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Abstract: Accurate state of charge (SOC) estimation is helpful for battery management systems to
extend batteries’ lifespan and ensure the safety of batteries. However, due to the pseudo-positive
definiteness of the covariance matrix and noise statistics error accumulation, the SOC estimation
of lithium-ion batteries is usually inaccurate or even divergent using Kalman filters, such as the
unscented Kalman filter (UKF) and the square-root unscented Kalman filter (SRUKF). To resolve this
problem, an SOC estimation method based on the dual-coefficient tracking improved square-root
unscented Kalman filter for lithium-ion batteries is developed. The method is composed of an
improved square-root unscented Kalman filter (ISRUKF) and a dual-coefficient tracker. To avoid the
divergence of SOC estimation due to the covariance matrix with pseudo-positive definiteness, an
ISRUKF based on the QR decomposition covariance square-root matrix is presented. Moreover, the
dual-coefficient tracker is designed to track and correct the state noise error of the battery, which can
reduce the SOC estimation error caused by the accumulation of the battery model error using the
ISRUKF. The accuracy and robustness of the SOC estimation method using the developed method are
validated by the comparison with the UKF and SRUKF. The developed algorithm shows the highest
SOC estimation accuracy with the SOC error within 1.5%.

Keywords: lithium-ion batteries; state of charge; unscented Kalman filter; strong tracking filter

1. Introduction

Lithium-ion batteries have been widely used in electric vehicles and battery energy
storage [1,2] due to the advantages of a high energy density, long cycle life, and low self-
discharge rate [3–5]. The battery management system is indispensable to the monitoring
and estimation of the critical internal states of lithium-ion batteries [6]. Furthermore, state
of charge (SOC) estimation is one of the battery management system’s most important
state parameters [7–9]. Accurate SOC estimation helps the battery management system to
optimize the operation characteristics, eliminating potential safety risks and prolonging the
batteries’ lifespan [10]. However, it is difficult to accurately estimate the SOC in complex
driving environments due to the nonlinear electrochemical performance of lithium-ion
batteries and the SOC immeasurability [11].

Recently, other literature has been published to accurately estimate the SOC for lithium-
ion batteries. In general, the SOC estimation method can be classified into four groups:
the looking-up table-based method, ampere-time integration method, data-driven method,
and model-based method [12]. In the looking-up table-based method, the initial SOC value
is determined by the open-circuit voltage (OCV) collected using the battery management
system, and the SOC value is attained by the SOC-OCV correspondence table via the
subsequent OCV measurement value [13]. However, it is more suitable for application in a

Batteries 2023, 9, 392. https://doi.org/10.3390/batteries9080392 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9080392
https://doi.org/10.3390/batteries9080392
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0009-0006-4342-1894
https://orcid.org/0000-0003-1126-8662
https://doi.org/10.3390/batteries9080392
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9080392?type=check_update&version=2


Batteries 2023, 9, 392 2 of 20

laboratory environment because of its drawbacks, such as being time-consuming and sus-
ceptible to external environment influences in batteries’ temperature and aging conditions.
The ampere-time integration method estimates the SOC by integrating the currents flowing
into and out of the batteries over time. The SOC estimation based on this method depends
on SOC initial errors and current measurement errors, which results in increasing SOC
estimation errors [14–16]. Data-driven methods—such as the neural network method [17],
support vector machine method [18], and Bayesian network method [19,20]—are studied
to accurately estimate the SOC for a nonlinear system.

These methods are not suitable for practical SOC estimation online, though, due
to the requirements of an enormous amount of training data and the high calculation
cost. Model-based methods consisting of the batteries’ equivalent circuit model (ECM)
and a filter—such as a Kalman filter (KF) and particle filter (PF)—are attracting extensive
attention and becoming one of the most popular algorithms to accurately estimate the SOC
for lithium-ion batteries [21].

Compared with the PF, which requires many particles to calculate the posterior proba-
bility density, the KF can reduce the number of sampled particles and ensure the accuracy
requirements with the help of deterministic sampling. The standard KF is a widely used lin-
ear filter but has poor adaptability to nonlinear time-varying systems [22]. As an improved
method of the KF, the extended Kalman filter (EKF) can be used in nonlinear time-varying
systems. However, the SOC estimation accuracy using the EKF is degraded due to its
requirements of the Jacobian matrix calculation and a linearized approximation of the
nonlinear time-varying function using the first-order terms of the Taylor formula, which
does not consider the higher-order terms of the Taylor formula [23].

To resolve the disadvantages of the KF and the EKF noted above, the unscented
Kalman filter (UKF) is presented to estimate the SOC [24]. The UKF based on unscented
transform does not need to linearize system equations without accounting for the higher-
order terms of the Taylor formula, and the UKF shows higher SOC estimation accuracy than
the EKF. SOC estimation using the UKF will be divergent because of its drawbacks, such as
the pseudo-positive definiteness of the covariance matrix caused by the error accumulation
in the UKF. To resolve these shortcomings, the square-root unscented Kalman filter (SRUKF)
is presented to estimate the batteries’ SOC [25–29]. Compared to the UKF, the SRUKF uses
the state covariance square-root matrix instead of the state covariance matrix, which can
overcome the problem of the pseudo-positive definiteness of the covariance matrix. The
SOC estimation accuracy based on the SRUKF will be reduced because the SRUKF needs to
use the Cholesky decomposition method to achieve the state covariance square-root matrix.

