at 337 K, i.e., before the phase transition temperature, was over
6000 ohms. After increasing the temperature to 391 K, the resistance dropped to only
170 ohms. The electrical conductivity calculated for the hexagonal phase was 10−3 S cm−1,
which is like that of the liquid electrolytes used in current lithium-ion batteries measured
at ambient temperature. For both phases, the temperature dependencies of the electrical
conductivity showed a typical Arrhenius behavior. The calculated activation energies
were 0.69 and 0.53 eV for the orthorhombic and hexagonal phases, respectively. 7Li NMRs
produced conductivity data that showed a good agreement with the electrical conductivity
measured by impedance spectroscopy, confirming that the high electrical conductivity
originates from the fast Li ion motion. The 1H and 11B nuclear magnetic resonance spectra
were used to investigate the rotational movement of BH4 tetrahedra in LiBH4 [37]. It was
observed that the low temperature phase (orthorhombic) presents the coexistence of two
kinds of rotary movement of BH4 tetrahedra, with two distinct activation energies. The
jump rates of reorientation, for both types of motion, have values of about 1011 s−1. The
LiBH4 phase change from orthorhombic to hexagonal, which occurs at a high temperature,
leads to a large increase in the spin lattice relaxation time. A further low frequency
fluctuation process is observed in the high temperature phase, and both the relaxation
rates of the 1H and 11B spin lattice are governed by a characteristic rate of four orders of
magnitude lower (107 s−1) than the orthorhombic phase, probably due to the translational
spread of the Li ions.

Numerous studies have been conducted to try to decrease the temperature at which the
phase transition occurs. To stabilize the room-temperature hexagonal phase of LiBH4, lithium
halides [38], lithium sulfide/phosphorous sulfide [39], and lithium chloride/phosphorous
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sulfide [40] were added to the hydride. Carbon and silicon-based materials such as
fullerene [41,42], silicon oxide [43–45], and mesoporous silica [46,47], which were eventually
added with lithium iodide [48,49], were also employed. Low molecular weight molecules
including water [50] and ammonia [51–53], which were eventually added with silicon ox-
ide [54], lithium amide [55,56], ammonia borane [57], mono-methylamine [58], oxygen [59],
magnesium oxide [60], lithium tetrafluoro borate [61], and lithium thiophosphate [62] were
also used to increase the conductivity of the hydride at lower temperatures.

It has been found that the addition of lithium halides resulted in a substantial decrease
in the transition temperature [38]. Among all halides, the LiI-doped one showed the
most significant decrease in the transition temperature. For this sample, a conductivity
of 1.0 × 10−3 S cm−1 was calculated at 50 ◦C (Figure 1). Both NMR and XRD showed
room-temperature stabilization of the superionic phase for LiI-doped LiBH4.
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Figure 1. Specific conductivities of pure or doped with lithium halides LiBH4 obtained by AC
impedance as a function of temperature. Reproduced with permission from ref. [38]. Copyright 2009
American Chemical Society.

To improve the conduction properties of P2S5-Li2S glasses, it has been hypothe-
sized to add LiBH4 to the sulfide-based electrolytes [39]. The conductivity of the glasses
was observed to increase with raising the LiBH4 amount. A conductivity as high as
1.6 × 10−3 S cm−1 was exhibited by the sample containing 33 mol% LiBH4. The study on
LiBH4-P2S5-LiCl composites showed that this material undergoes amorphization at 60 ◦C,
accompanied by an increase in Li+ conduction [40]. The ionic conductivity of the optimized
borohydride-sulfide-halide system is approximately 10−3 S cm−1 at ambient temperature.
Furthermore, the activation energy for ion migration is low. This makes it suitable for
building solid-state batteries that operate near room temperature.

Moreover, the addition of fullerene significantly enhances the conductivity of LiBH4.
The mobility of the lithium ions was further increased after thermal annealing reached a
value comparable to that observed for the lithium halides. A lithium ionic conductivity of
2.0 × 10−5 S cm−1 at 25 ◦C that increased up to 2.0 × 10−3 S cm−1 at 140 ◦C was observed
in an annealed sample containing 30 wt.% of fullerenes [41] (Figure 2). The improvement
of the ionic conductivity of fullerene-added LiBH4 was also achieved through a partial
dehydrogenation achieved by heating [42].
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) and ionic (•) conductivity measurements of the LiBH4:C60 nanocomposites.
Red—LiBH4:C60 (70:30) as prepared; blue—LiBH4:C60 (70:30) annealed at 300 ◦C; gray—LiBH4:C60

(50:50) as prepared; green—LiBH4:C60 (50:50) annealed at 300 ◦C. Reproduced with permission from
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Even more impressive was the effect on the structural phase transition, Li ion mobility,
and ionic conductivity of the nanoconfinement of LiBH4 in ordered mesoporous SiO2
scaffolds. At 40 ◦C, the conductivity of the composite was 1.20 × 10−4 cm−1, with a
three-order-of-magnitude increase when compared to the pristine LiBH4 at the same
temperature [43] (Figure 3).
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Figure 3. (a) Temperature dependence of ionic conductivity of SiO2-LiBH4 nanocomposites and
pristine LiBH4. All nanocomposites contained 42 wt.% LiBH4, but the degrees of pores filling are
different. Red triangles: pristine LiBH4, circles, and squares: sample melt-infiltrated, green diamonds:
physical-mixture, (b) Nyquist plot obtained for the impedance measurements at various temperatures
(squares: 30 ◦C, circles: 50 ◦C, triangles: 80 ◦C). (c) equivalent circuit used to fit the electrochemical
impedance spectroscopy data. Reproduced with permission from ref. [43]. Copyright 2015 Wiley.

