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Abstract: Silicon has gained considerable attention as an anode material in lithium-ion batteries
due to its high theoretical capacity. However, the significant volume changes that occur during
lithiation/delithiation processes often result in poor cycling stability of silicon anodes. In this study,
a hybrid ionically covalently cross-linked network binder carboxymethylcellulose-hyperbranched
polyethyleneimine (CMC-HBPEI) is successfully constructed by “switching” ionic bonds and partially
“converting” them to covalent bonds to buffer the volume variation of silicon anodes. In this hybrid
cross-linked network, the covalently cross-linked network is responsible for maintaining the structural
integrity of the anode, while the ionically cross-linked network utilizes the bonding reversibility to
sustainably dissipative the mechanical stress and self-heal the structural breakages generated from the
lithiation expansion of silicon. By changing the drying temperature of the anode, the ratio of covalent
and ionic bonds in the hybrid cross-linked network can be adjusted to balance the mechanical stability
and bonding reversibility of the CMC-HBPEI binder. Even after 300 cycles of charging/discharging
under a current density of 500 mAg−1, the specific capacity of the optimized Si/CMC-HBPEI anode
remains at 1545 mAhg−1.

Keywords: carboxymethylcellulose; hyperbranched polyethyleneimine; hybrid cross-linked network;
silicon anode; lithium-ion battery

1. Introduction

Currently, high-energy density lithium-ion batteries (LIBs) have emerged as one of the
dominant types of power batteries. However, as the most widely used commercial anode
material in the industry, graphite with a theoretical specific capacity of only 372 mAhg−1

can no longer meet the increasing energy density requirement of power LIBs [1–4]. There-
fore, industry and academia urgently need to develop new anode materials with higher
energy density to replace traditional graphite materials. Thanks to the extremely high
theoretical capacity (4200 mAhg−1), silicon (Si) is currently considered a highly promising
new anode material for LIBs [5–7]. However, due to the lack of polar functional groups, the
conventional binder polyvinylidene fluoride (PVDF) adheres to Si active materials only
through van der Waals forces and cannot effectively buffer the stress caused by the violent
lithium expansion of Si, leading to the collapse of anode structure and a sharp decrease
in the specific capacity [8–10]. The mismatch between Si and binder seriously restricts the
industrial application of Si anode [11], so it is urgent to develop new binder materials for
the Si anode.

Currently, several studies suggest that network polymer materials containing abun-
dant polar functional groups can serve as an alternative to linear polymer PVDF as a binder
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material for Si anodes [12,13]. The polar functional groups of these new binders form
reversible hydrogen bonds with the Si surface, resulting in a self-healing effect. Moreover,
the network structure can limit the movement of Si nanoparticles. Beneficial to the synergy
between these two effects, the network binder materials have enhanced the cycling stability
of the Si anode. According to the cross-linking method, the network structure of the binder
materials can be classified into covalent and dynamic cross-linking (such as host–guest in-
teractions, ionic bonds, multiple hydrogen bonds, etc.) [14–17]. The covalently cross-linked
network structure can enhance the mechanical properties of the binder, suppress the sliding
of Si nanoparticles, and maintain the integrity of the electrode structure. However, as irre-
versible covalent bonds lack bonding reversibility, once they are broken due to the volume
changes of Si, new bonds cannot be formed to continuously repair the resulting structural
damages. This leads to a sustained decrease in the specific capacity of the Si anode during
the cycle [1]. As one kind of dynamic bond, the ionic bond has a smaller bonding energy
than the covalent bond but uses reversible bonding [18]. Although the specific capacity of
the Si anode using an ionically cross-linked binder often decreases significantly in the early
cycling stage, the continuous formation of ionic bonds in the binder network can gradually
repair the structural damages caused by the volume change of Si, resulting in a stabilized
specific capacity in the later cycling stage. It is evident that neither covalently nor ionically
cross-linked binders alone are sufficient to comprehensively enhance the cycling stability
of the Si anode. There, it is crucial to discover a straightforward and practical approach
to develop a new network binder material that possesses both mechanical stability and
bonding reversibility.

