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Abstract: Aqueous sodium-ion batteries (ASIBs) represent a promising battery technology for sta-
tionary energy storage, due to their attractive merits of low cost, high abundance, and inherent safety.
Recently, a variety of advanced cathode, anode, and electrolyte materials have been developed for
ASIBs, which not only enhance our fundamental understanding of the Na insertion mechanism,
but also facilitate the research and development of practical ASIB systems. Among these electrode
materials, iron-based materials are of particular importance because of the high abundance, low
price, and low toxicity of Fe elements. However, to our knowledge, there are no review papers that
specifically discuss the properties of Fe-based materials for ASIBs yet. In this review, we present
the recent research progress on Fe-based cathode/anode materials, which include polyanionic com-
pounds, Prussian blue, oxides, carbides, and selenides. We also discuss the research efforts to build
Fe-based ASIB full cells. Lastly, we share our perspectives on the key challenges that need to be
addressed and suggest alternative directions for aqueous Na-ion batteries. We hope this review paper
can promote more research efforts on the development of low-cost and low-toxicity materials for
aqueous battery applications.

Keywords: aqueous sodium-ion batteries; iron-based materials; cathode; anode; full cells

1. Introduction

The storage of renewable energy sources (solar and wind) requires the development
of a low-cost, long-cycling, and high-safety battery system [1,2]. Currently, lithium-ion
batteries (LIBs) demonstrate immense success in portable electronics and electric vehicles,
and they have also been actively studied for stationary energy storage [3,4]. However,
the intrinsically low lithium abundance (~20 ppm) in Earth’s crust and the uneven Li
distribution concurrently contribute to a high battery cost [5,6], making them unaffordable
for grid-scale energy storage. Additionally, the LIB electrolyte is based on the use of volatile
and flammable carbonate solvents [7], which brings about safety concerns. Therefore, it is
indispensable to develop an alternative battery system that can better satisfy the demands
of grid-scale energy storage.

Since the 2010s, sodium-ion batteries (SIBs) have attracted considerable attention as an
alternative to LIBs for large-scale energy storage, due to Na’s much higher elemental abun-
dance (~23,000 ppm), ubiquitous distribution, and potentially lower cost [8–12]. Although
the large Na+ ion radius (1.02 Å vs. 0.76 Å of Li+) caused some difficulties in early-stage
SIB exploration [13–16], extensive investigations from worldwide researchers have suc-
cessfully identified promising materials for near-future commercialization. Layered metal
oxides [17–19], Prussian blue [20–22], and phosphates [23–25] are three leading cathode ma-
terials, and hard carbon is the most promising anode candidate [26–29]. There are several
excellent review papers that discuss the prospects and challenges of the commercialization

Batteries 2023, 9, 349. https://doi.org/10.3390/batteries9070349 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9070349
https://doi.org/10.3390/batteries9070349
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-7598-5076
https://doi.org/10.3390/batteries9070349
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9070349?type=check_update&version=2


Batteries 2023, 9, 349 2 of 21

of SIBs [30–33], and readers can refer to these articles for more information. Despite the
essential research progress, non-aqueous SIBs still rely on volatile and flammable carbonate
electrolytes, which have similar safety concerns to LIBs [34]. Moreover, it remains ques-
tionable that non-aqueous SIBs offer a competitive levelized energy cost compared with
lead-acid batteries [10], particularly when we consider the use of NaPF6 salts, carbonate
solvents, and dry room assembly conditions for SIBs.

Due to these limitations of SIBs, there is a parallel interest in developing aqueous
sodium-ion batteries (ASIBs), because of the cost-effective and non-flammable nature of
aqueous electrolytes [35,36]. Furthermore, cheap and common salts could be used to
make electrolytes, such as sodium sulfate, sodium nitrate, or even sodium chloride [22,37].
Additionally, ASIBs can be manufactured in ambient conditions, which eliminates the need
to build or use dry rooms. Therefore, ASIBs exhibit a lower cost and higher safety than
non-aqueous SIBs, which are more attractive for stationary energy storage. Figure 1a shows
the “rocking-chair” working mechanism of ASIBs, where two insertion compounds serve
as the cathode and anode in an aqueous Na-ion electrolyte. During the charge process, the
cathode loses electrons and releases Na+ ions, whereas the anode receives electrons and
hosts Na+ ions. The discharge process is the reverse of this.
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Figure 1. (a) The “rocking−chair” working mechanism of aqueous sodium−ion batteries, where
two insertion electrode materials serve as the cathode and anode, and the electrolyte is an aqueous
Na−ion solution; (b) the reaction potentials of Fe−based materials in aqueous electrolytes, with a
reference to non−aqueous systems; (c) the elemental abundance of transition metals in Earth’s crust;
(d) the elemental price of transition metals. The data were retrieved from the Wikipedia webpage.

Compared with non-aqueous electrolytes, aqueous electrolytes generally have a much
narrower electrochemical window, due to the oxidative and reductive decomposition of
water molecules, i.e., oxygen evolution reactions (OERs) and hydrogen evolution reactions
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(HERs). [38] The thermodynamically stable electrochemical window of water is 1.23 V
(Figure 1b), where OER and HER take place at a relative potential of 1.23–0.059 × pH
and −0.059 × pH vs. standard hydrogen electrodes (SHEs), respectively. [39] For instance,
ina neutral state (pH = 7), OERs and HERs tend to happen at +0.817 V and −0.413 V
vs. SHEs, which corresponds to 3.53 V and 2.3 V vs. Na+/Na, respectively. Note that
the Na+/Na redox couple exhibits a relative potential of −2.713 V vs. SHE. Therefore,
researchers could screen suitable electrode materials from a non-aqueous SIB database
and apply them to ASIBs. We need to point out that, in practical conditions, aqueous
electrolytes support a wider window of 1.5–1.8 V, due to the overpotential contributions
from OER and HER [40]. Recently, researchers have worked to increase the salt/solvent
ratio and proposed the concept of concentrated or “water-in-salt” (WiS) electrolytes [41–44],
which further enlarges the electrolyte window to 2–3.0 V. For instance, Hu et al. reported an
inert-cation-assisted WiS electrolyte, which comprises tetraethylammonium (TEA+) inert
cations and Na+ cations [42]. The very high ion concentration of 31 mol kg−1 enabled a
broad window of 3.3 V, which supported the functioning of a new anode (NaTiOPO4).
Moreover, the Na-ion full cell reached a 1.74 V voltage and high energy of 71 Wh kg−1.
Very recently, Wang et al. demonstrated a NaClO4/NaOTF (17 + 2 mol kg−1) bi-salt WiS
electrolyte, which can expand the electrochemical window to 4.4 V [45]. This electrolyte
can effectively suppress the material dissolution of Na3V2(PO4)3, and the symmetrical
Na3V2(PO4)3||Na3V2(PO4)3 full cell demonstrated a voltage of 1.75 V and an energy
density of 70 Wh kg−1. These new electrolytes not only enable more electrode materials to
work for ASIBs, but also effectively increase the full cell voltage and energy density.

