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Abstract: To safeguard the security and dependability of battery management systems (BMS), it is
essential to provide reliable forecasts of battery capacity and remaining useful life (RUL). However,
most of the current prediction methods use the measurement data directly to carry out prediction
work, which ignores the objective measurement noise and capacity increase during the aging process
of batteries. In this study, an integrated prediction method is introduced to highlight the prediction
of lithium-ion battery capacity and RUL. This approach incorporates several techniques, including
variational modal decomposition (VMD) with entropy detection, a double Gaussian model, and
a gated recurrent unit neural network (GRU NN). Specifically, the PE−VMD algorithm is first utilized
to perform a noise reduction process on the capacity data obtained from the measurements, and
this results in a global degradation trend sequence and local fluctuation sequences. Afterward, the
global degradation prediction model is established by employing the double Gaussian aging model
proposed in this paper, and the local prediction models are built for each local fluctuation sequence
by GRU NN. Lastly, the proposed hybrid prediction methodology is validated through battery
capacity and RUL prediction studies on experimental data from three sources, and its accuracy is
also compared with prediction algorithms from the recent related literature. Experimental results
demonstrate that the proposed hybrid prediction method exhibits high precision in the predicting
future capacity and RUL of lithium-ion batteries, along with strong robustness and predictive stability.

Keywords: lithium-ion battery; RUL prediction; variational modal decomposition (VMD); double
Gaussian model; gated recurrent unit neural network (GRU NN)

1. Introduction

Lithium-ion batteries are rechargeable batteries that use lithium ions as their primary
component. They play an integral part in a variety of applications including electronic
gadgets, electric vehicles (EVs), and renewable energy systems, owing to their remarkable
characteristics such as fast charging, low maintenance, and environmental friendliness [1,2].
Despite also having a long lifespan, allowing them to be recharged and used multiple
times before needing to be replaced, lithium-ion batteries can experience aging over time,
which can lead to a decrease in their performance. Each charge and discharge cycle of
a lithium-ion battery causes a small amount of wear and tear on the battery, and can cause
permanent damage to its internal components, resulting in a decrease in capacity and
lifespan. A lithium-ion battery is typically deemed to have reached its end of life (EOL)
and needs to get recycled when its maximum discharge capacity has declined to 70% to
80% of its rated capacity. The battery cycles from the current to the EOL are defined as the
remaining useful life (RUL). If the battery continues service after failure, it could even result
in the risk of overheating and the potential for fire or explosion if not handled properly.
Accurately predicting the capacity and RUL of lithium-ion batteries is indispensable in
numerous applications and industries. It can supply the necessary upkeep and care to help
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mitigate potential risks and guarantee the secure and effective usage of lithium-ion batteries.
As in the case of EVs, it is necessary to forecast the capacity and RUL of the battery for
ensuring reliable and safe operation, as well as optimize charging and discharging strategies
to extend the battery lifespan and improve performance. Therefore, developing reliable
and precise methods to predict battery capacity and RUL is essential for the advancement
and widespread adoption of technology.

Several scholars have focused on this significant issue that urgently needs to be ad-
dressed effectively, and many methods have been proposed. Model-based approaches [3–9],
data-driven strategies [10–21], and hybrid prognostics [22–28] are the three main groups
into which these methods may be categorized.

Model-based methods simplify the complex internal electrochemical reaction to reflect
the operating characteristics of batteries. The electrochemical models (EM), equivalent
circuit models (ECM), and empirical models are the three main model forecasting meth-
ods. For example, Xu et al. [3] developed a reduced pseudo-two-dimensional model with
Pade approximation to identify the state of electrolyte decomposition in lithium-ion bat-
teries. It could potentially improve the accuracy of battery capacity and RUL prediction.
Sadabadi et al. [4] proposed an estimation algorithm of parameters based on an electro-
chemical model to design an RUL predictor. Their approach was to simulate the behavior of
the batteries through an electrochemical model, and then propose a new metric to estimate
the state of battery health. Although the EMs are capable of defining the battery’s degrad-
ing characteristics in terms of their internal mechanism and structure, they are typically
developed for specific battery chemistries and designs, and their transferability to other
battery systems can be limited. For the ECM, electrical components are used to simulate
the internal chemical reaction of lithium-ion batteries to reflect the working properties of
batteries. The estimation of parameters in the ECM is significantly aided by the Kalman
filter (KF) and particle filter (PF). Duong et al. [5] discussed a heuristic Kalman filter, which
integrated a PF with a KF for predicting the remaining useful life of lithium-ion batteries.
Sun et al. [6] introduced a remaining charging electric quantity, and model parameters were
identified online by a dual extended Kalman filter. While taking into account the aging
inconsistency of lithium-ion battery packs, the proposed method improved the available
capacity of the battery pack compared to conventional methods. Dong et al. [7] modeled
the capacity decay of a battery as a Brownian motion process and took advantage of PF to
estimate the drift parameter, which achieved a long-term RUL prognosis. Zhang et al. [8]
were concerned with the particle impoverishment issue in unscented particle filter (UPF) to
improve the forecast accuracy for batteries. However, the accuracy of the ECM is related
to the number of electronic components and the accuracy of the identified parameters,
making it difficult to develop an exact equivalent circuit model. The empirical model is
formulated according to the concept of curve fitting, which posits that the capacity decay
trajectory of batteries conforms to a certain mathematical function. Hong et al. [9] applied
stochastic processes to RUL prediction, and a generalized Cauchy iterative model was
proposed. This model incorporated the variability of the battery capacity degradation
rate and the randomness of the RUL. Exponential models and polynomial models are also
commonly used to fit the capacity decline trend of lithium-ion batteries. Nevertheless,
deriving an accurate empirical model is a highly challenging task to track the battery
capacity degradation trajectory, and the degradation patterns need to be uncovered from
a large amount of a priori knowledge and experimental data.