Moreover, the SOC estimation accuracy based on the KF mentioned above is greatly
degraded by unknown or inaccurate noise statistics, such as the measurement and model
noise covariance of the batteries [30]. In the iteration process of these KFs, the calculation
accuracy of the system covariance matrix is dependent on the accurate noise statistics. The
error accumulation of noise statistics will be generated in the iteration process, which leads
to the divergence of the KFs. An adaptive EKF based on the combination of adaptive modi-
fication and the EKF is proposed to avoid the divergence of the algorithm error [31]. Based
on the UKF and an adaptive noise estimator established by noise covariance matching,
an adaptive unscented Kalman filter (AUKF) is developed to estimate the SOC. The SOC
estimation accuracy using the AUKF is improved for the battery system with uncertain
noise statistics [32], but its accuracy is still degraded because of not considering the state
noise error accumulative calculation in the iteration process of the AUKF.

As mentioned above, the discharging and charging process of lithium-ion batteries is
a nonlinear electrochemical reaction process. It is difficult to accurately attain the SOC of
lithium-ion batteries due to their nonlinear operating characteristics. Model-based methods
consisting of the KF and its improved algorithms, such as the UKF, the AUKF, and the
SRUKF, are widely used to estimate the SOC of the batteries. However, the estimated SOC
using these KFs will be divergent due to their drawbacks, such as the pseudo-positive
definiteness of the covariance matrix in the UKF and the Cholesky decomposition in the
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SRUKF. Moreover, the SOC estimation accuracy is degraded by the inaccurate model noise
covariance and its accumulative error of the batteries using these model-based methods,
including the UKF, the SRUKF, and the AUKF. To solve these problems, a dual-coefficient
tracking ISRUKF is developed to achieve accurate SOC estimation for lithium-ion batteries
with uncertain noise statistics. The innovation of the developed method includes the
following: (1) To avoid the divergence of SOC estimation due to the pseudo-positive
definiteness of the state covariance matrix, the ISRUKF based on the QR decomposition
method of the state covariance square-root matrix is presented. (2) A dual-coefficient
tracker based on the strong tracking filter (STF) is designed to track and correct the state
noise error accumulation of the battery, which can reduce the SOC estimation error caused
by the batteries’ model error accumulation using the UKF and the ISRUKF. (3) An SOC
estimation method based on the ISRUKF and the dual-coefficient tracker is developed for
lithium-ion batteries with uncertain noise statistics.

The rest of this paper is organized as follows: Section 2 introduces the construction
of the ECM and its state space equation of lithium-ion batteries; Section 3 presents the
developed SOC estimation method based on dual-coefficient tracking ISRUKF, including
the ISRUKF and the dual-coefficient tracker; Section 4 shows the accuracy and robustness
of the developed SOC estimation method by the comparison of the simulation results and
the experimental data in different conditions; and Section 5 discusses the conclusions.

2. Equivalent Circuit Model and State Space Equation of Lithium-Ion Batteries
2.1. Equivalent Circuit Model of the Batteries

Since it can accurately describe the dynamic characteristics of the batteries [33], an
ECM based on a two-order RC circuit in this paper is shown in Figure 1. UOC describes
the open circuit voltage of the batteries; R0 represents the batteries’ internal resistance; RL
illustrates the concentration resistance; CL is the concentration capacitance; RS represents
the electrochemical resistance; CS means the electrochemical capacitance; It is the current of
the batteries; and Ut is the terminal voltage of the batteries that is connected to the loads.
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Figure 1. Equivalent circuit model of the batteries. Figure 1. Equivalent circuit model of the batteries.

As shown in Figure 1, according to Kirchhoff’s voltage law, the functional relationship
between the terminal voltage Ut and the current of the batteries It can be expressed as:

Ut = UOC −US −UL − ItR0 (1)

where US represents the electrochemical voltage of the batteries, and UL means the concen-
tration voltage of the batteries.

In the ECM of the batteries, according to the experimental data of the batteries in the
charging and discharging process, the nonlinear functional relationship between R0, RL,
CL, RS, CS, and the SOC can be achieved by the least-squares-error curve-fitting method,
which can be represented as:

UOC(t) = a0e−a1SOC(t) + a2 + a3SOC(t)− a4SOC2(t) + a5SOC3(t) (2)
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R0(t) = b0e−b1SOC(t) + b2 + b3SOC(t)− b4SOC2(t) + b5SOC3(t) (3)

RL(t) = c0e−c1SOC(t) + c2 (4)

CL(t) = d0e−d1SOC(t) + d2 (5)

RS(t) = e0e−e1SOC(t) + e2 (6)

CS(t) = f0e + f1SOC(t) + f2 (7)

where a0 ∼ a5, b0 ∼ b5, c0 ∼ c2, d0 ∼ d2, d0 ∼ d2, and f0 ∼ f2 are the coefficients, which
can be obtained by the least-squares-error curve-fitting method via the experimental data.