Regarding this, we attempt to regulate the preparation process of the composite mate-
rial in order to “switch” the ionic bonds of the 3D network, and partially “convert” them
into covalent bonds, constructing a composite binder with a hybrid ionically covalently
cross-linked network structure. In this study, carboxymethyl cellulose (CMC) and hyper-
branched polyethyleneimine (HBPEI) were chosen as the primary binder materials. CMC,
a linear polymer containing carboxymethyl groups, can serve as the skeleton of the com-
posite binder [19], while HBPEI, a hyperbranched polymer containing numerous amino
groups, can provide abundant hydrogen bonding sites for the composite binder [20,21].
The combination of CMC and HBPEI can create a mechanically stable and strongly adhe-
sive binder material. Furthermore, during the mixing process of CMC and HBPEI in an
aqueous solution, the ionic bonds between the CMC and HBPEI are temporarily “switched
off” by adding the neutralizer ammonia. Then, during the vacuum drying process of the
anode, the ionic bonds between CMC and HBPEI are “switched on” with the evaporation of
ammonia. As the temperature increases, carboxylic acid and amino groups gradually react
to form amide bonds (covalent bonds) [22]. By following these two steps, the ionic bonds
between carboxymethyl and amino groups can be “switched” and partially “converted”
into covalent bonds, thus achieving the desired hybrid cross-linked network binder.

Finally, the ionic cross-linking between CMC and HBPEI is “switched” by adding/
evaporating ammonia, and the ratio of ionic to covalent bonds in the hybrid network is con-
trolled by adjusting the drying temperature of the anode to balance the mechanical stability
and bonding reversibility of the binder CMC-HPBIE. This approach makes the construction
and optimization of hybrid cross-linked network binder facile and efficient. The chemical
composition and valence of CMC-HBPEI are analyzed using Fourier-transform infrared
spectrometer (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The mor-
phologies of Si/CMC-HBPEI anodes are observed using field emission scanning electron
microscopy (FESEM) and their elemental composition is determined by energy-dispersive
X-ray spectroscopy (EDX). Tensile strength and 180◦ peel strength tests are performed
to evaluate the mechanical properties of CMC-HBPEI samples under different drying
temperature conditions. To investigate the electrochemical performance, galvanostatic
charge/discharge tests and electrochemical impedance spectroscopy (EIS) measurements
are employed to examine the performance of Si anodes with various binders. The cycling
test results demonstrate that the optimized hybrid cross-linked network binder, CMC-
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HBPEI, can greatly enhance the cycling stability of Si anodes, achieving a specific capacity
of 1545 mAh g−1 after 300 cycles.

2. Materials and Methods

Si nanoparticles with a diameter of 150 nm were purchased from the Ge Xing Company
(Shanghai, China). CMC was purchased from the Shanghai Chemical Reagent Company
(Shanghai, China). The HBPEI (50 wt.%, Mw = 60,000 (GPC)) was purchased from Sigma
Aldrich, St. Louis, MO, USA. All materials were used without further purification.

CMC was dissolved in deionized water and configured into a 2 wt% aqueous solution,
followed by a drop of 3.0 g aqueous ammonia solution with a concentration of 25 wt%. The
5 wt% HBPEI aqueous solution and CMC-NH3 solution were stirred at a mass ratio of 2:8
for 6 h to obtain a homogeneous CMC-NH3-HBPEI solution.

The Si nanoparticles were well-ground with the binder and acetylene black in a mass
ratio of 3:1:1 for 30 min. Then, the slurry was uniformly coated onto the copper foil by
a doctor blade. These foils were vacuum dried at different temperatures (60, 70, 80, and
90 ◦C), and the obtained Si/CMC-HBPEI Si anode foils were named Si/CMC-HBPEI 60, 70,
80, and 90, corresponding to their drying temperatures.

In order to characterize the chemical composition, interactions, mechanical properties,
and adhesion of CMC-HBPEI films prepared at different drying temperatures, a series
of CMC-HBPEI films were prepared by pouring CMC-NH3-HBPEI solutions into Teflon
molds and subsequently dried under a vacuum at different temperatures.

The chemical composition of the samples was characterized by FTIR (Bruker tensor 27,
Billerica, MA, USA). In addition, the conversion between the ionic and covalent bonds of
the CMC-HBPEI films was analyzed by XPS (Thermo Scientific 250) using monochromatic
Al Kα radiation (primary energy E = 1486.6 eV) with a passage energy of 100 eV [21].

The mechanical properties of the double-bonded cross-linked CMC-HBPEI were
evaluated by cutting CMC-HBPEI films into 40 mm × 12 mm strips and stretching to
failure with a UTM (SUNS, UTM2503) at a constant strain rate of 20 mm/min.

To evaluate the adhesion of the binder CMC-HBPEI, a 180◦ peel test was performed
using UTM (SUNS UTM2503). First, a 12 mm wide 3 M tape was applied to the Si anode
foil and then the foil was clamped vertically. Subsequently, the 3 M tape was pulled at a
displacement speed (5 mm s−1) and the peel strength was recorded to evaluate the adhesion
of the binder.