Data-driven techniques involve the collection, preprocessing, and analysis of data
to identify patterns and relationships between variables. They rely on historical data for
prediction or decision making, without considering any prior knowledge or assumptions.
Machine learning [10] and statistical methods are commonly used in data-driven technolo-
gies. Like the support vector machine (SVM) [11], multilayer perceptron (MLP) [12], and
random vector functional link (RVFL) neural network [13], they play a significant role in
various engineering applications. Data-driven techniques are also widely applied in the
field of lithium-ion battery forecasting. For instance, Hu et al. [14] used a transformer neural
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network to build the forecasting model. Wu et al. [15] presented an improved random
forest algorithm by particle swarm (PSO-RF) to obtain the optimal parametric solution.
Zhang et al. [16] utilized a long short-term memory neural network (LSTM NN) to simulate
capacity decay. A support vector regression (SVR) estimation framework was proposed by
Wang et al. [17]. They introduced the quantum computing theory to the classical machine
learning algorithms, and then applied it to extract aging characteristics from the charging
curve. Li et al. [18] focused on extract the degradation features of the battery, and the
Gaussian process regression (GPR) method was used to establish a mapping relationship
between the extracted features and the RUL of the battery. Considering the impedance
increase according to the degree of deterioration, Lee et al. [19] statistically analyzed the
capacity decay data to find multiple decay features to train deep neural networks (DNN)
to increase forecast precision. Ji et al. [20] combined the modified differential evolution
algorithm (SADE) and the multiscale ensemble neural network (MESN), which predicts
RUL from a monotonically decreasing capacity perspective, but ignores the possibility of
sudden changes in capacity. Cadini et al. [21] suggested a multilayer perceptron (MLP) to
construct measurement equations that could adaptively predict the EOL of batteries. These
machine learning-based methods do not require a deep understanding of battery physics
and chemistry principles, and they are simple to implement for predicting battery capacity
and RUL. However, they sometimes could be restricted by the adequacy and accuracy of
the available data, especially when the data contain noise, which is not representative of
the actual operating conditions.

Prediction experiments with batteries have revealed that neither single model-based
approaches nor data-driven techniques can completely overcome their shortcomings.
As a result, hybrid forecasting methods have received increasing attention from researchers.
Multiple data-driven integrated approaches and combined model and data-driven tech-
niques, as well as combined multi-model approaches, are becoming mainstream in prognos-
tics. For example, Zhao et al. [22] constructed a BLS–LSTM fusion forecasting network by
creating enhancement nodes for the LSTM NN using the generalized learning system (BLS)
algorithm. The BLS could generate feature nodes to enhance the mapping capabilities of the
network. Chen et al. [23] chose to integrate BLS with a relevance vector machine (RVM), in
which the BLS was used to preprocess the input data and reduce the dimensionality, while
the RVM was used to establish the prediction model. Chen et al. [24] introduced the LSTM
NN as a decay function of the Wiener process (WP), which could avoid the randomness
of the WP degeneracy function. Zhang et al. [25] combined RVM with an improved aging
model. The feature variables extracted by RVM were taken to build the aging prediction
model. A logistic regression (LR) and PF were applied to a state-space model by Yu [26],
which was based on a probabilistic indication. Yu [27] adopted a combination of multiscale
logic regression (MLR) and GPR techniques, which captured the degradation behavior
of the time-varying battery capacity. Considering the capacity regeneration point (CRP),
Ma et al. [28] performed relevant tests before prediction. The predicted values of the
autoregressive (AR) model were used as actual values and then were employed to update
the double exponential model.

However, the drawback of the aforementioned methodologies is the almost direct
use of recorded capacity data for study. The measured battery capacity data are usually
contaminated by clutter and noise as a result of instrumentation errors and measurement
interference factors. Directly predicting the battery’s future capacity and RUL employ-
ing measurement data with noise is tricky and unreliable. In addition, it is necessary
to fully take into account the local capacity regeneration phenomenon generated during
the charge–discharge cycles of the batteries, which will seriously affect the modeling of
capacity deterioration and RUL forecasting. Therefore, the direct use of capacity time series
with nonlinear and non-smooth characteristics for battery RUL prediction remains a large,
challenging task. As a novel signal processing technique, variational modal decomposition
(VMD) obtains baseband-smoothed intrinsic mode functions (IMFs) by pre-estimating the
central pulsation frequency of each subseries. The decomposition process guarantees the in-
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dependence of each mode and, therefore, offers powerful advantages for the decomposition
of real signals. The entropy value of a signal determines its complexity and randomness.
Thus, the VMD parameters can be updated according to this property of permutation
entropy (PE).

Inspired by the aforementioned factors, this study proposes a new hybrid forecasting
scheme that integrates model-driven and data-driven approaches to achieve precise esti-
mations of both the capacity and RUL of lithium-ion batteries. The primary contributions
might be emphasized as follows:

(1) An innovative hybrid approach for capacity and RUL prediction is developed. The
measured capacity data is decoupled by the VMD algorithm into a global degradation
trend sequence and local fluctuation sequences, followed by a double Gaussian aging
model to predict global degradation trends and a GRU NN to predict local changes.
This hybrid method overcomes to some extent the effects of measurement noise and
sudden changes in capacity.

(2) The modal components are determined by PE detection and then adaptively cate-
gorized into different trend types, which safeguards the subsequent prediction and
enhances the noise immunity of the forecasting system.

(3) A novel double Gaussian model for battery capacity aging is proposed with excellent
fitting properties, for which the Levenberg–Marquardt and PF (LM-PF) algorithm
overcomes the parameter sensitivity problem. The learning rate of the GRU is opti-
mized by the beetle antennae search (BAS) algorithm.

The remaining components of this paper are organized as follows: Section 2 focuses on
clarifying the algorithm principles, including the optimized PE−VMD algorithm, improved
double Gaussian model, and GRU NN; Section 3 describes the experimental procedure and
steps, and introduces the experimental equipment and experimental data; the experimental
results and discussions are shown in Section 4, which validates the predictive effectiveness
of the proposed hybrid strategy; the pivotal conclusions are summarized in Section 5.