The 7Li and 11B spectra of LiBH4 contained in orderly porous silica (pore size MCM-41:
1.9 nm) showed, in addition to the bulk-like resonance of LiBH4, a narrower additional
part [44]. Above T = 313 K, this part showed a typical J-coupling pattern in both 11B
and 1H spectra. The observed J-coupling pattern can be traced back to the presence of
highly mobile BH4

- species. Static measurements have confirmed that the BH4
- mobility in

LiBH4 is greatly improved by nanoconfinement. At the same time, there is a significant
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enhancement in the mobility of Li+. These J-coupling patterns due to highly mobile species
can also be observed in the molten LiBH4. This means that nanoconfinement strongly
enhances the mobility of borohydride anions in LiBH4. By decreasing the temperature, the
J-coupling pattern vanishes due to the reduction in mobility. Since the narrowing of the
line already occurs far below the phase transition temperature and far below the melting
point of LiBH4, it follows that nanoconfinement can stabilize the high-temperature phase
already at room temperature.

The confinement of LiBH4 in silica characterized by different degrees of porosity has
been studied in [45] using micro-SiO2, porous nano-SiO2, and nano-SiO2 with nanochannels
as supports (Santa Barbara Amorphous-15, SBA-15). All LiBH4/silica composites exhibited
ionic conductivity superior to that of the silica-free material. LiBH4/SBA-15 (at a weight
ratio of 47%) exhibited the highest conductivity of 3.0 × 10−5 S cm−1 at 35 ◦C, with a
three-order-of-magnitude increase compared to that of pure LiBH4. The LiBH4/SBA-15
composite also exhibited an electrochemical stability window extending from −0.2 to 5.0 V.
A. Further investigation on SBA-15 studied the effect of the preventive heat treatment
of SBA-15 on the performance of the solid electrolyte obtained by infiltrating the silica
nanochannels with LiBH4 [46]. SBA-15 was previously dried for 6 h at a certain temperature
(from ambient temperature up to 600 ◦C). The preparation of the nanocomposites was
achieved by melt infiltration. Figure 4 illustrates the behavior of the conductivity as a
function of temperature for the LiBH4 infiltrated inside the silica mesopores: values ranged
between 10−6 and 10−5 S cm−1 at 30 ◦C. The difference in the conductivity values was
related to the different thermal treatments undergone by the silica before melt infiltration.
The Nyquist plot for the SiO2 sample heated at 300 ◦C displays a single semi-circle, which
is typical of conductivity phenomena characterized by a single process. For this sample,
the specific conductivity measured at 30 ◦C was 5.0 × 10−6 S cm−1.
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posites (for more details see ref. [46]). The insert shows the Nyquist graph of the impedance measure-
ment carried out at 30 ◦C. Reproduced from ref. [46] under Creative Commons Attribution License.
Copyright 2015 Royal Society of Chemistry.

SBA-15 with various pore sizes infiltrated with LiBH4 was studied using 1H, 6,7Li,
and 11B solid-state NMR at different temperatures [47]. To interpret the obtained results, it
was hypothesized that the LiBH4 inside the pores is in a bulk form detached from the pore
walls by a highly dynamic amorphous fraction. The percentage of dynamic fraction rises by
increasing the temperature. The exchange of lithium ions between the two fractions is slow
at room temperatures, but beyond the temperature at which the phase transition of the
innermost fraction takes place, the lithium ions can diffuse rapidly through both fractions.
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Therefore, no increase in ion mobility is noted at room temperature. When the temperature
is increased, the material confined within the pores undergoes the phase transition and all
Li ions are highly mobile. Consequently, all Li ions confined in the nanopores look like a
single highly dynamic element in the NMR spectra.