Compared with other aqueous batteries, such as Ca2+, Mg2+, Al3+, K+, and NH4
+ ions,

[46–50] ASIBs have the advantages of abundant electrode material choices, which are
facilitated by the moderate Na+ size and the monovalent cation charge. The bulk size of K+

and NH4
+ limits the cation insertion to electrode structures, while the high charge density

of Ca2+, Mg2+, and Al3+ restricts the cation diffusion process. Due to these advantages,
the commercialization of ASIBs was attempted by Aquion Energy between 2008 and
2017 [51], which further highlights the attractive merits of ASIBs. To date, a variety of
electrode materials have been investigated for ASIBs, including metal oxides [52,53], metal
phosphates [54,55], metal hexacyanoferrates (Prussian blue analogues) [56,57], and other
compounds [58]. In general, these materials possess one or more transition metal elements
for redox reactions, such as titanium, vanadium, chromium, manganese, iron, cobalt, nickel,
and copper. Among these materials, iron-based ones are of particular importance for
ASIBs, because Fe is the most abundant element (50,000 ppm, Figure 1c) and the most
cost-effective element (0.4 USD/kg, Figure 1d) [59,60]. Moreover, Fe-based materials are
generally non-toxic or low-toxicity, and are thus vastly different from chromium, vanadium,
or cobalt-based materials [61]. Additionally, the Fe element exhibits multiple valance
states of +2, +3, and +4 [62], and could be utilized for both cathode and anode reactions,
depending on the materials or crystal structures. Based on these discussions, it is appealing
to demonstrate Fe-based ASIBs for sustainable energy storage. Nevertheless, there are no
review papers on this topic yet.

In this review, we summarize the research progress on Fe-based cathode and anode
materials for ASIBs(Figure 2). We talk about the synthesis methods, crystal structures,
reaction mechanisms, and electrochemical properties of these materials, and we point out
some research limitations, as well. The recent efforts to assemble Fe-based aqueous Na-ion
full cells are also discussed. Lastly, we share our perspectives on the key challenges in
Fe-based materials and suggest some feasible solutions to overcome these challenges. This
review paper will evoke more research interest in the use of Fe-based materials for aqueous
batteries and sustainable energy storage.
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Figure 2. Fe-based cathode, anode, and full cells for ASIBs.

2. Iron-Based Cathode Materials

Cathode materials generally play a decisive role in full cell energy density, and are
expected to exhibit a high reaction potential and a high capacity. To date, Fe-based cathode
materials primarily include polyanionic compounds (phosphates, pyrophosphates, and
mixed anions) and Prussian blue analogues (PBA).

2.1. Polyanionic Compounds

Recently, polyanionic compounds have received extensive attention for ASIBs, due to
their stable structures and tunable reaction potentials. In this paper, we will start with the
NaFePO4 material, which is one of the earliest compounds in ASIB research. This material
also attracted considerable interest at the beginning of ASIB research. Then, we will discuss
other polyanionic compounds that show better performance than the NaFePO4 material.

2.1.1. NaFePO4 Cathode

Phosphate compounds are promising electrode materials for battery applications,
due to their versatile crystal structures, stable P-O bonds, and relatively high reaction
potentials [63]. One of the most representative phosphate examples is the LiFePO4 cathode,
which was first developed by John Goodenough in 1997 and is now used as a leading
cathode in some electric vehicles [64,65]. The LiFePO4 material exhibits an olivine structure
(space group: Pnma) and has a one-dimensional Li+ diffusion channel, which leads to a
two-phase transition reaction between LiFePO4 and FePO4 (Figure 3a). As a result, the
LiFePO4 features a flat reaction potential of +3.45 V vs. Li+/Li, a high theoretical capacity of
~170 mAh g−1, and superior cycling performance [64,65]. Due to these attractive properties
of LiFePO4, its sodium version, NaFePO4, naturally receives immediate attention in early-
stage ASIB studies.

However, the Li+/Na+ ion size difference is large in crystal structures, as are the
differences in the reaction mechanisms in the AFePO4 framework (A = Li and Na). Unlike
olivine LiFePO4, NaFePO4 crystalizes in two distinct crystal structures, i.e., maricite and
olivine [66]. The maricite phase is thermodynamically more stable, but it does not exhibit a
well-defined Na+ diffusion channel (Figure 3b) [67,68]. Consequently, the maricite phase
is electrochemically inactive for Na+ insertion, and research efforts have focused on the
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olivine NaFePO4 phase. Based on the Fe2+/Fe3+ redox couple, the olivine NaFePO4 cathode
exhibits a high theoretical capacity of 154 mAh g−1.

To prepare olivine NaFePO4, researchers generally use olivine LiFePO4 as the starting
compound, extract Li+ ions from its structure, and then, re-insert Na+ ions to form an
olivine NaFePO4 phase (Figure 3a). In 2013, Mentus et al. used the electrochemical ion-
exchange method to prepare a NaFePO4 material [69], where LiFePO4 was subjected to
successive cyclic voltammetry (CV) scanning in a saturated NaNO3 electrolyte. Compared
with LiFePO4, NaFePO4 exhibits a 0.3 V lower reaction potential (Figure 3c). Moreover,
NaFePO4 has one cathodic peak but demonstrates two anodic peaks, which are due to the
intermediate phase of Na2/3FePO4 during the charging process. In this study, the authors
used CV to explore electrochemical performance, but the galvanostatic charge/discharge
(GCD) properties remain unknown.

In 2015, Cabanas et al. used a chemical method to prepare an olivine NaFePO4 material
and systematically compared its Na insertion performance in aqueous and non-aqueous
electrolytes [70]. They first used nitronium tetrafluoroborate (NO2BF4) to oxidize LiFePO4
into FePO4, and then, they utilized sodium iodide (NaI) to reduce FePO4 into NaFePO4.
They found that NaFePO4 demonstrated much faster reaction kinetics and lower polar-
ization in aqueous Na2SO4 electrolytes than non-aqueous NaClO4/EC-PC (EC: ethylene
carbonate; PC: propylene carbonate) electrolytes. At a rate of 0.1 C, the polarization was
0.27 V in aqueous electrolytes (Figure 3d), lower than 0.44 V in non-aqueous electrolytes.
When tested in the same potential range, aqueous electrolytes led to good capacity uti-
lization of 50% at a rate of 2 C (Figure 3d), whereas non-aqueous ones showed a minimal
reaction capacity. These results indicate that NaFePO4 could work as a higher-rate cathode
in ASIBs. Then, the authors assembled an ASIB full cell of NaFePO4||NaTi2(PO4)3, which
exhibited a cell voltage of ~0.6 V and stable cycling of 20 cycles. This work systemati-
cally investigated NaFePO4 battery performance in aqueous electrolytes, but the overall
performance appears premature, which warrants further improvement. For instance, the
NaFePO4 cathode only delivered a moderate capacity of ~75 mAh g−1 at room temperature,
which corresponds to only 50% of the theoretical capacity. When the temperature increased
to 55 ◦C, this cathode managed to give ~110 mAh g−1. Meanwhile, the NaFePO4 cycling
performance was not satisfactory. The authors found that NaFePO4 suffered from fast
capacity fading in a wider potential range of −0.2~0.6 V vs. SHE, and they excluded the
material dissolution reason based on inductively coupled plasma (ICP) analysis. Thus, the
capacity decay mechanism requires further investigation.