The SOC, which represents the percentage of the current battery capacity in the total
battery capacity, can be expressed as:

SOC(t) = SOC0 −
∫

η Itdt
QN

(8)

where SOC0 means the initial value of SOC, η shows coulomb efficiency, and QN denotes
the nominal capacity.

2.2. State Space Equation of the Battery Model

To describe the battery model in state space equations, the SOC, the electrochemical
voltage US and the concentration voltage UL are selected as battery state variables. The
It is chosen as the input variables of the batteries, and the Ut is assumed to be the output
variables of the batteries. According to the SOC expression in (8) and the batteries’ ECM as
shown in Figure 1, the state space equation of the batteries in discrete time can be written as:

SOCk+1
US,k+1
UL,k+1

 =

1 0 0
0 e(−∆t/τ1) 0
0 0 e(−∆t/τ2)

SOCk
US,k
UL,k

+


−η∆t/QN

RS

[
1− e(−∆t/τ1)

]
RL

[
1− e(−∆t/τ2)

]
It,k + wk (9)

where ∆t represents the sampling time; τ1 ∼ τ2 illustrates the time constant, τ1 = RSCS,
and τ2 = RLCL; and wk is the state noise.

Moreover, the measurement equation of the batteries in discrete time can be expressed as:

Ut,k+1 = UOC,k+1 −US,k+1 −UL,k+1 − It,k+1R0,k+1 + vk+1 (10)

where vk is the measurement noise.

3. SOC Estimation Based on the Dual-Coefficient Tracking ISRUKF

Due to not considering the higher-order terms of the Taylor formula, the SOC esti-
mation based on the EKF is inaccurate. Compared to using the EKF, the SOC estimation
accuracy is higher using the UKF since it does not require the Jacobian matrix calcula-
tion. However, the UKF’s SOC estimation accuracy and stability are degraded given the
pseudo-positive definiteness of the covariance matrix and the inaccurate noise statistics.
The SRUKF based on the Cholesky decomposition method can partly reduce the influence
of the pseudo-positive definiteness of the covariance matrix in the iteration process, but the
SRUKF does not completely resolve the problem of pseudo-positive definiteness due to its
nonlinear state calculation.

In this paper, a dual-coefficient tracking ISRUKF is developed to improve SOC esti-
mation accuracy in two ways. First, the ISRUKF based on the QR decomposition method
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can overcome the problem of the pseudo-positive definiteness of the covariance matrix in
the UKF and the SRUKF. Second, a dual-coefficient tracker based on the STF is designed to
track and correct the batteries’ state noise error. In the dual-coefficient tracker, the tracking
coefficient of state noise δk is used to adaptively track and correct the state noise error, and
the fading factor λk of the STF is used to track and adjust the state covariance square-root
matrix. The diagram of the developed ISRUKF is shown in Figure 2.
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3.1. Improved Square-Root Unscented Kalman Filter (ISRUKF)
3.1.1. Standard SRUKF

For a nonlinear discrete time system, the system state equation and the system mea-
surement equation can be described as:{

xk = f (xk−1, uk) + wk
yk = g(xk, uk) + vk

(11)

where xk is the system state vector; yk is the system measurement vector; f (·) and g(·)
denote the nonlinear state and measurement models, respectively; uk is the system input
vector; wk and vk are the system state noise and measurement noise, respectively, and their
statistics characteristics can be expressed as:

E[wk] = q, cov(ωk, ωj) = Q
E[vk] = r, cov(vk, vj) = R
cov(ωk, vj) = 0

(12)

where r and q denote the mean value of vk and wk separately. R and Q denote the covariance
value of vk and wk, respectively. The detailed steps of the SRUKF can be summarized
as follows:

(1) Initialize the mean (x0) and the state covariance square root (S0) of the system state:
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∧
x0 = E(x0)

S0 =

√
E[(x0 −

∧
x0)(x0 −

∧
x0)T ]

(13)

where E (·) is the expectation mean value, and (·)T is the matrix transpose operation.

(2) Assign weights and obtain sampling points:


x0,k =

∧
xk

xi,k =
∧
xk +

√
(n + λ)Sk|k

xi+n,k =
∧
xk −

√
(n + λ)Sk|k

(14)

where n represents the dimension of the state vector, and λ means a scale that can be
presented as:

λ = α2(n + h)− n (15)

where α is a scaling parameter, its range is set as 0~1, h is the column factor, and h = 3 − n.
The weighted coefficients can be expressed as

wm
0 = λ

n+λ

wc
0 = λ

n+λ + (1 + β− α2)

wm
i = wc

i =
1

2(n+λ)

(16)

where wm is the variance weight factor; wc is the mean weight factor; and β is the error
magnitude of the higher-order term.