The coin cells (CR2025) used 1 M LiPF6 in a 1:1:1 volume ratio mixture of the vinyl
carbonate, diethyl carbonate, and dimethyl carbonate as the electrolyte, Li foil as the counter
electrode, and the prepared Si anode foil was punched into a 12 mm diameter disk as the
working electrode [21]. The coin cells were assembled in an argon-filled glove box. The
galvanostatic charging/discharging tests were performed on Si anodes using a battery
tester (NEWARE, 4008T-5V6A) between 0.01 and 2V vs. Li/Li+. For the cycling test, the
current density was kept at 500 mA g−1, while for the rate test, the current density varied
from 250 to 2000 mA g−1. Electrical impedance spectroscopy (EIS) tests were performed by
applying a sinusoidal signal with an amplitude of 10 mV over a frequency range of 0.01 to
100 kHz using an electrochemical workstation (CHI, 660E) [21]. The topographical changes
and distribution of elements in the Si anodes before and after cycling were examined using
a combination of FESEM and EDX (Thermo Scientific, Apreo 2, Waltham, MA, USA).

3. Results

Figure 1 illustrates the synthesis of a hybrid cross-linked network binder CMC-HBPEI
by “switching” and “converting” ionic bonds. While both CMC and HBPEI are soluble
in water separately, they quickly form flocculent precipitates when mixed together. This
indicates that CMC rapidly undergoes an acid–base neutralization reaction with HBPEI
in an aqueous solution, resulting in the formation of ionic cross-linking and precipitation
from the aqueous phase. However, the binder material must be maintained in a slurry state
before use, so it is impossible to directly mix the CMC and HBPEI solutions for use as a
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binder. To solve this problem, a neutralizer, ammonia [23], is dropped into the aqueous
CMC solution to neutralize the carboxylic acid group of CMC (CMC-NH3) before adding
HBPEI. This temporarily “switches off” the ionic cross-linking reaction between CMC and
HBPEI, resulting in a homogeneous binder slurry (aqueous CMC-NH3-HBPEI solution, as
shown in Figure 1a). The addition of ammonia prevents precipitation and ensures a stable
slurry state.
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In the next step, the Si nanoparticles, conductive agent, and binder slurry CMC-NH3-
HBPEI are mixed and coated on the copper foil to form the Si anode (as shown in Figure 1b).
During the subsequent vacuum drying process, the volatilization of ammonia “switches on”
the ionic bonding between CMC and HBPEI again, thus forming an in situ ionically cross-
linked 3D network structure. It is worth noting that, in general, the interaction between
polycarboxylic acid and polyamine is a reversible ionic cross-linking. However, carboxylic
acids and amines start to react at 70 ◦C to form amides [24]. When the temperature exceeds
90 ◦C, almost all ionic bonds between CMC and HBPEI are converted to covalent bonds,
resulting in a covalently cross-linked network (as shown in Figure 1c). Taking advantage of
this characteristic, the ionic bonds between CMC and HBPEI are partially converted into
covalent bonds by increasing the vacuum drying temperature of the anode foil, forming
a hybrid cross-linked network binder CMC-HBPEI. The advantage of this hybrid cross-
linking is that the covalent bonds in the network enhance the mechanical stability of
the electrode structure, while the ionic bonds endow the electrode with the self-healing
property that allows repeated breaking and re-forming of ionic bonds to dissipate the
mechanical stresses from Si. The synergy of the two effects ensures the structural integrity
of the Si anode throughout the entire charge/discharge cycle.

Ammonia not only acted as a “switch”, but also improved the flow properties of the
CMC-NH3-HBPEI solution. Figure 2a shows the viscosity changes of CMC, HBPEI and
CMC-NH3-HBPEI aqueous solutions over 72 h. HBPEI has the lowest viscosity in aqueous
solution due to its hyperbranched structure and low molecular weight (Figure 2a) [21,25]. In
contrast, the linear polymer CMC presents a higher viscosity value (Figure 2a) [21,26]. When
ammonia and HBPEI are added to the CMC aqueous solution, The viscosity of the CMC-
NH3-HBPEI solution increased sharply and began to stabilize around 5 h. The phenomenon
might be due to the presence of NH4