When the LiBH4 was doped with LiI before being introduced into the nanopores of
the SBA-15, a highly conductive Li-ion electrolyte was obtained [48]. Li4(BH4)3I@SBA-
15 was prepared by the partial exchange of I− for BH4

− to form Li4(BH4)3I, which was
obtained by heating LiBH4 and LiI at 250 ◦C and 100 bars of hydrogen for 12 h. Then, the
SBA-15 was filled with Li4(BH4)3I by heating the mixtures Li4(BH4)3I and SBA-15 for 1 h
at 340 ◦C under 130 bars of hydrogen, as schematically shown in Figure 5. The uniform
nanoconfinement of the LiBH4/LiI mixture in the silica mesopores leads to an electrolyte
with a conductivity of 2.5 × 10−4 S cm−1 at 35 ◦C. At the same temperature, the Li ion
transfer number was calculated to be 0.97. This high conductivity is probably attributable
to the higher mobility of the lithium ions in the interface layer between the Li4(BH4)3I
and the mesoporous silica. In addition, this electrolyte has a higher dendrite suppression
capability, with a critical current density of 2.6 mA cm−2 at 55 ◦C and an electrochemical
stability window that extended up to 5.0 V.
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Figure 5. (a) An explanatory scheme of the preparation process of Li4(BH4)3I in SBA-15; (b) X-ray
diffractograms, (c) FTIR spectra, (d) Raman spectra of LiBH4, Li4(BH4)3I, and Li4(BH4)3I@SBA-15;
TEM images of (e,g) SBA-15 and (f,h) Li4(BH4)3I@SBA-15; (i–k) SEM-EDS images of Li4(BH4)3I@SBA-
15; (l) nitrogen adsorption isotherms of SBA-15, Li4(BH4)3I@SBA-15, and Li4(BH4)3I/SBA-15. Repro-
duced with permission from ref. [48]. Copyright 2019 Wiley.

Solid polymer electrolytes were obtained through a casting method in liquid solution.
LiBH4/Li4 (BH4)3I and poly(ethylene oxide) (PEO), with or without SiO2, were dissolved
in anhydrous acetonitrile, and after 20 h of stirring, the solution was poured onto a PTFE
film. After the evaporation of acetonitrile at room temperature, the solid polymer elec-
trolyte membrane was formed. The composite solid polymer electrolyte PEO10–Li4 (BH4)3I
containing 5 wt.% SiO2 exhibited a lithium-ion conductivity of 4.28 × 10−4 S cm−1 at 70 ◦C
that resulted higher than plain LiBH4 or the pure electrolyte PEO–LiBH4 [49].

Water content has also been found to influence the transport properties of LiBH4.
LiBH4 can incorporate water without decomposing. The process is reversible and structural
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water can be lost at 55 ◦C. In its hydrated form, the lithium-ion conductivity of LiBH4 at
45 ◦C is 4.89 × 10−4 S cm−1 [50]. The 7Li NMR spectra obtained when the LiBH4 hydrate
is heated around the dehydration temperature indicate that the increase in the conductivity
of the lithium ions could be related to the movement of structural water.

Several works have dealt with the doping of LiBH4 with ammonia or its derivatives.
The various LiBH4 ammoniates can easily be synthesized by varying the amount of ammo-
nia supplied to the LiBH4 at ambient temperature. Salts of general formula Li(NH3)nBH4
(0 < n ≤ 2) have shown conductivities of the order of 10−3 S cm−1 for temperatures below
40 ◦C [51]. The electric properties of the lithium borohydride ammoniates are illustrated
in Figure 6. These compounds have been proposed as SSE, although further studies are
necessary to use this ammonia complex for practical application. More recently, the lithium
borohydride hemiamine, LiBH4·1/2NH3, was investigated, for which a new Li+ conductiv-
ity pathway was supposed [52]. The addition of ammonia for every two moles of LiBH4
causes an increase in conductivity, reaching 7.0 × 10−4 S cm−1 at 40 ◦C in the solid state
and increasing to 3.0 × 10−2 S cm−1 at 55 ◦C after melting.
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Figure 6. (A) Nyquist plots obtained by heating the electrolyte from 20 ◦C to 45 ◦C between two
lithium electrodes. (B) The ionic conductivity of the ammonia complex under heating (black) and
cooling (red) of the pristine LiBH4 (blue). (C) Lithium ion conductivity of samples: Li(NH3)BH4 for
the fifth cycle (black), steel electrode Li(NH3)BH4 (red), Li(NH3)BH4 (blue), and Li(NH3)0.5BH4 (dark
cyan). (D) DC conductivity of Li(NH3)BH4 obtained after applying a constant voltage of 0.1 V to the
steel and lithium electrodes at 40 ◦C, respectively. The box shows the impedance graph obtained
using a steel electrode at 35 ◦C. Reproduced with permission from ref. [51]. Copyright 2019 Elsevier.