(3) Time update for the system states:

a. Update the sample point:

xi,k|k−1 = f (xi,k−1) (17)

b. Estimate the system state:

∧
xk|k−1 =

2n

∑
i=0

wm
i xi,k|k−1 + qk (18)

c. Update the covariance of the estimated state:

S∗k|k−1 = qr
{[√

wc
i

(
xi=1:2n,k|k−1 −

∧
xk|k−1

)
,
√

Qk−1

]}
, i = 1, 2, . . . , 2n (19)

Sk|k−1 = cholupdate{S∗k|k−1, xi,k|k−1 −
∧
xk|k−1, wc

0} (20)

where S∗k|k−1 is the updated state calculation value; qr(·) is the QR decomposition; Sk|k−1 is
the state covariance square-root matrix; and cholupdate(·) is the Cholesky decomposition.

(4) Measurement update:

a. Attain the measurement:

yi,k|k−1 = g(xi,k−1) (21)

b. Update the measurement:

∧
yk|k−1 = ∑2n

i=0 wm
i yi,k|k−1 + rk (22)
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(5) Calculate the SRUKF gain matrix L:

Lk = Pxy/SzST
z (23)

where Pxy is the mutual covariance, as shown in Formula (24), and Sz is the measurement
covariance square-root matrix, as shown in Formula (26).

Pxy =
2n

∑
i=0

wc
i (xi,k|k−1 −

∧
xk|k−1)(yi,k|k−1 −

∧
yk|k−1)

T
(24)

S∗z = qr{[
√

wc
i (
∧
yi=1:2n,k|k−1 −

∧
yk|k−1),

√
Rk−1]} (25)

Sz = cholupdate{S∗z , yi,k|k−1 −
∧
yk|k−1, wc

0} (26)

where S∗z is the updated calculation measurement.

(6) Measurement correction:

a. Update the estimated state:

∧
xk|k =

∧
xk|k−1 + Lk(yk −

∧
yk|k−1) (27)

b. Update the propagated covariance:

Sk|k = cholupdate{Sk|k−1, LkSz,−1} (28)

where Sk|k is the state covariance square-root optimal estimation matrix.

3.1.2. The ISRUKF Based on the QR Decomposition Method

As seen from Formula (20) in the standard SRUKF, the SRUKF requires the Cholesky
decomposition to obtain the state covariance square-root matrix Sk|k−1. Due to the matrix
computation errors in the Cholesky decomposition, the SRUKF estimation accuracy will
be degraded by the pseudo-positive definiteness of the Sk|k−1. To solve this problem, the
ISRUKF based on the QR decomposition method is developed in this paper. The detailed
core concept of the ISRUKF based on the QR decomposition method is presented as follows.

The formula of the state covariance matrix Pk|k−1 can be described as

Pk|k−1 =
2n

∑
i=0

wc
i

[
xi,k|k−1 −

∧
xk|k−1

][
xi,k|k−1 −

∧
xk|k−1

]T
+ Qk−1 (29)

Then, the formula of the state covariance matrix Pk/k−1 and the state covariance square-
root matrix Sk|k−1 is presented as

Pk|k−1 = Sk|k−1ST
k|k−1 = [

√
wc

i (xi,k|k−1
∧
xk|k−1),

√
Qk−1][

√
wc

i (xi,k|k−1 −
∧
xk|k−1),

√
Qk−1]

T (30)

we set Sk|k−1 = (qkrk)
T ; then

Pk|k−1 = (qkrk)
T(qkrk) = rT

k qT
k qrk = rT

k rk (31)

where qk is the upper triangular matrix, and rk is the orthogonal matrix.
By combining Formulas (30) and (31), the following formula can be obtained{

rk = qr{[
√

wc
i (xi=1:2n,k|k−1 −

∧
xk|k−1),

√
Qk−1]

T}
Sk|k−1 = rT

k
(32)
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Substitute Formula (32) with Formula (20), which can effectively avoid the pseudo-
positive qualitative problem existing in the standard SRUKF.

Similarly, Formulas (26) and (28) can be replaced by{
rz = qr{[

√
wc

i (yi=1:2n,k|k−1 −
∧
yk|k−1),

√
Rk−1]

T}
SZ = rT

k

(33)

{
rk|k = qr

{
[(e− Lk Hk)Sk|k−1, Lk

√
Rk−1 ]

T
}

Sk|k = rT
k|k

(34)

where e is the identity matrix of order n, and Hk is the coefficient matrix of the measurement
function, which can be expressed as

Hk = (Pxy)
T(Sk|k−1ST

k|k−1) (35)

3.2. The Dual-Coefficient Tracker Based on the Strong Tracking Filter
3.2.1. Strong Tracking Filter

The STF is used to attain the fading factor to update the state covariance square-root
matrix in the iterative of the ISRUKF. The fading factor can be attained as{