In 2019, Tron et al. investigated the capacity fading mechanism in NaFePO4 and
proposed an artificial aluminum fluoride (AlF3) coating to enhance its cycling life [71].
They found that surface deterioration was primarily responsible for the poor cycling in
bare NaFePO4, where the electrode–electrolyte side reactions led to the formation of iron
oxides or iron hydroxides. To address this issue, they coated AlF3 on the NaFePO4 surface
for electrode protection. Consequently, the coated electrode not only exhibited a higher
initial Coulombic efficiency, but also demonstrated better cycling stability (Figure 3e). Un-
fortunately, even with surface coating, the NaFePO4 cathode was still limited to 50 cycles,
which is much inferior to non-aqueous systems. For instance, Loh et al. reported that
NaFePO4 showed outstanding capacity retention of 70% after 6000 cycles in non-aqueous
electrolytes [72]. Therefore, there is a large performance gap between non-aqueous and
aqueous electrolytes, and sophisticated characterization methods are needed to under-
stand the capacity fading mechanism, which will help to demonstrate a long-cycling
NaFePO4-based ASIB. For instance, electrochemical quartz crystal microbalance (EQCM)
tests might provide alternative insights into the interfacial ion insertion process [73]. Pan
et al. and Cakan et al. carried out in situ EQCM tests of the NaFePO4 electrode in aqueous
electrolytes, and the reaction mass ratios were found to be 31–33 g mol−1 and 36–39 g mol−1,
respectively [73,74]. Although these two studies have some discrepancies, it is evident
that both Na+ ions and water molecules participate in surface redox reactions, because
the molar mass of naked Na+ ions is 23 g mol−1. The participation of water molecules
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may explain the formation of FeO or Fe(OH)2 on the NaFePO4 surface, which leads to the
capacity fading.
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Figure 3. (a) The structural transition between olivine LiFePO4, olivine FePO4, and olivine NaFePO4.
(b) The crystal structure of maricite NaFePO4. (c) A CV curve comparison between the Li insertion
in LiFePO4 and Na insertion in NaFePO4. Reprinted from reference [70], with permission from
Elsevier. (d) The rate performance of NaFePO4 in aqueous electrolytes. Reprinted from reference [70],
with permission from Elsevier. (e) A cycling performance comparison between bare NaFePO4 and
AlF3−coated NaFePO4. The * in the Figure 3e indicates the cycling performance comparison at
20th cycle. Reprinted from reference [71], with permission from Elsevier. (f) EQCM analysis of the
Na insertion process in NaFePO4. Reprinted from reference [73], with permission from Elsevier.
(g) Theoretical simulations on Na insertion in NaFePO4 in aqueous electrolytes. Reprinted from
reference [73], with permission from Elsevier.

Another drawback related to the olivine NaFePO4 cathode is the complicated synthesis
route, where LiFePO4 needs to serve as a sacrificial template, and it undergoes a two-step
synthetic oxidation–reduction route. To solve this issue, Manjunatha et al. reported a
low-temperature ionothermal method to prepare an olivine NaFePO4 material [75], where
the reaction medium was a deep eutectic solvent, and the temperature was as low as 200 ◦C.
When paired with a NaTi2(PO4)3 anode in 5 M NaNO3 electrolytes, the NaFePO4 cathode
delivered a good capacity of ~97 mAh g−1 at a rate of 0.2 and reasonable capacity retention
(78%) over 50 cycles.

2.1.2. Other Polyanionic Compounds

Besides the intensive studies on the NaFePO4 cathode, other Fe-based phosphate
materials have also attracted certain attention for ASIBs. However, due to the limited



Batteries 2023, 9, 349 7 of 21

number of publications, we will discuss these materials in one section and categorize them
as other polyanionic compounds.

Compared with NaFePO4, sodium iron pyrophosphate (Na2FeP2O7) exhibits a rel-
atively higher Na insertion potential, due to the stronger inductive effect of the [P2O7]4-

groups [76,77]. More importantly, Na2FeP2O7 could be readily synthesized via a conven-
tional solid-state method [76,77], which does not need to use lithium compounds as the
starting precursor. This is beneficial for large-scale synthesis. Na2FeP2O7 has a triclinic
crystal structure (P-1, No.2) and exhibits a theoretical capacity of ~97 mAh g−1 based
on one-electron Fe2+/Fe3+ redox, which is lower than NaFePO4 but still acceptable as a
Na-ion cathode.

Kim et al. used a simple solid-state method and prepared a carbon-coated Na2FeP2O7
material [78]. They found that aqueous electrolytes led to lower polarization and faster
rate performance than non-aqueous electrolytes, which is akin to the NaFePO4 case. The
Na2FeP2O7 electrode delivered a good capacity of ~87 mAh g−1 in a wide potential range of
−0.26~0.94 V vs. SHE, with an average potential of ~0.25 V vs. SHE (Figure 4a). However,
the capacity decreased to ~65 mAh g−1 in a narrow range of 0.04~0.94 V. This cathode
showed an impressive rate performance of 50 C and excellent capacity retention of 86%
after 300 cycles. Apparently, the Na2FeP2O7 cathode exhibited better cycling stability than
NaFePO4. The authors also used advanced characterization tools to investigate the reaction
mechanism. Fe-edge X-ray absorption near edge structure (XANES) analysis revealed
that Fe element valance changes from +2 to +3 during the charge process, which indicates
the oxidization of Na2FeP2O7. They also performed ex situ XRD analysis of the cycled
electrode, which showed no peak change or intensity degradation, confirming the reaction
reversibility. Later, Okada et al. further investigated electrolytes’ influence on Na2FeP2O7
performance, [79] where three different electrolytes were compared, i.e., Na2SO4 (2.0 M),
NaNO3 (4.0 M), and NaClO4 (4.0 M). They found that these electrolytes led to similar cycling
for Na2FeP2O7, but NaNO3 showed the worst cycling for the Na2FeP2O7||NaTi2(PO4)3
full cell, due to the nitrate decomposition and electrode corrosion reactions. Consider-
ing the strong oxidizing capabilities and potential explosiveness of sodium perchlorate,
the authors concluded that 2.0 M Na2SO4 is the most promising electrolyte for aqueous
Na2FeP2O7||NaTi2(PO4)3 full cells, which maintain ~89% capacity over 30 cycles.