+ in the solution, which can neutralize the COO− of
CMC, reducing the dispersion of CMC in the aqueous solution and making it easier to
form an aggregated state, thus increasing the viscosity substantially. The high viscosity
of the binder solution facilitates the slowing down of precipitation and agglomeration of
suspended particles, thus improving the stability of the electrode slurry [27–29].
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FTIR measurements are performed for HBPEI, CMC, and CMC-HBPEI-60, 70, 80, and
90, and the results are shown in Figure 2b. In the HBPEI spectrum, stretching vibrations
caused by N-H and -NH2 groups appear at 1653 cm−1, 1564 cm−1, and 1476 cm−1 [13,30].
In the CMC spectrum, the peaks of 1634 cm−1 correspond to the characteristic absorption
peaks caused by -COOH stretching vibration [31]. According to a mass ratio of 2:8, HBPEI
is added to CMC and dried at different temperatures. The absorption peaks of all CMC-
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HPBIE spectra shift to higher wave numbers and become broader compared to the N-H
absorption peak of pure HBPEI located at 1564 cm−1, which indicated a strong interaction
formed between CMC and HBPEI during the drying process [22]. In addition, it is observed
that the C-N stretching vibration peaks around 1350 cm−1 in all CMC-HBPEI spectra are
more intense than those of CMC and HPBIE. C-O-C ester symmetric stretching vibrations
are also found within 1110 to 1118 cm−1 in all the CMC-HBPEI spectra. All these proved
the successful combination of CMC and HBPEI [32].

Furthermore, XPS is used to analyze the bonding transformation process of CMC-
HBPEI during vacuum drying. As shown in Figure 3, the N 1s spectra of all CMC-HBPEI
samples can be decomposed into three separate components of HBPEI, namely tertiary,
secondary and primary amine groups [21,32,33]. By comparing the ratios of peak areas
of primary, secondary, and tertiary amines in the CMC-HBPEI-60, 70, 80, and 90, it is
found that the BE peak areas of primary amine gradually decrease with the increase in
drying temperature of CMC-HBPEI, while the peak areas of secondary and tertiary amines
gradually increase. This relates to the condensation reaction between CMC and HBPEI [34].
As the drying temperature increases, the condensation reaction becomes easier. More and
more amino groups of HBPEI react with carboxyl groups of CMC to form amide structures,
so the hydrogen ions in the amino group of HBPEI are continuously removed, leading to a
decrease in the number of primary amines and an increase in the number of tertiary and
secondary amines. Eventually, tertiary amines become the major component of the amino
group of HBPEI.
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To investigate the bonding conversion between CMC and HBPEI intuitively, a dissolu-
tion test is performed. CMC-HBPEI films dried at 60, 70, 80, and 90 ◦C are immersed in a
1 M NaOH solution for 12 h, and their weight changes are recorded [35,36]. Typically, ionic
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bonds are disrupted in strong alkali solutions while covalent bonds remain unaffected by
the acidity (pH). The CMC-HBPEI 60 film dissolved immediately after immersion, indicat-
ing that the cross-linked network primarily consists of ionic bonds at a drying temperature
of 60 ◦C (Figure 4a). In contrast, the CMC-HBPEI-90 film only exhibited swelling after
immersion in NaOH solution (Figure 4d). This suggests that the ionic bonds in CMC-
HBPEI are completely transformed into covalent bonds after drying at 90 ◦C. Films dried at
intermediate temperatures (70~80 ◦C) partially dissolved due to the presence of both types
of bonds (Figure 4b,c). These results demonstrate that increasing the drying temperature
leads to a gradual conversion of ionic bonds to covalent bonds.
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The ratio of covalent to ionic bonds in the CMC-HBPEI network at different drying
temperatures is determined by recording the mass of the films before and after dissolution
and substituting it into Equation (1) [37–39].

covalent bonding:ionic bonding = M2/(M1 − M2), (1)

Here, M1 represents the initial mass of the film sample and M2 represents the remaining
mass after immersion and subsequent vacuum drying at 120 ◦C for 48 h. An increase in the
ratio of covalent to ionic bonds in CMC-HBPEI films is observed at drying temperatures
of 60, 70, 80, and 90 ◦C. This indicates that an increase in the conversion of ionic bonds to
covalent bonds in CMC-HBPEI films occurred with increasing drying temperature, which
is consistent with XPS data.