2. Methodology
2.1. Related Theory of VMD Algorithm

The VMD algorithm decomposes a signal into a finite number of modes, each of which
represents a component of the signal with a specific frequency and amplitude. The main
steps in the signal decomposition using VMD are as follows:

Step 1: The input signal f(t) is decomposed into K eigenmode components uk(t) of
different central frequencies and finite bandwidths by VMD, and uk(t) is defined as

uk(t) = Ak(t) cos(φk(t)), (1)

where Ak(t) represents the instantaneous amplitude, ϕk(t) is the instantaneous phase, and
t is the index of time.

Step 2: The one-sided spectrum is obtained by applying the Hilbert transform to uk(t).

(δ(t) +
j
πt

)uk(t), (2)

where δ(t) is the unit impulse, and j is an imaginary unit.
Step 3: The spectrums are modulated to the corresponding band range by[(

δ(t) +
j
πt

)
uk(t)

]
e−jωkt, (3)

whereωk is the center frequency.
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Step 4: Calculating the L2 norm of the above signal, a constraint expression can be
established as follows:

min
{uk} , {ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2

}
s.t. ∑

k
uk = f(t)

, (4)

where {uk} = {u1, . . . , uK} refers to the modal ensemble, {ωk} = {ω1, . . . , ωK} indi-
cates central frequencies of the modes, ∂t is the partial derivative for the variable t, and K is
the number of modals.

Step 5: Equation (4) is converted into an unconstrained problem using the penalty
term α and the Lagrange multiplier λ, and the solution is as follows:

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
e−jωkt

∥∥∥2

2.

+

∥∥∥∥f(t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), f(t)−∑

k
uk(t)

〉 (5)

Step 6: The optimal solution to Equation (5) is derived by employing the alternating
direction multiplier method. To keep uk updated, the subproblem of the above equation is
transformed into the problem of finding the minimal value of Equation (6).

uk
n+1 = arg min

α
∥∥∥∥∂t

[(
δ(t) +

j
πt

)
uk(t)

]
e−jωkt

∥∥∥∥2

2
+

∥∥∥∥∥f(t)−∑
i

ui(t) +
λ(t)

2

∥∥∥∥∥
2

2

. (6)

Step 7: The optimum solution for mode uk is formulated as follows:

∧
u

n+1

k (ω) =

∧
f(ω)− ∑

i 6=k

∧
ui(ω) + (

∧
λ(ω)/2)

1 + 2α(ω−ωk)
2 , (7)

where
∧
f(ω),

∧
ui(ω),

∧
λ(ω), and

∧
u

n+1

k represent the Fourier transform of each variable.

2.2. PE Algorithm

The permutation entropy (PE) [29] is a powerful tool for analyzing data. It is
mainly used to quantify the complexity and irregularity of time series data and is
suitable for non-smooth signal analysis with good robustness. The PE algorithm works
on the following principles:

(1) A sequence of time series {X(i), i = 1, 2, . . . N} of length N is reconstructed in phase
space and yields a matrix Y.

Y =


x(1) x(1 + t) . . . x(1 + (m− 1)t
x(2) x(2 + t) . . . x(2 + (m− 1)t
x(j) x(j + t) . . . x(j + (m− 1)t
...

...
...

...
x(k) x(k + t) . . . x(k + (m− 1)t

, (8)

where m is the embedding dimension, t is the delay time, and k = N− (m− 1). Each row
in the matrix Y is a reconstructed component, a total of k.

(2) Rearranging each reconstructed component in ascending order gives the column indices
of the positions of the elements in the vector and forms a set of symbolic sequences.

S(l) = {j1, j2, . . . jm}, (9)

where l = 1, 2, . . . , k, k ≤ m!, and the total number of different symbol sequences is m!.



Batteries 2023, 9, 323 6 of 24

(3) Calculating the probability of each symbolic sequence, i.e., {P1, P2, . . . , Pk}, and the
formula for calculating the permutation entropy of a time sequence X is

Hpe = −
k

∑
j=1

Pj ln(Pj). (10)

(4) When Pj = 1/m!, Hpe achieves a maximum value ln(m!). Usually, Hpe can be
normalized using ln(m!):

0 ≤ Hpe =
Hpe

ln(m!)
≤ 1. (11)

Hpe is the final permutation entropy value, which takes values in the range [0, 1]. PE
has found extensive applications in the fields of rotating machinery fault diagnosis [30] and
cardiac monitoring [31]. The study by Rajabi et al. [32] demonstrated that a threshold of
PE = 0.7 serves as a reasonable reference for fault detection. On the basis of this foundation,
the threshold can be extended to the predictive research of lithium batteries and employed
as a basis for distinguishing useful signals from noise.

2.3. Optimization of the VMD Algorithm with PE Detection

A higher entropy value means that the signal is more random. Conversely, the signal
more regular and ordered. Therefore, the PE algorithm is applied for the detection of
anomalous signals in this paper, which determines the number of modals of the VMD
algorithm. The improved PF-VMD processes are displayed in Figure 1 and explained below.
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(a) The initial parameters are set for VMD and PE, where the initial number of decompo-
sitions K is set to 1.

(b) VMD processing is performed on the input signal to generate IMFs, and the PE values
of the resulting IMFs are calculated.

(c) The presence of IMFs with PE values up to the threshold is verified.
(d) If the conditions of the algorithm are met, the IMFs and the corresponding entropy

values at that moment are output, and the VMD algorithm stops.
(e) Otherwise, the modal component is updated and the number of decompositions K is

increased by 1.
(f) Steps (b) to (d) are repeated until the stopping condition is satisfied, and the

algorithm stops.
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2.4. LM-PF Algorithm for Optimising Double Gaussian Model

It is a well-known fact that the double exponential and polynomial models are
commonly used as the battery capacity degradation pattern, which can be defined in
Equations (12) and (13).

∧
Q(k) = a · exp(b · k) + c · exp(d · k), (12)

∧
Q(k) = a0 + a1 · k + a2 · k2 + · · · + an · kn−1, (13)

where (a, b, c, d) and (a0, a1, · · · , an) are the parameters of these two models;
∧
Q(k)

represents the capacity at the k-th cycle. From the mathematical analysis, we can find
that the double exponential model applies provided that the trend of the fitted object
approximates the exponential distribution. The trend of this model is strongly influenced
by the attenuation parameters b and d. When the absolute values of these two parameters
are small, the trend of the double exponential model is close to a linear variation, resulting
in a large fitting error. The accuracy of a polynomial model is related to its order, and
it is often quite tricky to choose the best a priori order. When the order chosen is high,
over-fitting problems are prone to occur.

