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1. Context

The development of portable equipment, electric or electrified vehicles and renewable
energy is associated with the development of efficient Energy Storage Systems (ESS), such
as batteries or supercapacitors. One of the problems with the use of these electrochemical
systems is their limited lifespan associated with unavoidable ageing. This ageing affects
their performance, cost of ownership and environmental impacts and may affect their safety.

To avoid these complications, it is, therefore, necessary to study the means to improve
the dependability (reliability, maintainability, availability and safety) of these ESS.

2. Characterisations, Studies and Analysis of Ageing and Failures

For this purpose, the first step is to study and analyse the failure or ageing mechanisms
and modes [1–6]. To do this, either the existing data must be exploited, or data must be
created by performing accelerated ageing (cycling and/or calendar) of cells [7,8]. This
requires the characterisation of each cell in the pack [9]. The study of ageing mechanisms
can be conducted through electrical measurements, thermal measurements, chemical mea-
surements, physical measurements or through post-mortem analyses [10–14]. Modelling of
the ageing process, taking into account the temperature, state of charge, depth of discharge,
C rate, etc., can then be performed [15,16]. When a large amount of data is available, a
statistical study or the use of artificial intelligence is also possible [17–19].

3. Exploitation of the Results to Improve the Dependability

This knowledge of ageing and failures can be used to optimise the design or mainte-
nance of ESS. This can be done at the cell level or the pack level, considering the dispersions
between the cells [20].

It can also allow us to carry out a diagnosis by the intermediary of measurements
and adequate methods to ensure the detection of ESS failures or ageing [21,22]. Knowing
the level of ageing allows us to estimate the ESS state of health and, in the best case, the
remaining useful life can be estimated [17]. The state of health estimation is a function
of the BMS (Battery Management System) [18,19]. Considering this state of the BMS can
also allow optimal electrical management between cells (during balancing) or thermal
management [23].

In multi-source systems, the health status of each energy storage system can also be
considered for optimal power management.

The study of different battery charges (especially fast charges) is also important
because these can affect their ageing and lifetime [24].

Considering the ageing process is also essential in technical–economic or environ-
mental analyses. For example, the use of second-life batteries can be studied with these
criteria [25].

Finally, given the risk of ignition or explosion in the event of a defect or misuse,
improving the operational safety of these components is essential [26–28]. To investigate
this, abuse tests can be performed and/or accidents can be analysed. This can lead to
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the design of safe cells and packs by integrating dedicated sensors [29] or by integrating
specific functions in the BMS.

Numerous studies are, therefore, to be carried out and presented, especially as these
depend completely on the battery chemistries.

Many challenges remain to be met to improve the reliability, availability and safety of
ESS. Addressing these challenges will make the widespread use of ESS possible.

Conflicts of Interest: The authors declare no conflict of interest.
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