EDX has high spatial resolution and can intuitively display the distribution of Si
nanoparticles and binder on the electrode surface within a millimeter range. Therefore, the
combination of SEM and EDX is a suitable method for observing the surface morphology
and elemental distribution of Si anodes with different binders [21]. The SEM images
show that in the Si/HBPEI anode, Si nanoparticles and HBPEI are unevenly dispersed
(Figure 5a1). In addition, the EDX spectrum reveals that the Si and N elements in HBPEI
are not well overlapped (such as those circles in Figure 5a2) and are completely separated
in several regions, as indicated by the circles in Figure 5a3,a4. This indicates that low-
viscosity HBPEI tends to self-aggregate and cannot completely cover Si nanoparticles. SEM
images (Figure 5b1) indicate that there is no significant aggregation of Si or CMC when
Si nanoparticles are coated on Cu foil with CMC as a binder. The EDX spectrum shows
that the distribution of Si and O elements is largely overlapping (Figure 5b2), but some
areas containing only O elements can still be seen (such as those circled in Figure 5b2).
This indicates that CMC can only roughly cover Si nanoparticles rather than uniformly
cover them. The FESEM image shows a uniform and dense 3D network structure for the
Si/CMC-HBPEI sample (Figure 5c1). This anode shows a more even distribution of Si, O,
and N elements compared to Si/HBPEI and Si/CMC anodes (Figure 5c2). This indicates
that there are interactions such as hydrogen bonds, ion bonds and covalent bonds between
CMC and HBPEI which can improve their compatibility and coverage with Si nanoparticles.
Therefore, in the CMC matrix, Si nanoparticles are well dispersed and covered with HBPEI.
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Si/CMC (b1,b2–b4), Si/CMC-HBPEI (c1,c2–c5) anodes.

The adhesive between the binder and current collector is an important index for evalu-
ating the mechanical stability of an electrode [38,39]. To evaluate the adhesive force, a 180◦

stripping test is conducted on Si/CMC-HBPEI foils. Figure 6a shows that the adhesive force
of Si/HBPEI (0.246 ± 0.019 N mm−1) is lower than that of Si/CMC (0.309 ± 0.021 N mm−1),
which may be due to the lower dispersion and molecular weight of HBPEI, resulting in
lower shear deformation resistance of Si/HBPEI films. After vacuum drying at 60 ◦C, an
ionically cross-linked network structure is formed between CMC and HBPEI, leading to
an increase in the adhesion strength of Si/CMC-HBPEI-60 foil to 0.404 ± 0.031 N mm−1.
With the increase in temperature, the ionic bonds in the CMC-HBPEI are partially trans-
formed into covalent bonds, forming a hybrid cross-linked network structure. Therefore,
the adhesive force of Si/CMC-HBPEI-70 and Si/CMC-HBPEI-80 further increases, reaching
0.496 ± 0.044 and 0.598 ± 0.036 N mm−1, respectively. With the temperature increase to
90 °C, most of the ionic bonds in CMC-HBPEI are converted into covalent bonds. The
resulting covalent bond structure exhibits excellent mechanical properties, resulting in a
maximum adhesion force of 0.712 ± 0.042 N mm−1 for the Si/CMC-HBPEI-90 foil.