Composites, prepared by a ball milling process and having the general formula
LiBH4xNH3-Li2O, were obtained using LiBH4, LiNH2, and LiOH as precursors [53]. During
the process, LiBH4 xNH3 transforms into an amorphous material and the ionic conductivity
at 20 ◦C rises to 5.4 × 10−4 S cm−1. Composites of LiBH4 containing ammonia and silicon
oxide were also prepared [54]. Composites of formula Li(NH3)xBH4@SiO2 (0 ≤ x ≤ 0.5)
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were prepared by absorbing ammonia into LiBH4 and incorporating silicon oxide by ball
milling. Among the different prepared materials, the Li(NH3)0.5BH4@SiO2 showed an ionic
conductivity of 3.95 × 10−2 S cm−1 at 60 ◦C. The ionic conductivity at 40 ◦C in lithium
amide-borohydride was found to be 6.4 × 10−3 S cm−1 [55]. The materials of formula
Li(BH4)1−x(NH2)x were prepared using LiBH4 and LiNH2 as precursors [56]. Reactive
ball milling followed by a heat treatment at 120 ◦C was used to prepare the materials. A
conductivity of 2.0 × 10−4 S cm−1 at 40 ◦C was calculated for the reference sample (x = 3/4),
with an activation energy of 0.34 eV. By increasing the LiBH4:LiNH2 precursor ratio to
1:2 (x = 2/3), an increase in conductivity was found. The conductivity increased by more
than one order of magnitude, reaching 6.4 × 10−3 S cm−1 a 40 ◦C. The incorporation of
ammonia borane (AB) into the LiBH4 facilitates the conduction of lithium ions due to the
increase in cell volume and, consequently, the decrease in volumetric density [57]. At 25 ◦C,
the LiBH4·AB complex showed ionic conductivities of the order of 4.04 × 10−4 S cm−1.
The Li-ion transfer number measured at 40 ◦C was greater than 0.999. To explain these
performances, ab initio molecular dynamics simulations have been carried out which show
the presence, along the b direction in the LiBH4 AB structure, of a 1D diffusion channel,
which presents a very low activation energy barrier (0.12 eV), consequently allowing for
the higher conductivity of Li ions at 25 ◦C. The addition of mono-methylamine to LiBH4
leads to the formation of the crystalline complex LiBH4·CH3NH2 which crystallizes in the
monoclinic space group P21/c, to which corresponds a two-dimensional layered structure
that allows for the rapid movement of Li ions at room temperature [58]. The layers are
separated by –CH3 groups, resulting in the formation of large voids (Figure 7). These
spaces allow for the rapid passage of Li ions, enabling the material to reach a conductivity
of 1.24 × 10−3 S cm−1 at room temperature. Unfortunately, the electrochemical stability is
limited to about 2.1 V vs. Li.

Batteries 2023, 9, x FOR PEER REVIEW 9 of 22 
 

 

Figure 7. Crystalline structure of LiBH4 CH3NH2. (a) The layers observed from the ab-plane, (b) the 

Li coordination, and (c) the layer observed in the bc-plane. Color combination: H (gray), Li+ (blue), 

C (black), N (red), and BH4− (light blue tetrahedra). Reproduced with permission from ref. [58]. Cop-

yright 2022 Wiley. 

A quick and easy method of activating LiBH4 to significantly increase its conductivity 

is to expose the borohydride to oxygen [59]. This exposure determines the oxidation of 

the borohydride particles placed on the surface. The rearrangement of the surface atoms 

results in defects that strongly increase the ionic conductivity. Oxidized LiBH4 shows a 

conductivity value at 35 °C equal to 1.97 × 10−4 S cm−1, which is five orders of magnitude 

higher than that of the pristine LiBH4. At 55 °C, the ionic conductivity of the oxidized 

LiBH4 reached 1.88 × 10−3 S cm−1, one of the highest ionic conductivities reported so far for 

solid-state electrolytes based on this material. A similar increase in conductivity was also 

found for the Mg(BH4)2 (Figure 8). 

 

Figure 8. Arrhenius plot of (a) LiBH4 exposed to 5% O2 versus that of uncontaminated LiBH4, and 

(b) Mg(BH4)2 exposed to 5% O2 versus that of uncontaminated Mg(BH4)2. Reproduced with permis-

sion from ref. [59]. Copyright 2020 Wiley. 

Figure 7. Crystalline structure of LiBH4 CH3NH2. (a) The layers observed from the ab-plane, (b) the
Li coordination, and (c) the layer observed in the bc-plane. Color combination: H (gray), Li+ (blue),
C (black), N (red), and BH4

− (light blue tetrahedra). Reproduced with permission from ref. [58].
Copyright 2022 Wiley.

A quick and easy method of activating LiBH4 to significantly increase its conductivity
is to expose the borohydride to oxygen [59]. This exposure determines the oxidation of
the borohydride particles placed on the surface. The rearrangement of the surface atoms
results in defects that strongly increase the ionic conductivity. Oxidized LiBH4 shows a
conductivity value at 35 ◦C equal to 1.97 × 10−4 S cm−1, which is five orders of magnitude
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higher than that of the pristine LiBH4. At 55 ◦C, the ionic conductivity of the oxidized
LiBH4 reached 1.88 × 10−3 S cm−1, one of the highest ionic conductivities reported so far
for solid-state electrolytes based on this material. A similar increase in conductivity was
also found for the Mg(BH4)2 (Figure 8).
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Figure 8. Arrhenius plot of (a) LiBH4 exposed to 5% O2 versus that of uncontaminated LiBH4,
and (b) Mg(BH4)2 exposed to 5% O2 versus that of uncontaminated Mg(BH4)2. Reproduced with
permission from ref. [59]. Copyright 2020 Wiley.

To improve the conductivity of Li ions, MgO was added to LiBH4 [60] and different
compositions were tested. Among these, the mixture containing 53 v/v% of MgO exhibited
the highest conductivity equal to 2.86 × 10−4 S cm−1 at 20 ◦C. The use of MgO had no
effect on the extension of the electrochemical stability window, which was about 2.2 V vs.
Li+/Li.