In view of the above, this paper proposes an innovative double Gaussian model to
describe the battery capacity decay process, defined as follows:

∧
Q(k) = α1 · exp

(
−k− β1

λ1

)
+ α2 · exp

(
−k− β2

λ2

)
, (14)

where k is the cycle of charge–discharge,
∧
Q(k) denotes battery capacity, andα1, β1, λ1, α2, β2, λ2

are the initial parameters of the double Gaussian model. Since the battery capacity decrease
can be approximated as a Gaussian distribution concerning the number of cycles, this char-
acterized capacity decay adopting a weighted sum of two Gaussian models is accurate and
feasible. Yet, the increase in attenuation parameters also causes an element of complexity in
identification. The Levenberg–Marquardt (LM) algorithm is popularly deployed for solving
unconstrained nonlinear least squares problems. It is insensitive to overparameterization
problems and can effectively handle redundant parameter problems. The particle filter (PF)
is a probability statistics algorithm that calculates the sample mean of a set of particles to
estimate the parameter being identified.

Therefore, in this work, a double Gaussian capacity fading model is constructed on
the basis of the global decay sequence using the LM-PF algorithm to predict the global
deterioration trend. The algorithm has the following steps:

Step 1: The LM algorithm is applied to obtain the initial X0 = [α1, β1, λ1, α2, β2, λ2]
for PF.

Step 2: The set of particles
{

Xi
0

}N

i=0
, i = (1, · · · , N) is generated from the prior distribu-

tion P(X0), where N denotes the whole amount of particles, and all particles are
initialized with a weight of Wi

0 = 1
N .

Step 3: Xi
k ∼ q

(
Xi

k

∣∣∣Xi
0:k−1, Zk

)
is updated to get a new set of particles Xi

k, where
k = (1, · · · , K) is the operating cycle, and K is the complete amount of aging
cycle; q

(
Xi

k

∣∣∣Xi
0:k−1, Zk

)
represents the importance density function.

Step 4: The important weight is calculated by Equation (15) for each particle in the particle
set, and the weights are normalized according to Equation (16).

Wi
k = Wi

k−1

P
(

Zk

∣∣∣Xi
k

)
P
(

Xk

∣∣∣Xi
k−1

)
q
(

Xi
k

∣∣∣Xi
k−1, Z1:k

) . (15)
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W ′k
(

Xi
0:k

)
=

Wk

(
Xi

0:k

)
N
∑

i=1
Wk

(
Xi

0:k

) . (16)

Step 5: A fresh batch of particles

{
∧
X

i

1:K

}
, i = (1, · · · , N) is created by resampling, where

∧
X

i

k is constructed from an estimate of the model parameters for particle i at cycle
number k.

Step 6: An estimate of the capacity is obtained.

∧
Q

i

k = h

(
∧
X

i

k

)
, (17)

where
∧
Q

i

k refers the estimated battery capacity of particle i, and h(·) is the double Gaussian
observation equation.

2.5. GRU NN and BAS Algorithm

The gated recurrent unit neural network (GRU NN) [33] is an enhanced form of the
recurrent neural network (RNN) that exhibits superior long-term sequence memorization
capabilities compared to the standard RNN. It is as effective as LSTM NN in solving the
gradient explosion or disappearance problem of simple RNNs. Unlike the LSTM NN, the
forget and input gates are synthesized into one update gate in GRU NN, and only one
hidden state is given to pass information. Because GRU NN features an easier design, less
variables, and higher convergence, it may be considered an excellent variation of LSTM
NN. The basic structure of the GRU NN is shown in Figure 2.
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Figure 2. The unit structure of the GRU NN.

The GRU NN’s fundamental unit is formed by the update gate and the reset gate.
How much of the new candidate state should be joined to the existing hidden state is
decided by the update gate. The calculated update gate value obtained is large, i.e., that
the output of the previously hidden layer has a great impact on the current hidden layer.
The reset gate is intended to govern how much of the previously hidden state should be
forgotten, with a smaller value indicating that more information is being ignored, thus
reducing the reliance on past information. For a GRU cell, the formulae for calculating the
gating mechanisms and state processes are described below.

The input to the GRU NN is formed by the input xt at time t and the previous hidden
state ht−1. The hidden layer state contains information about the previous node.
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The gating states of the reset and update gates are acquired by Equations (18) and (19),
respectively.

rt = σ(xtωxr + ht−1ωhr + br). (18)

zt = σ(xtωxz + ht−1ωhz + bz). (19)

The candidate hidden layer states are derived from the following equation:

∼
ht = tanh(xtωhx + rtht−1ωhh + bh). (20)

when rt converges to 0, GRU NN discards the ht−1 at moment t− 1, leaving the current
input information; when rt converges to 1, the hidden layer information is retained.

The output yt of the hidden layer node is computed at moment t, and the current
hidden state ht is passed to the next node.

ht = (1− zt)ht−1 + zt
∼
ht, (21)

yt = σ(ωoht), (22)

where ω represents the weighting factor, b refers to bias, σ is the sigmoid function,
and tanh(x) is the hyperbolic tangent function; they are used to implement gate
control functionality.

σ(x) =
1

1 + exp(−x)
. (23)

tanh(x) =
exp(x)− exp(−x)
exp(x) + exp(−x)

. (24)

In addition, the complex and diverse sequences of local fluctuations require the GRU
model to make matching learning rate corrections. In this section, the beetle antennae
search (BAS) algorithm is implemented to optimize the learning rate of the GRU NN. The
BAS algorithm is inspired by the search behavior of beetles that move around in the search
space. The main core process consists of two aspects. The beetle position is initialized
according to Equation (25).{

i = rands(n, 1); i = i/norm(i)
XL = X + D ∗ (i/2); XR = X−D ∗ (i/2)

, (25)

where i is a random vector generated in n dimensional space, rands() denotes the random
function, and norm() refers to the normalization function. XL is the left coordinate, and
XR is the right coordinate; X is the coordinate of the center of mass, and D is the distance
between the left and right coordinates.