Sk|k−1 = λkSk|k−1λT
k +

√
Qk−1

λk = diag(µ0, µk)
(36)

where λk is the fading factor, which is also the tracking coefficient of the state covariance
square-root matrix, λk = diag(µ0, µk), µ0 = [1, 1, 1...1], whose dimension is n columns, and
µk = [uk, uk, uk, ...uk], which is described as

uk =


trace(Ck−HkQk−1 HT

k −Rk−1)

trace(Pk|k−1−Qk−1)HT
k Hk

µk ≥ 1

1 µk < 1

(37)

where trace(·) is the trace of the corresponding matrix, and Ck is the covariance of the
residual sequence of outputs and can be expressed as

Ck =

{
ε1εT

1 k =1
ρCk−1+εkεT

k
1+ρ k ≥2

(38)

where ρ is the forgetting factor, and its range is set as 0.95~0.99; εk is the output residual

sequence, and εk = yk −
∧
yk|k−1.

3.2.2. The State Noise Tracking Coefficient

In Formula (32), the state covariance square-root matrix Sk|k−1 is directly affected by
the Qk−1. If the Qk−1 diverges, the Sk|k−1 will further diverge. In this paper, the variation of
the matrix elements of the Sk|k−1 based on its historical data is used to reflect the variation
trend of Qk−1. The updated state covariance square-root matrix Sc

k|k−1 can be expressed as{
Sc

k|k−1 = λkSk|k−1λT
k + δk

√
Qk−1δT

k
δk = diag[mk, mk, mk, ..., mk]

(39)

where Sc
k|k−1 is the corrected state covariance square-root matrix at time k, and δk is the

state noise tracking coefficient, whose dimension is n columns. mk is the matrix element of
the state noise tracking coefficient. Its value is attained by comparing the element mean
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value of the state covariance square-root matrix in the iteration process. The assignment
process of mk is described as follows:

(1) Initialize the mk and its dimension to n columns.

(2) P(i)
k|k−1 is set as an element in the ith row and ith column of the state covariance

square-root matrix at time k. We set the mean of the elements in m adjacent square-
root matrices as a parameter and definite A and B as the pairwise comparisons
between adjacent parameters, which can be described as

A =
1
m∑k=2m−1

k=m S(i)
k|k−1 −

1
m∑k=3m−1

k=2m S(i)
k|k−1 (40)

B =
1
m∑k=3m−1

k=2m S(i)k|k−1 −
1
m∑k=4m−1

k=3m S(i)k|k−1 (41)

By comparing A and B, six outcomes will be attained:

A < B < 0 (I)
A < 0 < B (II)
B < A < 0 (III)
B < 0 < A (IV)
0 < A < B (V)
0 < B < A (VI)

(42)

(3) Attain the updated mk. If the outcome does not match outcome (II) or outcome (V), the
mk should not be modified. If the calculated result matches outcome (II) or outcome
(V), the mk should be reassigned. If the value of Q0 is higher than 2% of the UOC, the Q0
is judged to be too large, and the state noise tracking coefficient should be shrunk, and
then the value mk = [1− γ, 1− γ, 1− γ, ..., 1− γ] should be assigned. If the Q0 value
is less than 2% of the UOC, the Q0 is judged to be too small, and the state noise tracking
coefficient should be amplified, and then the value mk = [1 + γ, 1 + γ, 1 + γ, ..., 1 + γ]
should be assigned, where γ is the correction coefficient.

(4) According to mk and Formula (39), we can get the state noise tracking coefficient δk.

(5) The δk and λk are used as inputs to form the dual-coefficient tracker.

(6) The dual-tracking coefficient λk and δk are put into the ISRUKF to calculate the
updated state covariance square-root matrix Sc

k|k−1, which can be illustrated as{
rk = qr{[λk

√
wc

i (xi=1:2n,k|k−1 −
∧
xk|k−1), δk

√
Qk−1]

T}
Sc

k|k−1 = rT
k

(43)

Figure 3 shows the diagram of the dual-coefficient tracker.

3.3. Battery SOC Estimation Procedure Based on Dual-Coefficient Tracking ISRUKF

According to the above analysis, the flow diagram of the battery SOC estimation based
on the developed method shown in Figure 4 can be expressed as follows:
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Step 1: Initialize the mean (x0) and the state covariance square root (S0) by Formula (13),
and initialize the λ0 and δ0;

Step 2: Assign weights wm and wc and obtain sampling points xi,k by Formulas (14)
and (16);

Step 3: Time update for the state estimation xi,k|k−1,
∧
xk|k−1, and Sk|k−1 by Formulas

(17), (18) and (32);
Step 4: Measurement update yi,k|k−1,

∧
yk|k−1, and SZ by Formulas (21), (22), and (33);

Step 5: Calculate the mutual covariance Pxy by Formula (24) and estimate the coeffi-
cient matrix of measurement function Hk by Formula (35);

Step 6: Calculate the λk by Formulas (36), (37) and (38); attain the mean values of the
state covariance square-root matrix by Formulas (40) and (41) and compare A and B by
Formula (42) to determine the assignment of δk;

Step 7: The λk and δk are substituted into Formula (43) to update the state covariance
square-root matrix Sc

k|k−1;
Step 8: Use Sc

k|k−1 to update the coefficient matrix of the measurement function by
Formula (35);

Step 9: Calculate the filtering gain matrix Lk by Formula (23) and the output estimation
of the SOC by Formula (27);

Step 10: Attain the state covariance square-root optimal estimation matrix Sk|k by
the updated state covariance square-root matrix and the update coefficient matrix of the
measurement function via Formula (34) and start the next iteration process.