LiBH4 reacts with LiBF4, with the in-situ formation of LiF and lithium closoborates [61].
The formation of these compounds leads to the creation of highly conductive interfaces
within the decomposed LiBH4 structure. As a result, there is an increase in the ionic
conductivity, which reaches a value of 0.9 × 10−5 S cm−1 at 30 ◦C.

A solid electrolyte characterized by a high conductivity at ambient temperature was
obtained by mixing lithium thiophosphate with LiBH4 [62]. The preparation method is
extremely simple as it consists of grinding the two compounds without any heat treatment.
The solid electrolyte shows an ionic conductivity of 11 × 10−3 S cm−1 at 25 ◦C (Figure 9).
Despite the studies performed, the mechanism of action of thiosulfate in increasing the
ionic conductivity of LiBH4 still remains unclear.
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Figure 9. (a) Variation of the ionic conductivities with temperature and (b) activation energy
and ionic conductivity at 25 ◦C of the solid electrolyte samples, with various compositions of
(1 − x)Li3PS4·2xLiBH4. Reproduced under Creative Commons Attribution License from ref. [62].
Copyright 2023 Wiley.

3. Lithium Metal Batteries

Several different materials, such as TiS2 [39], LiCoO2 [63], LiNi1/3Mn1/3Co1/3O2 [64],
Li4Ti5O12 [55], S [65,66], LiFePO4 [42], and LiNi0.7Mn0.15Co0.15O2 [62], have been studied
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as the cathode for LiBH4-based SSE batteries. The 33 mol % LiBH4-Li2S-P2S5 glass was
coupled with TiS2 to assemble an all-solid-state lithium cell [39]. The voltage profiles of
the first five cycles conducted at a current density of 0.064 mA cm−2 at room temperature
are showed in Figure 10. The first cycle discharge capacity was about 223 mAh g−1, which
corresponds to 93% of the theoretical capacity of TiS2. In subsequent cycles, a slight loss of
capacity was observed. Despite that, the cell exhibited a capacity of about 200 mAh g−1,
with a Coulombic efficiency of over 99% in the following cycles.
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Figure 10. Voltage profiles of a solid-state Li/TiS2 cell with glass electrolyte 67(0.75Li2S 0.25P2S5)
33LiBH4 cycled at a current density of 0.064 mA cm−2 at 25 ◦C. Reproduced with permission from
ref. [39]. Copyright 2013 Elsevier.

The LiCoO2 was cycled at a temperature above the LiBH4 transition temperature
(120 ◦C) [63]. During the first cycle, the cell showed a charge capacity of 157 mAh g−1,
which approximates the theoretical capacity of LiCoO2. Unfortunately, in the following
cycles, a strong capacity fading reduced the capacity, which was as low as 18 mAh g−1

at the tenth cycle. Impedance spectroscopy showed a progressive increase in the charge
transfer resistance. As the chemical compatibility of LiBH4 with a lithium electrode has been
proven to be good, the increase in resistance was attributable to cathode degradation. The
formation of an insulating layer at the interface between the cathode material and LiBH4
has been implicated as the cause of the degradation that occurs as the cycle progresses.
To reduce the capacity loss, a thin layer of Li3PO4, LiNbO3, and Al2O3 was used to coat
the cathode material [67]. The interfacial resistance was effectively reduced by applying a
10–25 nm thick Li3PO4 interlayer. The cell, discharged at a current density of 0.05 mA cm−2,
exhibited a discharge capacity of 89 mAh g−1 and maintained about 97% of the initial
capacity after 30 full charge–discharge cycles. The cell made with LiNi1/3Mn1/3Co1/3O2
also exhibited an increase in the contact resistance as cycling progressed [57]. The contact
resistance was reduced by using an adhesive layer formed by a mixture of LiBH4 and
LiNH2. Thanks to the presence of this barrier layer, repeated charge–discharge cycles have
been obtained. At the first cycle, the cell heated to 150 ◦C showed a discharge capacity of
114 mAh g−1. After ten cycles, the capacity was about 71% of the initial one.

The lithium amide-borohydride electrolyte was tested using a Li4Ti5O12 electrode. The
cell exhibited high bulk and interfacial stability, good rate capability, and an extended cycle
life [55]. The cell cycled for 400 cycles at 0.7 mA cm−2 (1 C) and retained good capacity up
to 3.5 mA cm−2 (5 C) at 40 ◦C (Figure 11).
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Figure 11. Li4Ti5O12/lithium cell using Li(BH4)1−x(NH2)x (x = 2/3) as SSE tested at 40 ◦C. (a) Dis-
charge capacities and Coulombic efficiencies at different rates for a cell with the SSE. For comparison,
a cell using LP50 as the liquid electrolyte is shown. (b) Capacity as a function of the number of cycles
for the SSE cell cycled at 1C. Reproduced with permission from ref. [55]. Copyright 2017 Wiley.