Despite the easy synthesis of Na2FeP2O7, its moderate potential and relatively low
capacity restrict the energy density of ASIB full cells. Hence, it is crucial to develop other
Fe-based materials with higher potentials or capacities. Na4Fe3(PO4)2P2O7 is an interesting
mixed polyanionic material, [80] which adopts an orthorhombic structure (space group:
Pn21a) with large open channels. This material exhibits an even higher potential than
NaFePO4 and Na2FeP2O7. The Fe ions exist in their 2+ state, and theoretically, all these
Fe2+ ions could be oxidized to Fe3+. Consequently, this material can support the 3-Na
insertion reaction, which corresponds to a theoretical capacity of ~129 mAh g−1. Compared
with Na2FeP2O7, Na4Fe3(PO4)2P2O7 shows both a higher capacity and a higher reaction
potential. Cabanas et al. studied Na4Fe3(PO4)2P2O7 performance in 1 M Na2SO4 elec-
trolytes, [81] which delivered a specific capacity of ~84 mAh g−1 and an average potential
of ~0.30 V vs. SHE (Figure 4b). However, the cycling stability of Na4Fe3(PO4)2P2O7 is
less satisfactory, with 74% capacity retention in 50 cycles. To understand the capacity
fading mechanism, the authors of [81] immersed Na4Fe3(PO4)2P2O7 in electrolytes and
used ICP to detect the dissolved iron and phosphorus concentration, which were found
to be 0.1% and 2.1%, respectively. Due to the much higher phosphorus content, it is likely
that pyrophosphate anions undergo hydrolysis side reactions, which result in active mass
loss and iron oxide precipitation. Therefore, surface coating could be necessary to reinforce
cycling stability.

Na2FePO4F represents another promising ASIB cathode with a high reaction potential,
due to the presence of electron-withdrawing fluoride anions [82]. Meanwhile, this cathode
exhibits a theoretical capacity of 124 mAh g−1, comparable to Na4Fe3(PO4)2P2O7. This
material crystalizes in an orthorhombic crystal structure with a space group of Pbcn.
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Barpanda et al. first studied Na2FePO4F performance in a concentrated electrolyte of 17 m
NaClO4 (m: mol kg−1) [83], which may help to inhibit the material dissolution. As a
result, Na2FePO4F delivers a capacity of ~84 mAh g−1 (Figure 4c), a high-rate capability of
5.0 mA cm−2, and stable cycling of 100 cycles. When coupled with a NaTi2(PO4)3 anode,
the full cell shows a moderate cell voltage of ~0.7 V and decent cycling retention of 65%
over 100 cycles. Relatively inferior cycling in full cells should result from the capacity
fading on the anode side.

Besides [P2O7]4− and F− anions, carbonate anions have also been introduced to the
Na-Fe-PO system to make new compounds. For instance, Na3FePO4CO3 is another promis-
ing cathode with a theoretical capacity of ~191 mAh g−1, due to its potential two-Na
insertion via Fe3+/Fe2+ and Fe3+/Fe4+ redox couples. [84] This capacity even exceeds
the NaFePO4 material. In 2020, Okada et al. briefly reported its Na insertion perfor-
mance in a conference abstract, [79] which described an initial charge/discharge capacity
of ~130/112 mAh g−1 in 17 m NaClO4 electrolytes. However, other information, such
as electrochemical or structural characterization, is not available. In 2021, Manjunatha
et al. systematically investigated Na3FePO4CO3’s battery performance in a 2.0 M Na2SO4
electrolyte [85]. In a typical CV test, the Na3FePO4CO3 electrode demonstrated a pair of
oxidization/reduction peaks at 0.54/0.32 V vs. SCE (SCE: saturated calomel electrode),
which converted to 0.78/0.56 V vs. SHE. On average, the Na insertion potential was
0.67 V vs. SHE, which is much higher than that of previous Fe-based materials. However,
the potential gap of 0.22 V was not negligible, which indicates sluggish Na insertion ki-
netics. As a result, the GCD tests revealed that this cathode delivers a moderate capacity
of ~80 mAh g−1 and considerable polarization of 0.5 V (Figure 4d), which leads to very
low energy efficiency. When paired with the common NaTi2(PO4)3 anode, the full cell
exhibited a reasonable rate capability of 2C and stable cycling of 100 cycles. Nevertheless,
GCD curves were not shown for full cells, and the voltage hysteresis, energy density, and
power density remain unknown.

2.2. Prussian Blue Analogues

In addition to polyanionic compounds, Prussian blue analogues (PBAs) represent
another class of Fe-based materials for ASIBs. PBAs exhibit a general chemical formula
of AxM[Fe(CN)6]y·�1−y·zH2O (0 ≤ x ≤ 2, 0 ≤ y ≤1; z varies with the experimental
conditions), where A, M, and � stand for alkali metals, transition metals, and Fe(CN)6
vacancies, respectively [86]. PBAs usually possess a face-centered cubic structure, which
is built up via the three-dimensional connection of Fe-CN-M bonds. The alkali metal
cations and zeolitic water molecules occupy the center of nano-voids. Compared with
iron-based polyanionic materials, PBAs hold greater promise for ASIBs. Firstly, PBAs
theoretically undergo a 2-Na insertion reaction, which leads to a high theoretical capacity
of ~170 mAh g−1 [87]. Secondly, the [Fe(CN)6]3−/[Fe(CN)6]4− redox couple exhibits a high
reaction potential of +0.4~1.0 V vs. SHE, which is promising for cathode reactions [88].
Thirdly, the large open framework facilitates fast and reversible Na insertion reactions,
which results in excellent rate and cycling performance [89]. Lastly, the synthesis of
PBAs is based on an aqueous precipitation method [90], which is more cost-effective
than the solid-state synthesis of iron phosphates. To date, there are several excellent
review papers on PBA materials for non-aqueous and aqueous SIBs [20,91–93], and readers
may refer to these publications for more information. Here, we limit our discussion to
NaxFe[Fe(CN)6]y·�1−y·zH2O materials only, considering that the focus is on the use of
Fe-based materials for ASIBs.
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Based on the valence state of carbon-coordinated and nitrogen-coordinated iron ions,
the NaxFe[Fe(CN)6]y·�1-y·zH2O material can be further divided into Prussian yellow (PY,
+3 and +3), Prussian blue (PB, +2 and +3), and Prussian white (PW, +2 and +2) [88], as
shown in Figure 5a. Note that in the PB structure, the carbon-coordinated and nitrogen-
coordinated iron are in a +2 and +3 state, respectively. It is known that Fe(CN)6 vacancies
degrade PBA crystal structures and lead to low capacities and capacity fading [89,90,94–96].
To suppress these vacancies, Yang et al. used a slow crystallization method and prepared a
low-defect PY compound of Fe[Fe(CN)6]0.87·�0.13 [21], that contained only 13% Fe(CN)6
vacancies, much lower than the 25–30% in conventional PBAs. When tested for ASIBs,
this PY cathode delivered a high capacity of ~125 mAh g−1 (Figure 5b) and stable cycling
of 500 cycles with 83% retention. It also showed an encouraging rate performance of
20 C, which surpasses most iron phosphate materials. By contrast, the conventional PBA
materials with 30% Fe(CN)6 vacancies suffered from severe capacity fading (Figure 5c). Li
et al. further compared Li insertion and Na insertion in PY structures [97]. Interestingly,
PY supported a reversible Na insertion reaction with a good capacity of ~120 mAh g−1,
but it exhibited fast capacity fading for Li-ion insertion. The inferior Li-ion cycling was
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due to the very large size of hydrated Li+ ions, which cannot easily enter PBA channels.
By contrast, Na+ ions can become de-solvated and readily enter PBA structures. This
comparison further highlights the promise of PBAs for ASIB applications.