4. Simulation and Experimental Results and Analysis
4.1. Test Platform and Experiment Parameters

The test platform shown in Figure 5 consists of an Arbin-BT2000 battery test system,
lithium-ion batteries, and a computer. The battery test system is used for the testing of the
batteries to attain battery parameters, such as the battery current, voltage, charge capacity,
discharge capacity, internal resistance, etc. The single-channel voltage measurement range
of the battery test system is 0~5 V, and the resolution of the measured voltage is ±0.01% of
the full scale. The computer can record and process experimental data including the battery
voltage, current, internal resistance, etc. Lithium-ion batteries are connected to the battery
test system and can be continuously charged and discharged.
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To validate the SOC estimation accuracy using the developed ISRUKF, three test
schedules were conducted via some comparisons of simulation results with experimental
data in the discharging process. In each test, the battery simulation and experiment were
carried out at the temperature of 25 ◦C. The batteries were discharged with the initial SOC
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of 0.9 and were ended when the SOC was 0.2. The simulation and experimental parameters
of batteries are listed in Table 1.

Table 1. The coefficients of battery performance parameters.

Normal Voltage 3.7 V Battery Capacity 860 mAh
Upper Cut-Off Voltage 4.2 V Lower Cut-Off Voltage 3.2 V

a0 −0.915 a1 40.867 a2 3.632
a3 0.537 a4 0.499 a5 0.522
b0 0.1463 b1 30.27 b2 0.1037
b3 0.0584 b4 0.1747 b5 0.1288
c0 0.1063 c1 62.49 c2 0.0437
d0 −200 d1 138 d2 300
e0 0.0712 e1 61.4 e2 0.0288
f 0 −3083 f 1 180 f 2 5088

4.2. Comparison of SOC Estimation Accuracy Using the Developed ISRUKF, SRUKF, and UKF
with Different Covariance Qk

In this section, the comparison of SOC estimation accuracy between the developed
ISRUKF, SRUKF, and UKF is carried out when the Qk is 0.005 and 0.01, respectively, to
verify the accuracy of the developed ISRUKF. Figure 6 shows the comparative results of
the SOC and battery voltage using the three algorithms when the Qk is set as 0.005.

Figure 6a,b show the SOC experiment and estimation results and the corresponding
absolute errors by the different methods. The UKF, SRUKF, and developed ISRUKF can
be used to estimate the SOC with different estimation accuracy. Compared to the UKF
and the SRUKF, the developed ISRUKF shows the highest SOC estimation accuracy in the
discharging process.

As shown in Figure 6b, the SOC estimation errors using the developed ISRUKF are
constantly kept below 0.01 given its dual-coefficient tracker, which can reduce state noise
accumulative calculation errors. The SOC estimation errors using the UKF and SRUKF
gradually increase from 0.01 to 0.06, even to divergence. Figure 6c,d show the battery
voltage experiment and estimation results and the corresponding absolute errors by the
different methods. Similar to the SOC estimation results, the estimated battery voltage
using the UKF, SRUKF, and developed ISRUKF can effectively capture the experiment
results. However, the estimated battery voltage based on the developed ISRUKF shows
the lowest voltage errors within 0.01 V, as shown in Figure 6d. Moreover, under the
same conditions of achieving 270,000 sampling points in the calculation step of 0.01 s, the
calculation time of the SOC using the UKF, the SRUKF, and the developed method is 7.5 s,
7.6 s, and 7.7 s, respectively. Compared to the UKF and the SRUKF, the developed method
spends almost an equal amount of time to estimate the SOC, but it can achieve the highest
SOC estimation accuracy within 1.5% error, and the SOC errors of the UKF and the SRUKF
are 6.7% and 5.5%, respectively, as shown in Figures 6b and 7b.

Figure 7 illustrates the SOC estimation results using the UKF, SRUKF, and developed
ISRUKF when the Qk is set as 0.01. Figure 7a,b present the SOC experiment and estimation
results and the corresponding absolute errors by the different methods. Figure 7c,d show
the battery voltage estimation results and the corresponding absolute errors using the
three methods.