A composite cathode of sulfur-infiltrated carbon nanotubes was employed to make
a solid-state Li/S battery [65]. LiBH4 was used as SSE. The cathode exhibited an initial
capacity of 1459 mAh g−1. As cycling progressed, the specific capacity faded to a constant
value of 398 mAh g−1.

A composite material obtained by mixing sulfur and graphene oxide (GO) or reduced
graphene oxide (rGO) in a percentage of 1 or 10% [66] was tested as the positive active
material of a solid-state battery. The cells were tested at 20 ◦C and a 0.1C rate. The cell
containing 1%GO-99%S exhibited a first cycle capacity of 1100 mAh g−1, while in the
subsequent charge, it managed to accumulate 1700 mAh g−1 (Figure 12). Probably during
the heating process, the sulfur and the LiBH4 (present as SSE in the cathode formulation)
reacted to form Li2S. Therefore, not all the sulfur that was initially present in the cathode
was available for the electrochemical reaction. This explains why the initial capacity was
lower than the theoretical capacity. While charging, the cell provided a capacity higher
than the theoretical one (1675 mAh g−1), probably following the reaction between the
sulfur and the LiBH4. A severe capacity fading was observed in subsequent cycles and the
capacity decreased to a constant value of approximately 150 mAh g−1 after 42 cycles. The
same behavior was observed for the 10%GO-90%S composite. The cell showed a first cycle
specific capacity of 1309 mAh g−1 and 1165 mAh g−1 in charge and discharge, respectively,
with a Coulomb efficiency of about 89%. The capacity retention with cycling was poor
since the capacity strongly reduced after a few cycles.

Using a composite of formula Li(NH3)0.5BH4@SiO2 as an electrolyte, a lithium-sulfur
solid-state cell was constructed, which exhibited a specific discharge capacity of 1221.7 mAh
g−1 after 10 cycles [54]. The cell also showed good rate capability. The cell managed to dis-
charge 1589 mAh g−1 at 0.1C and 695 mAh g−1 when discharged at C rate. Before realizing
the complete cell, the stability of Li(NH3)0.5BH4@SiO2 against metallic lithium was studied.
As shown in Figure 13a–d, it emerged that the Li/Li(NH3)0.2BH4/Li cell had low ionic
conductivity at low temperatures (30 ◦C and 40 ◦C). At higher temperatures (50 ◦C), the
melting of the electrolyte (Figure 13a–d, digital images) was observed. However, the charge–
discharge curves of the Li/ Li(NH3)0.5BH4@SiO2/Li symmetrical cell at 0.1 mA cm−2 show
regular cycles, with no short-circuit formation after 100 h. Li/ Li(NH3)0.5BH4@SiO2/S cells
were then fabricated and cycled at 0.2C, which showed second cycle specific capacities of
818.7 mAh g−1 and 777 mAh g−1 at 40 ◦C and 50 ◦C, respectively (Figure 13e). The cell
has been shown to work very well at various temperatures (Figure 13f) and discharge rates
(Figure 13g).
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Figure 13. Voltage profiles during galvanostatic Li plating/stripping for the symmetrical
Li/Li(NH3)0.2BH4/Li and Li/Li(NH3)0.5BH4@SiO2/Li cells at 0.1 mA cm−2 at 30 ◦C (a), 40 ◦C
(b), 50 ◦C (c), and 60 ◦C (d). Insets: digital images of Li/Li(NH3)0.2BH4/Li (left) and Li/
Li(NH3)0.5BH4@SiO2/Li (right) after galvanostatic cycling (bottom). (e,f) Voltage profiles during
galvanostatic cycles (second cycle) of the Li/Li(NH3)0.2BH4/S and Li/Li(NH3)0.5BH4@SiO2/S cells
at various temperatures at 0.2C. (g) Differential capacitance curves of curve f. (h) Rate capability of the
Li/Li(NH3)0.5BH4@SiO2/S cell at 40 ◦C at various rates. (i,j) Voltage profiles of Li/Li(NH3)0.2BH4/S
and Li/Li(NH3)0.5BH4@SiO2/S cells at 40 ◦C and 0.2C. Reproduced with permission from ref. [54].
Copyright © 2022 American Chemical Society.
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Lithium iron phosphate (LiFePO4) was employed as the cathode active material of a
solid-state lithium metal battery with a SSE obtained by adding fullerene to LiBH4 [42].
The SSE was partially dehydrogenated by heating. The first cycle capacity was very low
(20 mAh g−1). An increase in capacity, which reached a value of 73 mAh g-1, was observed
as cycling progressed. The solid electrolyte obtained by mixing lithium thiophosphate with
LiBH4 was evaluated in a lithium cell containing LiNi0.7Mn0.15Co0.15O2 as the cathode [62]
(Figure 14). The cycling was initially conducted at 0.05C. At this rate, the measured capacity
was 212.3 mAh g−1 in charge and 177.5 mAh g−1 in discharge with an initial Coulombic
efficiency of 83, 6%. When the cell was cycled at higher rates, a good capacity retention was
observed; at a discharge rate of 2C, the cell was able to deliver 132.3 mAh g−1 (Figure 14b).
To evaluate the capacity retention as a function of the cycle number, the cell was cycled at
0.5C. Under these conditions, the cell was capable of cycling for 100 cycles with a low fade
rate (Figure 14d).
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4. Lithium-Ion Batteries

Studies on anodes, alternative to lithium metal, for the construction of solid-state
Li-ion batteries have been focused on metal and metal hydrides which act through the
alloy formation or conversion mechanism. Among them, titanium hydride [68], mixture
of titanium and magnesium [69,70], vanadium [71], antimuonium [72], bismuth [73], bis-
muth telluride [73], bismuth selenide [74], aluminum [75], and titanium/iron [76] have
been investigated.