Regardless of the high capacity and stable cycling of PY materials, they do not have
removable Na+ ions in their initial structures, which challenges full cell assembly. Yang
et al. attempted to use sodium iodide (NaI) to reduce the PY compound, but the amount
of introduced Na+ ions was quite limited [21]. Therefore, it is more favorable to di-
rectly prepare Na-rich PBA materials. In 2016, Cabanas et al. prepared a PB material of
Na0.75Fe1.08[Fe(CN)6]·3.5H2O and studied its performance in 1 M Na2SO4 electrolytes [98].
When tested in a controlled voltage range, this cathode delivered a moderate capacity
of ~61 mAh g−1 (Figure 5d) and stable cycling of 200 cycles with 84% retention. To fur-
ther enhance the cycling performance, Huang et al. prepared a similar PB material of
Na0.65Fe[Fe(CN)6]0.91·�0.09·2.7H2O and developed a graphene oxide (GO) suspension-
based electrolyte [99]. GO’s introduction to 1 m NaClO4 electrolyte formed an ion-selective
membrane on the separator, which helped to suppress the Fe3+ dissolution and crossover
to the anode. Therefore, this new electrolyte led to superior long cycling of 17,000 cycles
with 65.1% capacity retention, which would be the longest cycling among all the Fe-based
ASIB materials. However, we need to note that the moderate Na+ concentration (0.65) in
the structure will inevitably lead to a low initial charge capacity, which still complicates the
full cell assembly.

In comparison with PY and PB, the PW material Na2FeFe(CN)6 is the most promising
choice for full cell applications. However, this material is prone to oxidization because
both Fe ions exist in the +2 state, so it requires delicate material synthesis and protec-
tion. Wu et al. used Na4Fe(CN)6 as the single iron source and added sodium chloride,
hydrogen chloride, and poly-(vinylpyrrolidone) to synthesize the PW material [100]. Well-
defined PW cubes (~2 µm) were obtained, and the chemical formula was found to be
Na1.29Fe[Fe(CN)6]0.91·�0.09, which exhibited higher Na content than previous PB materials.
This cathode showed a good capacity of ~107 mAh g−1 and minimal capacity fading after
1100 cycles. When paired with an activated carbon for a hybrid capacitor, the device exhib-
ited an average voltage of ~0.8 V and energy density of ~30 Wh kg−1. Later, Zhang et al.
used a citrate-assisted co-precipitation method to prepare PW compounds [101], where
ascorbic acid was added to prevent Fe2+ oxidation. As a result, they achieved an even
higher Na content and obtained a chemical formula of Na1.74Fe[Fe(CN)6]0.94·�0.06·3.3H2O.
This PW material exhibited a high capacity of ~120 mAh g−1 (Figure 4e) and a high rate
capability of 3000 mA g−1. However, the cycling stability was not satisfactory, with 32% ca-
pacity retention over 1000 cycles. The authors thus doped 24% nickel ions into the PW
structure, which stabilized the crystal structure and led to 73% capacity retention over
1000 cycles (Figure 5f).
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Figure 5. Structural and electrochemical properties of PBA materials. (a) The structural transition
between FeFe(CN)6, NaFeFe(CN)6, and Na2FeFe(CN)6 materials. (b) GCD curves of the low−vacancy
FeFe(CN)6 material. Reprinted from reference [21], with permission from Elsevier. (c) GCD curves
of the conventional NaFeFe(CN)6 material with high vacancies. Reprinted from reference [21],
with permission from Elsevier. (d) GCD curves of the NaFeFe(CN)6 cathode. Reprinted from
reference [98], with permission from Elsevier. (e) GCD curves of the Na2FeFe(CN)6 and nickel−doped
Na2FeFe(CN)6 materials. Reprinted from reference [101], with permission from Elsevier. (f) A cycling
performance comparison between pure Na2FeFe(CN)6 and nickel−doped Na2FeFe(CN)6 cathode.
Reprinted from reference [101], with permission from Elsevier.

3. Iron-Based Anode Materials

To date, most ASIBs have utilized NaTi2(PO4)3 as the prominent anode material [102],
due to its good capacity of 100–120 mAh g−1 and low reaction potential of −0.6 V vs. SHE.
However, titanium-based materials are generally expensive, which increases the overall
cost of ASIBs. Moreover, the Ti4+/Ti3+ redox potential is low enough to trigger noticeable
HER side-reactions (−0.4 V vs. SHE) in conventional aqueous electrolytes [102]. In this
regard, Fe-based anode materials represent an attractive direction, because of their much
lower cost and slightly higher redox potentials. Currently, Fe-based anode materials include
iron phosphates, oxides, carbides, and selenides.

3.1. Phosphate Materials

Iron phosphate materials are generally used as cathode materials in non-aqueous
SIBs, and their average insertion potentials range from 2.3 to 3.0 V vs. Na+/Na [103]. If
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converted to aqueous electrolytes, these potentials are −0.4~0.3 V vs. SHE, suggesting that
some phosphates can serve as anode candidates for aqueous SIBs.