Since the tensile strength of the binder is crucial in suppressing the volume change
of Si particles [21,40], the films of CMC, CMC-HBPEI-60, 70, 80, and 90 were subjected
to tensile testing, which yielded results in line with those obtained from the 180◦ peel
tests. Specifically, all cross-linked samples displayed higher tensile strength and Young’s
modulus values compared to the pure CMC film (Figure 6b,c). This may be due to the cross-
linking resulting in a more compact network structure between the polymer chains, which
improves the mechanical strength and stability of the CMC-HBPEI material. Furthermore,
increasing the drying temperature leads to an increase in both the tensile stress and Young’s
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modulus of CMC-HBPEI films. The tensile stress and Young’s modulus of CMC-HBPEI
reached the maximum values of 21.835 ± 1.636 MPa and 0.687 ± 0.056 GPa when the drying
temperature reached 90 ◦C. This was mainly due to the gradual conversion of ionic bonds
in the cross-linked network of CMC-HPBIE into covalent bonds with higher bond energy.
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As a binder material for Si, it is crucial to consider the mechanical strength and the self-
healing property of the binder material, which must maintain a balance between these two
characteristics [41]. Thus, to assess the self-healing capability, cross-sectional morphology
of cut CMC and CMC-HBPEI-60, 70, 80, and 90 films were analyzed for morphological
evolution. To facilitate observation of the self-healing phenomenon, both ends of the cut
film are dyed with different colored inks and then brought into contact again without any
external pressure. As shown in Figure 7a,f, CMC film could not be reconnected after being
cut, indicating that CMC itself could not form enough hydrogen bonds through a limited
number of carboxyl groups to repair the damage. In contrast, all cut CMC-HBPEI films
could be reconnected after contact. Among them, the reconnected membranes CMC-HBPEI-
60, 70, and 80 still have a certain mechanical strength (Figure S1). This could be attributed to
the re-formation of sufficient hydrogen bonds and ionic bonds between the amino groups
on the HBPEI side chains and the carboxyl groups on the CMC chains [42,43], which act
as sutures for the cut section of the film. Among them, the CMC-HBPEI-90 film is easily
pulled apart again after a successful connection (Figure 7e,j). The possible reason is that the
CMC-HBPEI-90 film is an irreversible covalent bond cross-linked network structure. When
the cut CMC-HBPEI-90 film is reconnected, only a few hydrogen bonds and ionic bonds
could be formed at the fracture surface [43], so the self-healing effect is the worst.
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To assess the electrochemical characteristics of Si anodes bound with CMC-HBPEI, a
series of galvanostatic charge–discharge tests are performed on Li/Si half-cells [21]. The
galvanostatic curves presented in Figure 8a illustrate the initial electrochemical performance
of Si anodes with CMC, HBPEI, and CMC-HBPEI-60, 70, 80, and 90 as binders. The
initial coulombic efficiencies (ICEs) of Si/CMC and Si/HBPEI were 62.11% and 57.20%,
respectively. The ICEs of Si anodes using CMC-HBPEI binders are higher than those of
CMC and HBPEI. The ICEs of Si/CMC-HBPEI-60, 70, 80, and 90 are 65.87%, 68.31%, 84.32%,
and 75.54%, respectively. The insignificant increase in ICE value of Si/CMC-HBPEI-60 may
be attributed to the inadequate mechanical stability of the ionically cross-linked network
structure, which fails to withstand the stress caused by the volume expansion of Si and
cannot fully encapsulate Si nanoparticles. As a result, a significant amount of electrolyte is
consumed on the exposed Si surface to form a solid electrolyte interface (SEI) layer during
the first cycle [8–10]. The highest ICE value of Si/CMC-HBPEI-80 indicates that the dual
cross-linked network structure coexisting with physical and chemical cross-linking can
embed Si nanoparticles tightly into the matrix and completely cover them, greatly reducing
the consumption of electrolytes on the Si surface [21,44].
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To assess the cycle stability of Si anodes with various binders, half-cell charge–
discharge tests are conducted for a total of 300 cycles under a current density of 500 mA g−1.
As shown in Figure 8b, the initial specific capacity of Si/CMC decreased from 2410 to
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146 mAh g−1 after 300 cycles, while the initial specific capacity of Si/HBPEI rapidly de-
creased from 2468 to 180 mAh g−1 within 20 cycles. These results suggest that neither linear
nor hyperbranched structures can effectively suppress the volume expansion of Si during
cycling when used alone. In the case of the CMC-HBPEI composite-binder materials, the
initial specific capacity of Si/CMC-HBPEI-60 slowly decreases from 2589 to 499 mAh g−1

after 300 cycles. Compared to Si/CMC, the improvement in the cycling stability of Si/CMC-
HBPEI-60 is not significant. This is mainly due to the fact that the CMC-HBPEI network
structure after 60 ◦C drying treatment relies solely on a simple ionic cross-linked struc-
ture, which does not provide sufficient adhesion between the binder and Si nanoparticles.
Additionally, the ionic cross-linked network exhibits insufficient mechanical stability to
suppress the severe volume changes of Si nanoparticles. This indicates that the mechanical
stability is inadequate to curb the Si’s volume expansion, and the self-healing properties
are ineffective. When the drying temperature of the Si anode rises to 90 ◦C, the cycling
curve shows two stages. In the initial 53 cycles, the specific capacity of the Si/CMC-HBPEI-
90 decreases slowly, and then the decrease rate gradually accelerates afterward. After
300 cycles, the initial specific capacity of Si/CMC-HBPEI 90 decreases from 2720 mAh g−1