The estimation accuracy of the SOC and battery voltage using the developed ISRUKF
is the highest compared to the UKF and the SRUKF. For example, the SOC errors are
constantly controlled below 0.01, as shown in Figure 7b, and the batteries’ voltage errors
are kept within 0.015 V, which is about 0.5% of the batteries’ nominal voltage, as shown
in Figure 7d.
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Moreover, with the help of the QR decomposition method (which can overcome the
problem of the pseudo-positive definiteness of the covariance matrix), the errors of the
estimated SOC and battery voltage estimation using the developed ISRUKF are stable or
not divergent. However, the errors of the estimated SOC and battery voltage estimation
using the UKF and the SRUKF gradually increase and even diverge in the discharging
process shown in Figure 6b,d and Figure 7b,d. It is further proven that the developed
ISRUKF based on a dual-coefficient tracker can accurately estimate the SOC for lithium-ion
batteries and effectively avoid SOC divergence.
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4.3. Comparison of SOC Estimation Results Using Different ISRUKFs, the ISRUKF with
Standard STF and the Developed ISRUKF

In this section, a comparison of SOC estimation accuracy using different ISRUKFs
(including the developed ISRUKF and the ISRUKF with the standard STF) is carried
out to further validate the effectiveness of the developed ISRUKF. Figure 8 shows the
SOC estimation accuracy using different ISRUKFs when the Qk is set as 0.005. Figure 8a
compares the estimated SOC using the developed ISRUKF (in red) versus the ISRUKF
with the standard STF (in green). It is shown that the SOC based on the ISRUKF with
the standard STF can consistently follow the experimental results at the beginning of
the discharging process, but this SOC deviates further and further from the experiment
results as the discharging process moves forward. Figure 8b shows the corresponding SOC
absolute error using the different ISRUKFs. Due to the dual-coefficient tracker reducing
state noise accumulative calculation errors, the SOC absolute error using the developed
ISRUKF (in red) is always lower than the SOC absolute error using the ISRUKF with the
standard STF.
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Without the ability of adjusting the state noise tracking coefficient δk, the ISRUKF with
the standard STF cannot reduce the state noise error accumulation in the iteration process
of the UKF, which leads to the SOC absolute error based on this ISRUKF increasing continu-
ously. For example, the SOC absolute error using the developed ISRUKF is constantly kept
within 0.01, but the SOC absolute error using the ISRUKF with the standard STF gradually
increases from 0.01 to 0.05. Figure 8c,d describe the battery voltage estimation results
and the corresponding absolute errors using the different ISRUKFs. It is found that the
battery voltage profile based on the developed method can track the experimental results
accurately in the whole discharging process with a lower absolute error compared to using
the ISRUKF with the standard STF. Therefore, compared to the ISRUKF with the standard
STF, the developed method can achieve higher SOC and voltage estimation accuracy.
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4.4. SOC Estimation by the Developed ISRUKF with Different Covariance Qk

To verify the effectiveness and adaptation of the developed ISRUKF, a comparison
of SOC estimation accuracy is performed when the Qk is different. The Qk is randomly
set to 0.001, 0.005, and 0.01, respectively. Figure 9 shows SOC estimation results using the
developed ISRUKF with different Qk. Figure 9a,b illustrate the SOC estimation accuracy
and its corresponding absolute error by the developed method with various noise statistics.
It is noted that the estimated SOC using the developed method can exactly capture the
experimental results, and the corresponding SOC absolute errors are stable and small
despite the various noise statistics. As shown in Figure 9b, when the noise statistics are set
to 0.001, 0.005, and 0.01, respectively, the highest SOC absolute error is controlled below
0.015, and the lowest SOC absolute error is controlled below 0.005 (means 0.5%).
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Figure 9c,d show the battery voltage estimation and the corresponding absolute error
using the developed ISRUKF with different noise statistics. With the help of the dual-
coefficient tracker, the developed method can reduce state noise accumulative calculation



Batteries 2023, 9, 392 17 of 20

errors; in turn, this contributes to gradually reducing the battery voltage deviation from
the experimental results and improving its estimation accuracy. Therefore, the developed
ISRUKF can not only precisely estimate the SOC of lithium-ion batteries but also shows
good robustness when Qk varies.

4.5. Discussions

As a nonlinear system of the battery system, it is difficult to estimate the SOC accurately
due to the influence of batteries’ incorrect noise statistics, such as the battery model error
and the round-off error of the filter. To verify the SOC estimation precision using the
developed method based on the ISRUKF with a dual-coefficient tracker, three test schedules
are carried out. With the help of the dual-coefficient tracker, which can track and correct the
batteries’ model noise error accumulation, the SOC estimation errors using the developed
ISRUKF show the highest precision (below 1.5%) compared with the UKF (6.7%) and the
SRUKF (5.5%) when the Qk is 0.005 and 0.01, respectively. Moreover, because the ISRUKF
based on the QR decomposition method can overcome the problem of the pseudo-positive
definiteness of the batteries’ model covariance, the estimated SOC errors and battery voltage
errors using the developed method are kept within a stable range. However, the estimated
SOC errors based on the UKF and the SRUKF gradually increase and even diverge.