In 2018, Zaghib et al. reported an amorphous iron phosphate hydrate (FePO4·2H2O)
as a low-cost and cycle-stable anode for ASIBs [104]. This material is commercially
available with a low price of ~300 USD/ton, which is much lower than NaTi2(PO4)3
(~10,000 USD/ton). Based on Fe3+/Fe2+ redox, this material can host 1 Na+ per formula
and transforms to NaFePO4, corresponding to a high theoretical capacity of ~143 mAh
g−1. Figure 6a shows the proposed Na+ diffusion pathway in its structure. When tested
in 1 M Na2SO4, this anode delivered a moderate capacity of ~70 mAh g−1 (Figure 6b),
which represents only 50% capacity utilization. The average insertion potential was ~0 V vs.
SHE, which is much higher than NaTi2(PO4)3, and thus, effectively avoids HER reactions.
However, the high potential in the anode led to low voltage in the full cell system. When
paired with a Na0.44MnO2 cathode, the full cell only showed a low voltage of ~0.5 V, which
is not suitable for practical use. Moreover, the half-cell and full-cell cycling performances
were limited to 200 (Figure 6c) and 300 cycles, respectively.
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Figure 6. Structural and electrochemical properties of iron phosphate anode materials. (a) The
crystal structure and Na–diffusion manner in the hydrated FePO4·2H2O material. The yellow circles
represent the Na+ ions. The green tetrahedron is the [PO4] group, while the blue octahedron is
the [FeO6] group. (b) GCD curves of the FePO4·2H2O anode. (c) The cycling performance of
the FePO4·2H2O anode. (a–c) were reprinted from reference [103], with permission from Elsevier.
(d) Crystal structures of the NASICON Na3Fe2(PO4)3. (e) GCD curves of the Na3Fe2(PO4)3 anode.
(f) Cycling performance of the Na3Fe2(PO4)3 anode. (d–f) were reprinted from reference [104,105],
with permission from Elsevier.

To further improve anode performance, Feng et al. investigated other iron phosphate
materials with different stoichiometries and crystal structures [105,106]. In 2019, they
presented a NASICON-type Na3Fe2(PO4)3 (Figure 6d) as a low-cost, high-rate, and long-
cycling anode material in 17 m NaClO4 electrolytes. [105] By utilizing the Fe3+/Fe2+ redox
couple, this anode could host 1 Na+ and exhibited a reasonable capacity of ~60 mAh g−1

(Figure 6e). Its reaction potential of ~0 V vs. SHE is close to the previously reported value
for FePO4·2H2O, but it exhibited a much better rate capability of 100 C and excellent cycling
of 1000 cycles (Figure 6f), which likely resulted from the stable NASICON crystal structures
and well-defined Na insertion channels. Ex situ XRD analysis revealed the formation of
a Na4Fe2(PO4)3 phase at the end of discharge, which accounts for the reaction plateau at
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~0 V. Additionally, X-ray photoelectron spectroscopy (XPS) showed that the Na/Fe ratio
increased from 1.55 to 1.94 when the electrode was fully discharged, which further confirms
the formation of Na4Fe2(PO4)3.

In 2021, Feng et al. demonstrated another layer-structured Na3Fe3(PO4)4 material
as a high-performance anode [106]. This material accommodates two Na+ ions, and
thus, exhibited a higher capacity of ~80 mAh g−1, which surpasses FePO4·2H2O and
Na3Fe2(PO4)3. Additionally, the reaction potential was found to be −0.2 V vs. SHE, lower
than NaTi2(PO4)3 (−0.6 V) but higher than HER (−0.4 V), which enabled the maintenance of
a good balance between full cell voltages and water decomposition reactions. Furthermore,
its desirable layered structure with roomy spaces facilitated a fast and reversible Na
insertion process, which translated to a predominantly high rate of 200 C and extremely
long cycling of 6000 cycles with 72% retention. Such electrode performance has set a record
in Fe-based anode materials. The authors used in operando synchrotron XRD and Fe
K-edge XANES spectra to study the reaction mechanism. During the discharge, there was
no extra XRD peak, and the (200), (110), and (022) peaks progressively shifted to lower
positions. This means that the Na3Fe2(PO4)3 anode works on a solid-solution Na insertion
reaction, where the lattice structure expands when the Na+ insertion takes place. The
binding energy of the Fe element also moved to a lower energy value, which indicates
an Fe3+/Fe2+ redox reaction. On average, the Fe valance state lowered from +3 to +2.3,
which corresponds to a two-Na insertion reaction. Therefore, the Na insertion reaction is a
reversible transition between the Na3Fe3(PO4)4 and Na5Fe3(PO4)4 materials.

3.2. Oxides, Carbides, and Selenides

Iron oxides (Fe2O3 or Fe3O4) are highly abundant and cheap materials, and also
receive some attention for ASIB anode applications. Lokhande et al. deposited Fe2O3
thin film on stainless steel and evaluated its performance in 1 M Na2SO4, which showed
a capacity of 78.6 mAh g−1 at 5 mV s−1 in a voltage range of 1.0 V [107]. This capacity
is reasonable, but thin films have low mass loading and are not suitable for practical
applications. Nwanya et al. synthesized nano-sized α-Fe2O3 spheres and tested their
performance in 0.5 M Na2SO4 [108]. When scanned in a wide electrochemical window
of −0.8 to 1.0 V vs. Ag/AgCl, this material delivered a very low capacity of 65 C g−1,
which corresponds to ~18 mAh g−1 only. The low capacity could have resulted from the
capacitive reaction mechanism and higher mass loading. To pursue a higher capacity,
Cheng et al. lowered the discharge cut-off potential to −1.4 vs. Ag/AgCl, which forced
Fe2O3 to partially undergo conversion reactions [109]. As a result, it showed an enhanced
capacity of ~80 mAh g−1 in 0.5 M Na2SO4 (Figure 7a). However, due to Fe ion dissolution,
the capacity quickly faded to 0 mAh g−1 within 10 cycles (Figure 7b). Based on these
results, it appears that Fe2O3 cannot maintain a high capacity and long cycling at the same
time. Hence, researchers studied Fe3O4 as an alternative material. Ma et al. prepared
an Fe3O4@rGO composite (rGO: reduced graphene oxide) and examined its Na insertion
properties in 0.5 M Na2SO4 [110]. At 1 mA cm−2, this anode exhibited a moderate capacity
of ~64 mAh g−1 in a 1.0 V potential range. At 8 mA cm−2, it also retained ~90% capacity
over 1000 cycles, indicating a reversible Na+ (de)absorption process.

Iron carbides (Fe3C) are interesting materials due to their good chemical stability
and thermal stability [111]. However, pure Fe3C nanoparticles exhibit low electronic
conductivity, which constrains their electrochemical performance. Wang et al. prepared
porous Fe3C@rGO composites and tested their performance in 6 M KOH [112], where
they demonstrated a capacity of ~95.3 mAh g−1. They also assembled a full cell based on
this anode and a Na0.5MnO2 cathode in 1 M Na2SO4, which supported a high charging
voltage of ~2.4 V. However, the pure Na-storage performance of this anode was not shown.
Moreover, the reaction mechanism remains elusive.