The fitness value is calculated using Equation (26), and the best position is updated
accordingly. {

fL = f(XL); fR = f(XR)
X = X− s ∗ i ∗ sign(fL − fR)

, (26)

where fL and fR are the function values corresponding to the left and right coordinates,
respectively. f() is the objective function, s represents the step size, and sign() is the sign
function. After optimization of the learning rate, the GRU NN can track the fluctuating
changes of sequences remarkably effectively.

3. Experimental Setup

In this study, the suggested hybrid prediction method is validated on the battery data
gathered from NASA, the University of Maryland, and a custom experimental platform.
Experimental data were measured by the high-performance battery test platform, hereafter
referred to as S5. The NASA Ames Research Center provides a dataset [34] generated
through accelerated life experiments. The capacity data of battery 5 and battery 6, which
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have been publicly released, were selected as the research object of this study. Data from
the last battery, CX2-37 [35], were obtained from CALCE at the University of Maryland in
an aging experiment. In addition, the EOL threshold was standardized uniformly at 70% of
the rated capacity. The experimental data were equally divided, with the training and test
sets being split for training the prediction model and validating the performance.

3.1. Laboratory Apparatus and Experiment Data

Our group has developed a comprehensive battery test system in the laboratory of
AQNU University, comprising an upper computer, battery cell testing equipment, and
a thermostat. The upper computer is used for recording and saving battery experimental
data, and the battery cell testing equipment can perform tests in various working conditions
due to its high responsiveness, high accuracy, and high efficiency. The experimental
apparatus is shown in Figure 3.
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Four differentiated battery cell data were employed to demonstrate the robustness
and efficacy of the method proposed in this work. The aging data of battery S5 differed
from that of NASA batteries and CALCE battery data, and there were several main reasons
for this difference:

(1) The 18650 cylindrical batteries include batteries S5, 5, and 6, while CX2-37 is a rectan-
gular battery. The anode and cathode of battery S5 consist of graphite and LiFePO4,
while batteries 5 and 6 have a graphite anode and an LNCA cathode material. In
contrast, CX2-37 utilizes LiCoO2 as the cathode material. Moreover, the battery S5 is
rated at 2.4 Ah; thus, the EOL criterion is designed as 1.68 Ah. Batteries 5 and 6 have
a rated capacity of 2 Ah, with a 1.4 Ah EOL criterion. The rated capacity of CX2-37 is
only 1.35 Ah, with its EOL threshold considered to be 0.945 Ah.

(2) The aging test of battery S5 was tested at a 25 ◦C constant temperature; the datasets
for batteries 5 and 6 were collected at a 24 ◦C constant temperature, while that of
CX2-37 was tested at room temperature.

(3) A constant current of 1.2 A was applied to charge the battery S5 up to 4.2 V, and
then the voltage was kept constant at 4.2 V until the current decreased to 48 mA. The
discharge process involved applying a 2.4 A constant current, and the voltage was
discharged to 3.2 V. NASA batteries 5 and 6 were charged at a 1.5 A constant current;
their voltage rose to 4.2 V, and then the voltage was maintained constant at 4.2 V
until the current fell to 20 mA. The discharge procedure comprised the provision
of a 2 A constant current and lowering the voltage to 2.7 V and 2.5 V, respectively.
CX2-37 was charged at a constant current rate of 0.5 C to 4.2 V, and then the voltage
was maintained until the current dropped to 0.05 A. It was discharged at a constant
current rate of 1 C until the voltage fell to 2.7 V.
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Figure 4 depicts the capacity data for battery S5, batteries 5 and 6, and CX2-37. As
can be observed, the laboratory test results and the NASA aging datasets show that the
capacity degraded with the increasing number of charge and discharge cycles up to the
failure threshold. Furthermore, the capacity decay trajectory occasionally showed random
irregular jumps due to numerous disturbances in the measurement process and unavoid-
able local capacity increases. However, as the entire aging test of the S5 was carried out in
a thermostat, the decay trend was more stable.
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Figure 4. The capacity data from aging tests, NASA, and CALCE.

3.2. Experimental Procedures

To assess the performance of the suggested hybrid prediction algorithm, predictive
experiments were designed. The experiments in this paper consisted of two parts: battery
future capacity prediction and remaining life prediction. The exact steps of the experiment
are shown in Figure 5 and described below.
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Step 1: On the basis of the experimental data, the decomposition number and IMFs for
capacity data were obtained by the improved PE−VMD algorithm.

Step 2: The derived IMFs were adaptively divided into global degradation trend sequence
and local fluctuation sequences according to their PE values.

Step 3: Both the global degenerate trend sequence and the local fluctuation sequences were
equally divided into the corresponding training and testing sets.

Step 4: A double Gaussian capacity fading model was constructed to predict the global
deterioration trend on the basis of the training set of the global degradation trend
sequence adopting the LM-PF algorithm.

Step 5: The training set of local fluctuation sequences was utilized, and the GRU local
prediction model was trained to capture the local variations in capacity. The BAS
algorithm was responsible for optimizing the learning rate of the GRU model.

Step 6: The test set data were input, and the future global trend and future local fluctuation
data were predicted by the double Gaussian capacity degradation model and GRU
local prediction model, respectively.

Step 7: The final capacity prediction result was generated by adding the predicted future
local fluctuation data to the future global trend data.

Step 8: The RUL was calculated from the EOL values.