However, due to not considering the residual sequence of the measurement noise in the
dual-coefficient tracker, the SOC estimation accuracy using the developed method based on
the dual-coefficient tracker is degraded. In addition, because of the addition of the tracking
coefficient calculation, it takes more time for the developed method to accurately estimate
the SOC of batteries compared to the UKF and the SRUKF. Some measures should be taken
to optimize the iteration process to reduce the calculation time of the developed method.

5. Conclusions

Precise SOC estimation can contribute to protecting and extending the life of lithium-
ion batteries. However, the SOC estimation accuracy estimated by the UKF and SRUKF
is degraded when the noise statistics arise. Therefore, an SOC estimation method based
on a dual-coefficient tracking improved square-root unscented Kalman filter (ISRUKF)
was developed in this paper for lithium-ion batteries. Compared to the SRUKF and the
UKF, the developed ISRUKF shows the highest SOC estimation accuracy with an SOC
error below 1.5% when the Qk is 0.005 and 0.01, but the SOC error using the UKF and the
SRUKF is 6.7% and 5.5%, respectively. At the same time, with the help of its dual-coefficient
tracker, which can reduce state noise accumulative calculation errors, the SOC absolute
error using the developed ISRUKF is always lower than the SOC absolute error using the
ISRUKF with the standard STF when the Qk is constant (set as 0.005). For example, the
SOC error using the ISRUKF with the standard STF gradually increases from 0.01 to 0.05,
and its maximum error is about 5%, while the developed ISRUKF can keep the SOC error
under 1.1%. Moreover, the developed ISRUKF can not only precisely estimate the SOC
of lithium-ion batteries with the lowest SOC absolute error of 0.5% but also shows good
robustness when the state noise statistics are set to 0.001, 0.005, and 0.01, respectively.

Future work includes the investigation of optimizing the dual-coefficient tracker. The
SOC estimation accuracy of lithium-ion batteries is reduced using the developed method
because of ignoring the measurement noise and corresponding noise covariance of the
batteries, such as the measurement errors of the terminal voltage and current of the batteries.
The optimization of the batteries’ measurement noise in the developed method will be
performed in future works. Additionally, further research will also be carried out to explore
reducing the calculation time of the developed ISRUKF. It is important for online SOC
estimation to reduce the calculation time of the ISRUKF and other algorithms.
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Nomenclature
SOC state of charge (-)
KF Kalman filter (-)
EKF extended Kalman filter (-)
UKF unscented Kalman filter (-)
SRUKF square-root unscented Kalman filter (-)
AUKF adaptive unscented Kalman filter (-)
STF strong tracking filter (-)
OCV open-circuit voltage (V)
ECM equivalent circuit model (-)
UOC open-circuit voltage of the batteries (V)
R0 internal resistance of the batteries (Ω)
RL concentration resistance of the batteries (Ω)
CL concentration capacitance of the batteries (F)
RS electrochemical resistance (Ω)
CS electrochemical capacitance (F)
It current of the batteries (A)
Ut terminal voltage of the batteries (V)
a0~a5 coefficient of the equation (-)
b0~b5 coefficient of the equation (-)
c0~c5 coefficient of the equation (-)
d0~d5 coefficient of the equation (-)
e0~e5 coefficient of the equation (-)
f 0~f 5 coefficient of the equation (-)
SOC0 initial value of SOC (-)
η coulomb efficiency (-)
QN nominal capacity of the batteries (Wh)
US electrochemical voltage of the batteries (V)
UL concentration voltage of the batteries (V)
∆t sampling time (s)
τ1 time parameter (s)
τ2 time parameter (s)
wk state noise (-)
vk measurement noise (-)
xk system state vector (-)
yk system measurement vector (-)
uk system input vector (V)
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f(·) nonlinear state model (-)
g(·) nonlinear measurement model (-)
r mean of the measurement noise (-)
q mean of the state noise (-)
R covariance value of measurement noise (-)
Q covariance value of state noise (-)
x0 initial mean (-)
S0 initial state covariance square root (-)
E(·) expectation mean value (-)
(·)T matrix transpose operation (-)
n dimension of the state vector (-)
α scaling parameter (-)
h column factor (-)
wm variance weight factor (-)
wc mean weight factor (-)
β error magnitude of the higher-order term (-)
S∗k|k−1 updated state calculation value (-)
qr(·) QR decomposition (-)
Sk|k−1 state covariance square-root matrix (-)
cholupdate(·) Cholesky decomposition (-)
Pxy mutual covariance (-)
S∗z updated calculation measurement
Sz measurement covariance square-root matrix (-)
Sk|k state covariance square-root optimal estimation matrix (-)
Pk|k−1 state covariance matrix (-)
qk upper triangular matrix (-)
rk orthogonal matrix (-)
e identity matrix of order n (-)
Hk coefficient matrix of the measurement function (-)
λk fading factor (-)
trace(·) trace of the corresponding matrix (-)
Ck covariance of the residual sequence of outputs (-)
ρ forgetting factor (-)
εk output residual sequence
Sc

k|k−1 corrected state covariance square-root matrix (-)
δk state noise tracking coefficient (-)
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