Iron selenides (FeSe2) are another type of material that exhibits a high capacity in
non-aqueous SIBs. However, they suffer from the material dissolution issue in aqueous
electrolytes, due to the solubility og Se-based species [113]. To overcome this shortcoming,
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Xing et al. used GO to encapsulate FeSe2 to form a composite electrode, which exhibited a
moderate capacity of ~60 mAh g−1 and an average reaction potential of −0.35 V vs. SHE
(Figure 6c) [113]. Compared with the pristine FeSe2 electrode, the rGO coated one exhibited
improved cycling performance over 100 cycles (Figure 7d). Ex situ XRD results revealed that
the reaction mechanism is based on the conversion between FeSe2 and NaxFe2Se4/Na2Se.
The authors further assembled an FeSe2@rGO-Na3V2(PO4)2F3 full battery, which showed a
high voltage (~1.7 V), good energy density (53.4 W h kg−1), and excellent rate performance.
However, the cycling performance was limited to 50 cycles only.
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4. Iron-Based ASIB Full Cells

Although many iron-based cathode and anode materials have been developed for
half-cell studies, ASIB full cells, assembled from all-Fe-based materials, are under-explored.
To our knowledge, there is only one full cell system that solely utilizes an Fe-based cathode
and anode. In 2017, Yang et al. prepared an Fe[Fe(CN)6] (PY) material and used it in bipolar
electrodes in ASIB full cells [114]. As discussed in the PBA section, two pairs of redox center
exist in this material, which are nitrogen-coordinated and carbon-coordinated Fe3+/Fe2+

couples, respectively. Their reaction potentials differ by ~0.70 V, which is reasonable for
full cell operation. The authors pre-activated the PY electrode in a 1 M NaNO3 electrolyte
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to prepare a Na-containing NaFeFe(CN)6 material, which was used for full cell assembly
(Figure 8a). The full cell reaction mechanism is expressed as follows:

NaFeIII[FeII(CN)6] + NaFeIII[FeII(CN)6]↔ FeIII[FeIII(CN)6] + Na2FeII[FeII(CN)6]

Batteries 2023, 9, x FOR PEER REVIEW 15 of 22 
 

redox center exist in this material, which are nitrogen-coordinated and carbon-coordi-

nated Fe3+/Fe2+ couples, respectively. Their reaction potentials differ by ~0.70 V, which is 

reasonable for full cell operation. The authors pre-activated the PY electrode in a 1 M 

NaNO3 electrolyte to prepare a Na-containing NaFeFe(CN)6 material, which was used for 

full cell assembly (Figure 8a). The full cell reaction mechanism is expressed as follows: 

NaFeIII[FeII(CN)6] + NaFeIII[FeII(CN)6] ↔ FeIII[FeIII(CN)6] + Na2FeII[FeII(CN)6]  

 

Figure 8. (a) A scheme of the all−PBA full cell system, where the cathode and anode are composed 

of the same NaFe[Fe(CN)6] material; (b) a capacity, voltage, and energy density comparison of 

diferent Fe−based ASIB full cells. The above figures were plotted by the authors. 

This full cell delivered an average voltage of ~0.7 V, a high rate performance of 20 C, 

and stable cycling for 200 cycles. However, we need to point out that the average capacity 

was only ~14 mAh g−1 based on the total mass of the cathode and anode, which gave rise 

to low energy density of ~10 Wh kg−1. This energy is too low to be practical. 

Aside from Yang’s work, there are several studies that incorporate other transition 

metals to increase the cell voltage and energy density of full cells, where the majority of 

the capacity still comes from Fe3+/Fe2+ redox. For discussion purposes, we also include 

these works here. In 2019, Wang et al. used two PBA electrodes to fabricate an all-PBA-

based ASIB [115]. The cathode was Na2Cu[Fe(CN)6], while the anode was NaFe[Fe(CN)6]. 

The full cell reaction is written as follows: 

Na2Cu[FeII(CN)6] + NaFeIII[FeII(CN)6] ↔ NaCu[FeIII(CN)6] + 

Na2FeII[FeII(CN)6] 
 

Compared with FeFe(CN)6 full cells, this ASIB system exhibited a similar cell voltage 

of ~0.70 V but higher energy density of ~27 Wh kg−1 (Figure 8b). It also delivered a good 

rate capability of 20 C and stable cycling of 250 cycles. 

Feng et al. used another approach to develop Fe-based ASIB full cells, where the cath-

ode was a PBA material, but the anode was an iron phosphate material [105,106]. In 2019, 

they assembled a full cell based on a Na2MnFe(CN)6 cathode, a Na3Fe2(PO4)3 anode, and 

concentrated electrolytes [99]. The full cell reaction can be written as follows: 

Na2Mn[FeII(CN)6] + Na3FeIII2(PO4)3 ↔ NaMn[FeIII(CN)6] + Na4FeIIIFeII(PO4)3.  

This full cell demonstrated an average cell voltage of ~0.9 V and energy density of 

~27 Wh kg−1 (Figure 8b). It also supported a high rate of 40 C and stable cycling of 700 

cycles with 70% capacity retention. Akin to Fe, the manganese element is also Earth-

Figure 8. (a) A scheme of the all−PBA full cell system, where the cathode and anode are composed of
the same NaFe[Fe(CN)6] material; (b) a capacity, voltage, and energy density comparison of different
Fe−based ASIB full cells. The above figures were plotted by the authors.

This full cell delivered an average voltage of ~0.7 V, a high rate performance of 20 C,
and stable cycling for 200 cycles. However, we need to point out that the average capacity
was only ~14 mAh g−1 based on the total mass of the cathode and anode, which gave rise
to low energy density of ~10 Wh kg−1. This energy is too low to be practical.

Aside from Yang’s work, there are several studies that incorporate other transition
metals to increase the cell voltage and energy density of full cells, where the majority of the
capacity still comes from Fe3+/Fe2+ redox. For discussion purposes, we also include these
works here. In 2019, Wang et al. used two PBA electrodes to fabricate an all-PBA-based
ASIB [115]. The cathode was Na2Cu[Fe(CN)6], while the anode was NaFe[Fe(CN)6]. The
full cell reaction is written as follows:

Na2Cu[FeII(CN)6] + NaFeIII[FeII(CN)6]↔ NaCu[FeIII(CN)6] + Na2FeII[FeII(CN)6]

Compared with FeFe(CN)6 full cells, this ASIB system exhibited a similar cell voltage
of ~0.70 V but higher energy density of ~27 Wh kg−1 (Figure 8b). It also delivered a good
rate capability of 20 C and stable cycling of 250 cycles.

Feng et al. used another approach to develop Fe-based ASIB full cells, where the
cathode was a PBA material, but the anode was an iron phosphate material [105,106]. In
2019, they assembled a full cell based on a Na2MnFe(CN)6 cathode, a Na3Fe2(PO4)3 anode,
and concentrated electrolytes [99]. The full cell reaction can be written as follows:

Na2Mn[FeII(CN)6] + Na3FeIII
2(PO4)3 ↔ NaMn[FeIII(CN)6] + Na4FeIIIFeII(PO4)3.