3.3. Evaluation Criteria

To evaluate the precision of the suggested approach, the mean absolute percentage
error (MAPE) [16], root-mean-square error (RMSE) [22], and Pearson correlation analysis
method [22] were selected as evaluation metrics. Furthermore, the absolute error (AE) [23]
was also used in the RUL prediction results for assessment. These metrics are presented
as follows:

MAPE =
1

n− k

n

∑
i=k

∣∣∣∣ Q̂i −Qi
Qi

∣∣∣∣× 100%, (27)

RMSE =

√
1

n− k

n

∑
i=k

(
Q̂i −Qi

)2, (28)
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R2 = 1− ∑n
i=k
(
Qi − ˆIMFi

)2

∑n
i=k
(
Qi − IMFi

)2 , (29)

AE =
∣∣∣RULtrue − RULpredicted

∣∣∣, (30)

where Qi is the real capacity, and Q̂i is the predicted capacity. The number of cycles is i;
n denotes all prediction cycles, and k represents the starting point of the forecast. RULtrue is
the actual RUL, and RULpredicted indicates the predicted RUL. Generally speaking, a lower
value of MAPE/RMSE/AE denotes better performance of the algorithm. R2 represents
the correlation coefficient between Qi and IMFs. It was adopted to gauge the degree
of correlation between the IMFs and capacity. The experiments were carried out using
MATLAB 2020b.

4. Experimental Verification and Analysis
4.1. Battery Capacity Decomposition Based on PE−VMD

This section uses PE−VMD to decompose the raw capacity data for battery S5,
batteries 5 and 6, and CX2-37. The decomposition process of these three types of bat-
teries is recorded in Table 1. Evaluation indicators include Hpe and R2, where Hpe refers to
the entropy value of the IMFs, and R2 indicates the level of correlation of IMFs with original
capacity. When Hpe of the IMFs reaches the threshold, it indicates that the input signal
was sufficiently decomposed, and the VMD algorithm was stopped. Figure 6 presents the
outcomes of the decomposition for the four typical batteries.

Table 1. Decomposition process of four types of batteries regarding the PE method.

(a) Battery S5

IMFs IMF1 IMF2 IMF3 IMF4
K Hpe R2 Hpe R2 Hpe R2 Hpe R2

K = 1 0.1575 0.9995
K = 2 0.1445 0.9802 0.2995 0.7015
K = 3 0.1373 0.9801 0.3022 0.7021 0.6042 0.0129
K = 4 0.0412 0.9799 0.2719 0.7121 0.3622 0.0625 0.7102 0.0122

(b) Battery 5

IMFs IMF1 IMF2 IMF3 IMF4
K Hpe R2 Hpe R2 Hpe R2 Hpe R2

K = 1 0.0832 0.9982
K = 2 0.0885 0.9981 0.6475 0.0642
K = 3 0.0542 0.9977 0.4435 0.1163 0.6485 0.0517
K = 4 0.0542 0.9977 0.4409 0.1156 0.6386 0.0514 0.7519 0.0312

(c) Battery 6

IMFs IMF1 IMF2 IMF3
K Hpe R2 Hpe R2 Hpe R2

K = 1 0.1027 0.9963
K = 2 0.0832 0.9961 0.6359 0.0792
K = 3 0.0387 0.9955 0.4841 0.1179 0.7651 0.0518

(d) Battery CX2-37

IMFs IMF1 IMF2 IMF3 IMF4
K Hpe R2 Hpe R2 Hpe R2 Hpe R2

K = 1 0.3944 0.9994
K = 2 0.2920 0.9985 0.5623 0.0726
K = 3 0.1533 0.9984 0.4554 0.0740 0.6097 0.0285
K = 4 0.0771 0.9981 0.3956 0.0793 0.5845 0.0366 0.8078 0.0265
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Figure 6. The results of PE−VMD method for battery: (a) battery S5; (b) battery 5; (c) battery 6;
(d) battery CX2-37.

The decomposition process is shown in Table 1. PE−VMD performed a four-layer
decomposition on battery S5, battery 5, and CX2-37, while battery 6 reached the Hpe
threshold at the third layer of decomposition before stopping. IMF1 had the smallest Hpe

value, whereas the R2 value was the largest and close to 1. This suggests that IMF1 was
smoother and highly positively correlated with the original capacity. As the value of K
increased, Hpe of the recently acquired IMF components gradually increased approaching
the Hpe threshold, and their R2 tended to 0.

Figure 6 displays the results of the decomposition of battery S5, batteries 5 and 6, and
CX2-37 by the PE−VMD algorithm. It can be obviously observed that the low-frequency
component IMF1 exhibited a favorable monotonic decline, effectively preserving the trend
of global degradation of the original capacity. Therefore, IMF1 was taken as the global
trend degradation sequence. The remaining high-frequency components presented random
oscillations, and these modal components represented local capacity regeneration with
measurement error disturbances, which in turn made up the local fluctuation sequences.
The decomposition results were consistent with the decomposition process in Table 1.

4.2. Capacity Prediction

In this study, the first 50% of the battery lifecycle was used as training data to construct
a hybrid predictive model, while the remaining portion served as the test data. The global
degradation sequence derived from the double Gaussian capacity degradation model
prediction and the local fluctuation sequences predicted by GRU were integrated to form
the predicted future capacity. The prognosis results of capacity are depicted in Figure 7,
and Table 2 reports the forecast errors for the four batteries.

Table 2. Statistical errors of the prediction results.

Battery RMSE MAPE (%)

Battery S5 0.0103 0.4288
Battery B5 0.0083 0.4555
Battery B6 0.0142 0.6446

Battery CX2-37 0.0053 0.4289



Batteries 2023, 9, 323 16 of 24Batteries 2023, 9, x FOR PEER REVIEW 17 of 24 
 

 
Figure 7. Capacity predictions for the four batteries. 

Table 2. Statistical errors of the prediction results. 

Battery RMSE MAPE (%) 
Battery S5 0.0103 0.4288 
Battery B5 0.0083 0.4555 
Battery B6 0.0142 0.6446 

Battery CX2-37 0.0053 0.4289 

The prediction results for battery S5, batteries 5 and 6, and battery CX2-37 clearly 
demonstrate that the suggested method allowed for precision forecasting of capacity. 
What is remarkable is that the proposed approach also appropriately captured the respec-
tive capacity jumping points. The impact of prognostic errors due to localized capacity 
increases was reduced. 