To build a solid-state Li-ion battery with LiBH4 SSE, the use of titanium hydride (TiH2)
as a negative electrode was tested [68]. The TiH2/LiBH4/Li cell was cycled at 120 ◦C
with a specific current of 400 mA g−1. The cell showed a first cycle specific capacity of
1094 mAh g−1, which decreased to 878 mAh g−1 after 50 cycles. The rate capacity of the
TiH2 composite electrode decreased by about 18% when increasing the specific current
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from 400 mA g−1 to 1600 mA g−1. MgH2/TiH2 blends have also been proposed as anodes
for solid-state Li-ion batteries [69]. When cycled very slowly (0.02C), these blends exhibited
specific capacities up to 1700 mAh g−1. A complete sulfur Li-ion cell was constructed by
using a mixture of MH2 and TiH2 as the negative electrode [70]. To prepare the cathode
of the cell, the Li2S resulting from the electrochemical reduction of the sulfur cathode
was employed as the cathode active material. After the first discharge cycle of a Li-S
half-cell conducted at 0.02C, the cathode was recuperated and used to assemble the Li-ion
cell. The cathode contained approximately 30% molar excess of Li2S over the amount of
metal hydride to compensate for the irreversible capacity lost during the first cycle. The
cell was assembled in its discharged state (the starting materials was Li2S in the cathode
and MgH2/TiH2 in the anode). The sulfur/MgH2-TiH2 cell showed a reversible capacity
of 910 mAh g−1 (the specific capacity of the cell was referred to the weight of the active
material in the negative electrode). Furthermore, the capacity kept at 85% of the initial
value in the first 25 charge/discharge cycles (Figure 15).
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Bi and Sb were used as negative electrode materials in solid-state Li-ion batteries with
LiBH4 as SSE. These metals have shown extremely high stability towards the electrolyte,
with a high Coulombic efficiency of 90–99% [72]. The specific capacity recorded at the
first cycle was 480 and 650 mAh g-1 for Bi and Sb, respectively. A capacity fade of about
18% (Bi) and 5% (Sb) affected the electrodes upon cycling. In addition, a 55 nm size Bi2Te3
nanosheet was used as the anode active material for solid-state lithium-ion batteries with
LiBH4 as the SSE at 125 ◦C [73]. When cycled at a rate of 0.1C, the anode showed an
initial capacity of 555 mAh g−1 and 1290 mAh g−1 in discharge and charge, respectively.
During the electrochemical charge–discharge experiment, the cell was found opened after
11 cycles due to gas evolution. The gas evolution was related to the thermal decomposition
of LiBH4 catalyzed by Bi2Te3. It was suggested that the destabilization of LiBH4 with Bi2Te3
nanosheets is a two-step process with the formation of Li2Te and Li3Bi.

Commercial and nanostructured Bi2Se3 has been tested as an anode in solid-state
lithium-ion batteries [74]. Electrochemical measurements indicated an initial capacity of
621 mAh g−1 (in discharge) and 499 mAh g−1 (in charge) for the commercial material,
which was slightly higher than the nanostructured Bi2Se3 (discharge and charge capacity:
594 mAh g−1 and 468 mAh g−1, Figure 16a). However, the nanostructured material showed
a better cycling stability (Figure 16b).
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A simple solid-state pre-lithiation approach has been used to prepare in situ a Li3AlH6-
Al nanocomposite via a short-circuit electrochemical reduction between LiAlH4 and Li [75].
This nanocomposite is formed of Al nanograins dispersed in an amorphous Li3AlH6 matrix.
When tested as an anode in a battery with LiAlH4 as the SSE, it exhibited a first cycle
specific capacity of 2266 mAh g−1, a Coulomb efficiency of 88%, and a capacity retention
of 71% in the 100th cycle. With this nanocomposite, a full solid-state cell was made using
a LiCoO2-based cathode which was cycled at 120 ◦C. The reversible specific capacity of
the first cycle was 102 and 1631 mAh g−1, when referring to the weight of the cathode
and anode, respectively (Figure 17). The first cycle Coulombic efficiency was 69%. In
the following cycles, the cell showed a small capacity decay and a slight increase in the
Coulombic efficiencies.
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To evaluate the anode activity of TiFe alloys in the presence of LiH, four different
TiFe/LiHratios were tested by increasing the amount of LiH from 1 to 4 times that of
TiFe [76]. The first cycle capacity for the four samples increased by increasing the amount
of LiH from 149 to 300 to 441 and finally to 633 mAh g−1. This result confirms that part of
the capacity is due to the decomposition of LiH.