This full cell demonstrated an average cell voltage of ~0.9 V and energy density of
~27 Wh kg−1 (Figure 8b). It also supported a high rate of 40 C and stable cycling of 700 cycles
with 70% capacity retention. Akin to Fe, the manganese element is also Earth-abundant and
low-cost, which is attractive for ASIB applications. Later, Feng et al. constructed another
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ASIB full cell based on a Na2Zn3[Fe(CN)6] cathode, a layer-structured Na3Fe3(PO4)4 anode,
and concentrated electrolytes [100]. The full cell reaction can be expressed as:

Na2Zn3[FeII(CN)6]2 + Na3FeIII
3(PO4)4 ↔ Zn3[FeIII(CN)6]2 + Na5FeIIIFeII

2(PO4)4.

This full cell gave a promising voltage of ~1.2 V (Figure 8b), a high energy density
of ~46 Wh kg−1, an ultra-high rate of 200 C, and long cycling of 3000 cycles. Such a
performance greatly exceeded previously reported Fe-based ASIBs, indicating the promise
of combining a PBA cathode and a phosphate anode.

5. Summary and Outlook

Fe-based ASIBs are appealing for stationary energy storage, due to the desirable combi-
nation of Na/Fe elements and aqueous electrolytes. Therefore, low cost, high sustainability,
and high safety can be expected. Here, we suggest some directions to further improve ASIB
performance (Table 1).

Table 1. Electrochemical properties of typical iron-based cathode and anode materials.

Material Potential (V) vs. SHE Capacity (mAh g−1) Rate Performance Capacity Retention Refs.

Olivine NaFePO4 −0.01 V 70 at 0.2 C 38.5 at 2 C 79% after 35 cycles at 0.2 C [70]

Olivine NaFePO4@AlF3 0.05 V 95.6 at 1 C 52 at 2 C 58.4% after 50 cycles at 1 C [71]

Na2FeP2O7 0.25 V 65 at 0.2 C 37 at 10 C 86% after 300 cycles at 1 C [78]

Na2FeP2O7-CT 0.29 V 78 at 0.2 mA cm−2 58 at 2 mA cm−2 89% after 30 cycles at 2 mA cm−2 [79]

Na4Fe3(PO4)2P2O7 0.30 V 84 at 1 C N/A 74% in 50 cycles at 1 C [81]

Na2FePO4F 0.31 V 84 at 1 mA cm−2 75 at 5 mA cm−2 93% after 100 cycles at 1 mA cm−2 [83]

Na3FePO4CO3 0.56 V 78.6 at 0.2 C 40 at 2 C N/A [85]

Fe[Fe(CN)6]0.87·�0.13 0.397 V 125 at 2 C 102 at 20 C 83% after 500 cycles at 10 C [21]

FeFe(CN)6 0.297 V 118 at 400 mA g−1 96 at 700 mA g−1 94% after 400 cycles at 700 mA g−1 [97]

Na0.75Fe1.08[Fe(CN)6]·3.5H2O 0.44 V 65 at 0.2 C 26 at 10 C 97% after 50 cycles at 1 C [98]

PB-Na 0.6 V 126.2 at 1 A g−1 53.8 at 10 A g−1 65.1% after 17,000 cycles at 2 A g−1 [99]

Fe4[Fe(CN)6]3 0.442 V 107 at 0.5 A g−1 33 at 5 A g−1 Minimal fading after 1100 cycles [100]

NaxFeFe(CN)6-N0.23 0.392 V 105.9 at 200 mA g−1 45.8 at 3000 mA g−1 73.1% after 1000 cycles at 1000 mA g−1 [101]

FePO4·2H2O 0 V 80 at 0.5 C 60 at 6 C 88% after 200 cycles at 1 C [104]

NASICON-type
Na3Fe2(PO4)3

0 V 60.2 at 1 C 36 at 100 C 61% after 1000 cycles at 100 C [105]

Layer-structured
Na3Fe3(PO4)4

−0.2 V 80 42 at 200 C 72% over 6000 cycles at 10 C [106]

Nano-sized α-Fe2O3
spheres −0.75 V 18 at 0.1 A g−1 N/A 73% after 1000 GCD cycles at 2 A g−1 [108]

Fe3O4@rGO −1.0 V 64 at 1 mA cm−2 N/A 90% over 1000 cycles at 8 mA cm−2 [110]

rGo@C/Fe3C −0.6 V 95.3 at 1 A g−1 66.5% at 20 A g−1 81.5% after 5000 cycles 10 A g−1 [112]

FeS2@rGO −0.35 V 100 N/A 72.2% after 100 cycles [114]

Regarding cathodes, we believe Na4Fe3(PO4)2P2O7 and Na2Fe[Fe(CN)]6 materials
are competitive candidates, due to their high potentials, high capacities, and easy synthe-
sis. Currently, their cycling performance is not particularly long, but it could be further
improved by using concentrated electrolytes or surface coating, which can effectively
suppress electrode–electrolyte side reactions and material dissolution. Regarding anodes,
sodium iron phosphates are more promising than iron oxides, carbides, or selenides. Cur-
rently, Na3Fe2(PO4)3 and Na3Fe3(PO4)4 materials have shown encouraging performance
in concentrated electrolytes, which may be further boosted if surface coating is used, or
artificial solid-electrolyte interphase (SEI) can be formed. Moreover, we emphasize that
there are many other iron phosphate materials in non-aqueous SIBs, which need extensive
examination in aqueous electrolytes.
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On the full cell level, more research efforts are required to demonstrate the efficacy of
all-iron-based ASIB full cells. Currently, there are limited publications in this direction, and
the performance of these cells is sub-optimal. For potential commercialization, aqueous Na-
ion full cells should exhibit competitive properties (energy, cycling, price, etc.) compared
with existing aqueous batteries, especially lead-acid batteries [116]. Lead-acid batteries
exhibit an energy density of ~30 Wh kg−1, which is based on the entire mass of the battery
system. However, the current ASIB studies only consider the active mass for academic
research purposes. Moreover, most studies use a high current rate to demonstrate long
cycling, which should also be realized at a low current rate. To further decrease the battery
price, low-cost and anti-corrosive current collectors and electrolytes should be developed.

In summary, the development of advanced Fe-based ASIBs warrants the holistic design
of cathode materials, anode materials, electrolytes, and full cells. Different approaches
should be considered and compared, such as the carbon coating, surface modification,
electrolyte design, and pouch cell assembly, to demonstrate more practical Fe-based Na-ion
full cells. We hope this review can provide an overall picture of the research status of
aqueous Na-ion batteries, and that it will motivate researchers to develop more effective
strategies to expediate ASIB research and development. If successful, ASIBs will play
an important role in stationary energy storage and contribute to the use of renewable
energy sources.
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