to 762 mAh g−1. The supposed reason for this is that most of the ionic bonds in the binder
network convert to covalent bonds after 90 ◦C vacuum drying. A covalently cross-linked
network is effective in suppressing the initial cycle volume expansion of Si. However, as
the number of cycles increases, the covalent bonds gradually break and fail to form new
covalent bonds, resulting in the failure of the volume suppression effect of the 3D network
at later cycling [45]. Out of all the tested samples, Si/CMC-HBPEI-80 exhibits the most
favorable cycling performance, maintaining a specific capacity of 1545 mAh g−1 even after
300 cycles (as shown in Figure 8b). The cycling stabilities of Si anodes using water-soluble
polymers (polyacrylic acid (PAA) [46], polyvinyl alcohol (PVA) [47]), natural polymers
(chitosan (CS) [48], sodium alginate (Alg) [49], lignin [50], carrageenan [51]), or synthetic
self-healing polymers (SHP) [52] as binders are summarized in Table S1. Compared with
these binder materials, the hybrid cross-linked network binder CMC-HBPEI not only has
moderately high cycling stability, but also has the characteristics of a green and simple
preparation process. A possible reason is that at a drying temperature of 80 ◦C, both ionic
and covalent bonds coexist in the network of the binder. The covalently cross-linked net-
work ensures the stability of the anode structure, while the reversible ionically cross-linked
network repeatedly dissipates the mechanical stress generated from the lithiation expansion
of Si through bond breaking and reconstruction and repairs the damages to the network
structure. The synergy of covalent and ionic bonds enables the hybrid network binder
material to suppress the volume expansion of Si [53] continuously.

Figure 8c depicts the variation of the specific capacity of half-cells at current densities
ranging from 200 to 2000 mA g−1, enabling an assessment of the impact of CMC-HBPEI
binders on the rate capacity of Si anodes. At a current density of 200 mA g−1, the specific
capacity of the Si/HBPEI anode rapidly decreased from 2330 to 401 mAh g−1 within the first
10 cycles. Meanwhile, the specific capacities of the other anodes gradually decreased as the
current density increased. At 2000 mA g−1, the specific capacities of the Si/CMC, Si/CMC-
HBPEI-60, 70, and 90 anodes dropped to 355, 1034, 1470, and 1601 mAh g−1, respectively.
Upon returning the current density to 400 mA g−1, the specific capacities of Si/CMC-
HBPEI-60, 70, and 90 recovered to 509, 1090, and 901 mAh g−1, respectively. Unlike other
anodes, Si/CMC-HBPEI 80 maintains a specific capacity of 1423 mAh g−1 even at a current
density of 2000 mA g−1. Upon restoring the current density to 400 mA g−1, the specific
capacity of Si/CMC-HBPEI 80 increases to 1597 mAh g−1. The superior rate performance
of Si/CMC-HBPEI-80 could be attributed to the stable hybrid network structure and the
ionic conductivity of the HBPEI branched chains, which facilitate the rapid diffusion of
lithium ions to the Si surface [54].

To assess the structural stability of Si anodes with different binders after cycling, the
EIS testing is conducted to examine the impedance changes of the anodes. The Nyquist
plots of all anodes after 3 and 100 cycles show a semicircle overlapped by a high-frequency
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semicircle (HFS) and a low-intermediate-frequency semicircle (MHS), and a long low-
frequency line (LFL), which represent RSEI, Rct, and W, respectively. The corresponding
equivalent circuit is also drawn in Figure 9c (Rs represents electrolyte resistance) [21,55].
The fitting values of RSEI and Rct are obtained and listed in Table 1, and the ionic diffusion
coefficients (D) are calculated from the slope of the straight line between Zre and ω−1/2

according to Equations (2) and (3) [34].

Zre = Rs + Rct + δω−1/2, (2)

D = R2 T2/2A2 n2 F4 C2 δ2, (3)
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Table 1. Ratio of covalent to ionic bonds in CMC-HBPEI films at different drying temperatures.

Sample M1 (g) M2 (g) Ratio of Covalent to Ionic Bonds

CMC-HBPEI 60 0.130 0.0378 0.03
CMC-HBPEI 70 0.123 0.0167 0.16
CMC-HBPEI 80 0.166 0.0596 0.56
CMC-HBPEI 90 0.119 0.0592 0.99

The symbols R, T, and F represent the gas constant, absolute temperature, and Fara-
day’s constant, respectively, while A represents the electrode surface area and C is the
molar concentration of Li ions [56]. As shown in Table 2, the RSEI values increase, and
the D values decrease after 100 cycles. Si/CMC-HBPEI 90 shows the lowest RSEI and the
highest D among all the anodes after 3 cycles. However, Si/CMC-HBPEI-80 maintains the
lowest RSEI and the highest D after 100 cycles. These phenomena suggest that although
the stability of the binder material owing hybrid cross-linked network was slightly inferior
to that of the binder material endowing the covalent network in the initial cycles, the
reversible ionic bonds in the hybrid cross-linked network could continuously alleviate the
volume expansion of Si, thus reducing the interfacial resistance for extended cycle life.
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Table 2. Impedance characteristics of Si anodes employing various binders.