5. Discussion

Regardless of the type of electrolyte used, solid-state batteries present a series of
problems that must be resolved before placing them on the market. First, the low con-
ductivity of the electrolyte forces to use to very thin cathodes containing a high quantity
of solid electrolyte. This decreases the energy density of the batteries. The increase in
conductivity, consequent to the increase in the operating temperature of the batteries, could
increase the thickness of the cathode and decrease the percentage of the electrolyte inside
it [77]. Another aspect concerns the effective long-term stability of the electrolyte/lithium
interface. Metallic lithium is a strong reductant and parasitic reactions can occur at the
interface with the SSE. These reactions primarily affect sulfide-, NASICON-, and garnet-
type SSEs, and require engineering strategies to improve interface stability [78]. On the
contrary, LiBH4 proved to be very stable when in contact with Li. For instance, by using
a symmetrical Li electrode cell and applying a constant current density of 300 µA cm−2,
a voltage of about 0.2 V was obtained. Only after several cycles a small voltage increase
(10 mV), corresponding to a 4.5% increase in cell resistivity, was observed. This increase
was attributed to a partial loss of electrical contact at the electrode/electrolyte interface
rather than the formation of degradation products [79]. Even the technological aspect
concerning the preparation of solid-state batteries still needs to be carefully evaluated. In
fact, the difficulties in processing ceramic materials (and among these, also LiBH4) must be
taken into careful consideration. For example, the construction of a 1 kWh battery requires
several square meters of surface area, whatever the electrolyte [80]. Sintering processes,
used to prepare the SSE, do not produce thicknesses below 30 µm, and high temperatures
are required for ceramic electrolytes. Although it was possible to deposit thin films by the
vacuum deposition of LiBH4 [81], this deposition technique is generally of low productivity
and therefore expensive. Unlike conventional battery systems, solid-state batteries need at
least 10 MPa (or greater) of pressure to allow for stable cycling and avoid contact loss or
dendrite formation [82]. This requires extensive product design and manufacturing line
changes for solid-state batteries, which could potentially increase overall costs. Current
LIBs have safety issues due to the fire hazards related to the organic solvents they contain.
Although solid-state batteries are theoretically safer than LIBs, this greater safety has yet
to be demonstrated, especially for batteries operating above 150 ◦C [83]. Compared to
other SSEs, LiBH4 is thermally more stable. The thermal analysis conducted on LiBH4 was
studied by Fedeneva et al. [84]. Three endothermic effects were observed during heating:
at 108–112, 268–286 and 483–492 ◦C. The first effect is reversible since it is related to the
polymorphic transformation of LiBH4. The second peak at 268–286 ◦C coincides to the
melting of LiBH4 that is accompanied by a slight decomposition, liberating about 2 wt.% of
the hydrogen contained in the borohydride. At higher temperatures, the main evolution
of hydrogen is witnessed with the release of about 80% of the hydrogen contained in the
compound. However, substances mixed with LiBH4 to increase the ionic conductivity can
modify this behavior. For example, the addition of 25 wt.% SiO2 has been observed to
catalyze the decomposition reaction of LiBH4 and lower the temperature for all three hy-
drogen desorption characteristics [85]. LiBH4 has a very low specific gravity (0.667 g cm−3)
compared to other solid electrolytes, and this represents an advantage since it is reflected
in a higher energy density of the cell. Finally, to evaluate the possibility of using the LiBH4
as the SSE, it is necessary to consider its cost as well as the possible large-scale production.
LiBH4 is made up of lithium and boron, both of which are not very common on the earth’s
crust but easily available since they are concentrated in surface deposits. The synthesis
of the material is not complicated, but involves the electrochemical reduction of lithium,
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which is energetically expensive. The market cost of LiBH4 is around $0.60–0.75 g−1 [86].
Considering the density of the material, we have a cost of $0.4–0.5 cm−3. To cover an area
of 1 m2 with an electrolyte thickness of 10 µm, 10 cm3 of LiBH4 is required for a cost of
$4–5. This cost is lower than the one originally proposed by McCloskey [87] and later
indicated by the US Department of Energy’s Agency for Energy (ARPA-E), which is set at a
maximum of $10 m−2 [88].

6. Conclusions

The studies conducted in the last 10 years have aimed to increase the ionic conductivity
of LiBH4 to use it as an SSE in solid-state batteries operating at room temperature. The
effort was productive as it demonstrated that LiBH4 doping can lead to the realization
of SSEs with room temperature conductivity comparable to that of the alkyl carbonates
used in liquid-electrolyte lithium-ion batteries. Furthermore, the performance of solid-
state batteries made using LiBH4-based SSE has also led to satisfactory results. Although
further experiments are needed to evaluate long-term stability, the results obtained seem
promising and suggest that LiBH4-based solid-state batteries could be susceptible to future
industrial development.
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