This conclusion is strengthened by the statistical errors in Table 2. The RMSE  and 
MAPE  were below 0.02 and 1%, respectively, in the four case studies, which is an ex-
tremely small deviation, indicating that the predicted capacity values exhibited a high 
degree of similarity to the actual capacity values. It is also worth noting that, compared to 
batteries 5 and 6, battery CX2-37 offered a greater prediction accuracy employing the sug-
gested method. This is because the aging data for battery CX2-37 were relatively smooth 
and stable, while the aging data for batteries 5 and 6 fluctuated dramatically. 

To further investigate the validity of the proposed methodology, a new comparative 
experiment was considered on the basis of the existing battery data. Specifically, the per-
formance of the suggested approach was separately compared with the PF technique and 
the GRU NN. In particular, the PF technique needed to be combined with a double 

0 20 40 60 80 100 120 140 160 180
Cycles

1.4

1.6

1.8

2

2.2

Battery S5

Measured data
Predicted data

0 10 20 30 40 50 60 70 80 90
Cycles

1.3

1.4

1.5

1.6

Battery 5

Measured data
Predicted data

0 10 20 30 40 50 60 70 80 90
Cycles

1.2

1.4

1.6
Battery 6

Measured data
Predicted data

0 100 200 300 400 500 600
Cycles

0.8

1

1.2
Battery CX2-37

Measured data
Predicted data

Figure 7. Capacity predictions for the four batteries.

The prediction results for battery S5, batteries 5 and 6, and battery CX2-37 clearly
demonstrate that the suggested method allowed for precision forecasting of capacity. What
is remarkable is that the proposed approach also appropriately captured the respective
capacity jumping points. The impact of prognostic errors due to localized capacity increases
was reduced.

This conclusion is strengthened by the statistical errors in Table 2. The RMSE and
MAPE were below 0.02 and 1%, respectively, in the four case studies, which is an ex-
tremely small deviation, indicating that the predicted capacity values exhibited a high
degree of similarity to the actual capacity values. It is also worth noting that, compared
to batteries 5 and 6, battery CX2-37 offered a greater prediction accuracy employing the
suggested method. This is because the aging data for battery CX2-37 were relatively smooth
and stable, while the aging data for batteries 5 and 6 fluctuated dramatically.

To further investigate the validity of the proposed methodology, a new comparative
experiment was considered on the basis of the existing battery data. Specifically, the
performance of the suggested approach was separately compared with the PF technique and
the GRU NN. In particular, the PF technique needed to be combined with a double Gaussian
model. PF and individual GRU NN provided predictions on the raw measurement data,
respectively, which were not processed by VMD. The comparison prediction results are
displayed in Figure 8, and Table 3 summarizes the prediction outcomes of the comparison
method for all batteries.
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Table 3. Prediction errors in the comparative experiment.

Battery Algorithm RMSE MAPE (%)

Battery S5 PF 0.0173 0.7342
GRU 0.0435 1.8197

Battery 5 PF 0.0172 0.8059
GRU 0.0149 0.8081

Battery 6 PF 0.0243 1.0916
GRU 0.0243 1.2754

Battery CX2-37 PF 0.0109 0.8720
GRU 0.0101 0.8022

The comparison results reveal that the capacity estimated by the suggested hybrid
approach was closer to the actual capacity than the other two comparison methods, PF
and GRU NN, across the four battery case studies. The predictions of the PF technique can
roughly matched the battery capacity decay curve, thanks to the good fitting properties of
the double Gaussian model. However, it was not possible to track capacity mutation points.
Compared to PF technology, GRU NN captured changes in capacity degradation dynamics
with its superior time sequence processing capabilities. Nevertheless, there was a gradual
deviation from the true declining trend in capacity in the later stages of the prognosis.

The statistical errors reported in Table 3 illustrate a further problem. PF ignored
the prediction of capacity increase points, while GRU NN ignored the distortion in late
capacity forecasts. Although the prediction errors for both were small values, there was
no significant difference between their prediction errors. Overall, the proposed method
produced the smallest RMSE and MAPE in all four cases, which reflects a considerable
improvement in the forecast errors by the proposed method.

4.3. RUL Prediction

Accurate RUL prediction is another critical issue to be overcome in prognostics and
health management (PHM) for lithium-ion batteries. On the basis of the existing work,
the RUL prediction effectiveness of the suggested hybrid model was researched with the
four batteries mentioned above. The EOL cycles for battery S5, batteries 5 and 6, and
CX2-37 were 137, 54, 43, and 1021, respectively. The capacity data used for RUL prediction
should exceed 70% of the rated capacity, and the predictive results of all cases are shown in
Figure 9.

It can be seen that, in this case, the dynamic changes in the capacity of the four batteries
could still be captured in perfect time by the proposed method. The deterioration patterns
of the expected capacity and the real capacity were roughly the same. This conclusion
is verified by the prediction errors in Table 4. The predicted RUL for batteries S5 and 6
was one cycle later and one cycle ahead of the true RUL, respectively. The RUL prediction
error for battery CX2-37 was two cycles, whereas the predicted RUL for battery 5 was
consistent with the actual RUL. It may, therefore, be concluded that the needs of battery
RUL prediction can be met by the proposed method.

Table 4. Prediction errors of the RUL for the four batteries.

Battery EOL Cycle Actual RUL Predicted RUL AE

Battery S5 292 137 138 1
Battery 5 124 54 54 0
Battery 6 108 43 42 1

Battery CX2-37 1021 436 434 2
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To further illustrate the superiority of the proposed method in battery RUL predic-
tion, a comparative test with algorithms proposed in the recent related literature was
performed. In order not to lose generality, the dataset of batteries 5 and 6 from the NASA
database were selected for comparison with the recent related methods. All considered
comparison methods unfolded RUL predictions at different stages. Table 5 summarizes the
comparing results.

Table 5. Comparison results of the proposed method and other algorithms.