RSEI (Ω) RCT (Ω) δ(cm2 s−1) DLi (cm2 s−1)

CMC-HBPEI 90 3rd 2.592 6.735 12.33 8.96 × 10−17

CMC-HBPEI 90 100th 12.93 47.18 83.51 1.95 × 10−18

CMC-HBPEI 80 3rd 6.945 14.34 15.64 5.57 × 10−17

CMC-HBPEI 80 100th 8.94 27.62 17.92 4.24 × 10−17

CMC-HBPEI 80 3rd 6.945 14.34 15.64 5.57 × 10−17

CMC-HBPEI 80 100th 8.94 27.62 17.92 4.24 × 10−17

CMC-HBPEI 70 3rd 21.90 118.7 59.57 3.86 × 10−18

CMC-HBPEI 70 100th 48.75 164.7 98.88 1.39 × 10−18

CMC-HBPEI 60 3rd 20.62 57.16 66.17 3.11 × 10−18

CMC-HBPEI 60 100th 50.95 189.4 148.1 6.22 × 10−19

CMC 3rd 47.58 123.1 92.36 1.46 × 10−18

CMC 100th 101.2 302.5 165.9 4.95 × 10−19

HBPEI 3rd 68.96 176.7 146.5 6.35 × 10−19

HBPEI 100th 164.7 760.1 209.6 3.11 × 10−19

FESEM and EDS are used to observe the morphological changes and SEI layer forma-
tion of Si anodes with different binders before and after 100 cycles. The EDS mapping im-
ages confirmed that after 100 cycles, all electrodes were covered with SEI layer (Figure S2).
Compared to the surface morphologies before the cycling (Figure S3), significant differences
were observed in the surface morphology of Si/HBPEI, Si/CMC, Si/CMC-HBPEI-60, and
90 anodes after 100 cycles, characterized by the presence of deep and wide cracks and
thick SEI layers formed on the surface (Figure 10a–c,f). In contrast, Si/CMC-HBPEI-70 and
80 anodes displayed no apparent cracks or morphological changes on the surface before
(Figure S3d,e) and after 100 cycles (Figure 10d,e). Notably, the original network structure
morphology remained recognizable on the surface of Si/CMC-HBPEI-80 (Figure 10e), in-
dicating that Si/CMC-HBPEI-80 presents the best stability and structural integrity after
100 cycles. This is because the Si/CMC-HBPEI-80 electrode adopts a hybrid cross-linked
network structure formed by ionic and covalent bonds, which exhibits strong mechanical
properties and bonding reversibility, effectively suppressing the volume expansion of Si
nanoparticles and repairing the structural breakage of the electrode, thus mitigating the
capacity decay of the Si anode.
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4. Conclusions

In this study, the ionic bonding in the CMC-HBPEI network was successfully “switched”
and “converted” by adding ammonia as a neutralizer and adjusting the drying temperature.
A composite binder is facially constructed with a hybrid cross-linked network structure con-
sisting of both ionic and covalent bonds. This binder shows decent mechanical properties
due to covalent bonding and reversible ionic bonding. Therefore, the Si anode demonstrates
satisfactory cycling stability and rate capability during charge and discharge processes. This
novel approach enables the facile fabrication of composite binder materials with hybrid
cross-linked network structures, offering the benefits of eco-friendliness, affordability, easy
scalability, and superior electrochemical performance. Hence, this new method shows
significant potential for broad applications in the field of high-energy lithium-ion batteries
and warrants further research and development.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/batteries9050276/s1, Figure S1: Young’s modulus (a) and tensile
strength (b) of the reconnected films CMC-HBPEI-80, CMC-HBPEI-70, CMC-HBPEI-60; Figure S2:
SEM-EDX images of the distribution of different elements after 100 cycles: Si/HBPEI (a), Si/CMC (b),
Si/CMC-HBPEI 60 (c), Si/CMC-HBPEI 70 (d), Si/CMC-HBPEI 80 (e) and Si/CMC-HBPEI 90 (f);
Figure S3: SEM images of Si/HBPEI (a), Si/CMC (b), Si/CMC-HBPEI 60 (c), Si/CMC-HBPEI 70 (d),
Si/CMC-HBPEI 80 (e) and Si/CMC-HBPEI 90 (f) anodes before 100 cycles. Table S1: Cycle per-
formance of Si based anodes with different polymer binders. References [46–52] are cited in the
supplementary materials.
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