Battery Methods Training Cycles RMSE AE

Battery 5

QPSO−SVM [36] 110 0.03 5
BLS−RVM [23] 100 0.0105 1

PSO−PF [5] 80 0.0026 10
RVR−UKF [37] 80 0.0381 14

AEKF−GASVR [37] 80 0.0304 18
AUKF−GASVR [37] 80 0.0192 3
EMD−ARIMA [38] 80 0.0356 8
EMD-LR−GPR [27] 70 0.0168 16

VMD−PF−GRU 70 0.0091 0
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Table 5. Cont.

Battery Methods Training Cycles RMSE AE

Battery 6

BLS−RVM [23] 100 0.0138 3
QPSO−SVM [36] 80 0.07 8

PSO-PF [5] 80 0.0022 6
RVR−UKF [37] 80 0.1265 17

AEKF−GASVR [37] 80 0.0593 8
AUKF−GASVR [37] 80 0.0483 7
EMD−LR−GPR [27] 70 0.0292 21

VMD−PF−GRU 65 0.0187 1

Generally speaking, predictive models could generate high prediction accuracy due
to the larger amount of data taken as training input. For example, QPSO−SVM [36]
and BLS−RVM [23] performed RUL prediction for battery 5 with 110 and 100 training
cycles, respectively. Nevertheless, this approach undoubtedly increased the pressure on
the onboard BMS to process the data. The proposed hybrid prediction method was able
to achieve smaller prediction errors by virtue of fewer training cycles, and its RMSE for
battery 5 capacity was less than 1%, indicating its higher prediction stability. PSO−PF [5]
had a slightly better RMSE than the proposed VMD−PF−GRU for battery 5 capacity
predictions; however, the PSO−PF predictions started late, and the final RUL predictions
were much worse. Compared to the remaining algorithms in Table 5, the suggested
VMD−PF−GRU had outstanding advantages in terms of both AE and RMSE. It should be
highlighted that the EMD decomposition technique was also used in EMD−ARIMA [38]
and EMD−LR−GPR [27]. Despite this, the VMD−PF−GRU could still achieve better
predictions based on an earlier prediction starting point. On the one hand, this proves
that VMD performed better at the level of decomposition than the EMD technique; on the
other hand, it means that the double Gaussian aging model adopted in this paper exhibited
excellent fitting properties for the battery aging trend. Likewise, the same conclusions
could be drawn by comparing the RMSE index and AE index of battery 6. According
to these RUL prediction results, the proposed design solution was successful in battery
RUL prediction.

From the perspective of computational complexity, the method proposed in the paper
was comparable to QPSO−SVM [36], PSO−PF [5], and AEKF−GASVR [37]. The reason is
that, despite these methods solely utilizing raw capacity data for direct prediction, they
devoted significant efforts to parameter optimization, resulting in an escalation of the
actual computational complexity. The proposed method not only takes into account the
influence of noise, but also significantly reduces the final prediction error. In comparison
with the hybrid forecasting methods, such as BLS−RVM [23], EMD−ARIMA [38], and
EMD−LR−GPR [27], the proposed PE−VMD method is more convenient and effective
in terms of operation, and the GRU structure is simple and computationally efficient.
Therefore, compared to these hybrid methods, the proposed method has a lower actual
computational complexity.

Capacity measurement data become extremely unstable owing to noise disturbances
and irregular capacity increase points in the measurement process, which makes modeling
capacity decay extremely difficult. Hence, data decomposition was employed to separate
the effective information components from the residual components, which could effec-
tively enhance the stability and predictability of the forecasting system. VMD guaranteed
the complete decomposition of the signal into modals to overcome component confound-
ing, and valid information was retained to the maximum extent possible by the PE−VMD
algorithm. Compared to the popular exponential and polynomial models, the double
Gaussian model provided a better fit for battery capacity decay. The GRU NN network is
simple in structure and efficient from a computational point of view, conserving the limited
onboard BMS computational resources. Consequently, predicting future battery capacity
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and RUL by combining a double Gaussian model with a GRU NN network together is
a feasible and effective method, and forecasting capability is enhanced.

By comparing the proposed hybrid prediction method in this study with other algo-
rithms used in the recent relevant literature, the proposed method effectively reduced the
prediction errors caused by measurement noise and capacity increment points, thereby
comprehensively improving the predictive performance of capacity and RUL.

5. Conclusions

In this work, a novel framework for hybrid prediction of lithium-ion battery capacity
and RUL was developed, which addresses the forecast issue caused by measurement noise
and local capacity regeneration phenomena. More specifically, the capacity data were
decomposed through an improved PE−VMD algorithm, thereby adaptively obtaining
the global degenerate trend sequence and the local fluctuation sequences, and then both
types of trends were modeled to enable accurate forecasting of capacity and RUL. The
decomposition number was identified by the PE approach, while also avoiding the problem
of spurious components in VMD, which was confirmed by correlation analysis of IMFs. This
paper also proposed a double Gaussian aging model that can flexibly reflect the capacity
decay process of batteries, and the LM-PF algorithm was utilized to enhance the ability to
update and correct model parameters, effectively overcoming the forecasting instability
problems associated with data fitting in forecasting methods. With a strong ability to learn
long-term dependencies, the GRU NN performed excellently on local fluctuation sequences
prediction tasks, and its learning rate was optimized through the BAS algorithm. Such
a design scheme not only reduces the impact of measurement noise and local regeneration
phenomena, but also effectively addresses the shortcomings of a single model.

Meanwhile, the charge–discharge data of the battery cell in the laboratory, and the
NASA and CALCE battery aging datasets were applied to validate the suggested hybrid
prediction approach. The experimental results of the four batteries proved the feasibility
and correctness of the proposed hybrid prediction method. In addition, independent PF
and GRU algorithms, as well as other types of prediction algorithms, were compared
with the suggested approach. Comparative experiments demonstrated that the suggested
method could significantly reduce prediction errors and required much less training data.
In summary, the proposed hybrid prediction method integrated the advantages of multiple
algorithms and had better prediction performance.

For future research, it is worth exploring the application of the proposed hybrid
prediction framework in forecasting a broader range of battery types or battery packs.
Moreover, applying advanced artificial intelligence algorithms for algorithmic fusion and
constructing a prediction framework are new ideas for future research on lithium-ion
battery prediction.
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