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Abstract: Rechargeable aqueous Zn-ion batteries (ZIBs) have attracted considerable attention owing
to their high theoretical capacity of 820 mA h g−1, low cost and intrinsic safety. However, the
electrolyte leakage and the instability issues of Zn negative electrodes originating from side reactions
between the aqueous electrolyte and Zn negative electrode not only restrict the battery stability,
but also result in the short circuit of aqueous ZIBs. Herein, we report a flexible and stable N-
isopropylacrylamide/sodium alginate (N-SA) gel electrolyte, which possesses high mechanical
strength and high ionic conductivity of 2.96 × 10−2 S cm−1, and enables the Zn metal negative
electrode and MnO2 positive electrode to reversibly and stably cycle. Compared to the liquid
electrolyte, the N-SA hydrogel electrolyte can effectively form a uniform Zn deposition and suppress
the generation of irreversible by-products. The assembled symmetric Zn/Zn cells at a current density
of 1 mA cm−2 (capacity: 1 mAh cm−2) show a stable voltage profile, which maintains a low level of
about 100 mV over 2600 h without an obvious short circuit or any overpotential increasing. Specially,
the assembled Zn/N-SA/MnO2 batteries can deliver a high specific capacity of 182 mAh g−1 and
maintain 98% capacity retention after 650 cycles at 0.5 A g−1. This work provides a simple method
to fabricate high-performance SA-based hydrogel electrolytes, which illustrates their potential for
flexible batteries for wearable electronics.

Keywords: Zn ion battery; aqueous; hydrogel gel electrolyte; sodium alginate; N-isopropylacrylamide

1. Introduction

With the development of wearable devices and electric vehicles, there is a high demand
for sustainable energy storage systems. Lithium-ion batteries (LIBs) are currently being
extensively studied due to their high energy density, wide electrochemical window and long
cycle life [1]. However, because of the limited resources of lithium and the high cost, toxicity
and flammability of organic electrolytes, LIBs assembled with organic electrolytes result
in environmental pollution and poor safety performance. Also, the use of organic liquid
electrolytes has inevitable leakage, poor flexibility, etc. [2]. Compared to organic electrolyte
systems, aqueous rechargeable batteries are expected to be used on a large scale in the
energy storage field due to their low production cost, environmental friendliness and high
safety performance [3]. In recent years, various aqueous batteries with multivalent metal
ions (Zn2+, Mg2+, Ca2+ and Al3+) have been widely reported [4]. Among them, the reserves
of metallic Zn are 300 times than that of Li in the lithosphere. Aqueous zinc ion batteries
(ZIBs) possess high theoretical specific capacity (820 mAh g−1 or 5854 mAh cm−3) [5], low
toxicity, low fabrication cost, low redox potential (−0.76 V) [6] and inherent safety. However,
current aqueous zinc ion batteries have a series of problems during their long cycle life,
such as the corrosion of the negative Zn electrode [7] and the formation of Zn dendrites [8].
Zn dendrites might even cause the separator to be punctured [9] and then easily induce a
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short circuit inside batteries [10]. There are extensive research efforts on improving their
cycling stabilities, for example, through interfacial modifying the zinc negative electrode
and optimizing the electrolyte formulation and hydrogel electrolytes [11]. Hydrogels are
composed of polymers with hydrophilic functional groups, which promote water storage
and structural integrity through weak physical hydrogen bonding. Meanwhile, polymer
gel electrolytes act both as an electrolyte and as a separator, which can effectively avoid
electrolyte leaking. In addition, hydrogel gel electrolytes ensure close contact between
the electrode and electrolyte, maintaining the integrity of the flexible ZIBs under external
strain [12].

Presently, some hydrogel gel electrolytes reported are based on synthetic polymers,
such as polyacrylamide (PAM) [13], polyvinyl alcohol (PVA) [14], and polyacrylic acid
(PAA) [15], etc. Unfortunately, these hydrogels’ either poor mechanical strength or low ionic
conductivity remains challenging. On the other hand, polymer hydrogels derived from
natural matrices [16–18], such as sodium alginate (SA) [19], guar gum (GG) [20], xanthan
gum (XG) [21] and gelatin [22], are cheap, biocompatible and hydrophilic, and widely used
in flexible Zn-ion batteries. They are multiple-cross-linked internally by hydrogen, ionic
and covalent bonds to obtain a stable three-dimensional network structure, which results
in improving their mechanical properties and ionic conductivities. A classical development
in ZIBs hydrogel gel electrolytes is the use of sodium alginate (SA) as a polymer matrix to
form a hierarchically three-dimensional Zn2+-conductor gel electrolyte. SA consists of two
monomer units, β-D-mannuronic acid (M-block) and α-L-guluronic acid (G-block) [23].
Because of SA possessing a high concentration of polar groups, high modulus and easy
cross-linking with Zn2+, many strategies based on natural polysaccharide-SA, such as guar
gum/SA/glycol [24], SA-polyacrylamide [25] and gelatin/SA [26], have been proposed
to construct high-performance ZIBs hydrogel gel electrolytes. These SA-based hydrogels
exhibit high mechanical strength but they suffer from toxic raw materials [27], invoking
inert crosslinker initiators [28] and a complex preparation process [29].

Hence, in this work, we prepare a flexible and stable N-isopropylacrylamide (NI-
PAM)/sodium alginate ZIBs hydrogel gel electrolytes (noted as N-SA) via a simple chain
entanglement method. We directly incorporate NIPAM into the SA hydrogel to further
enhance its mechanical strength and ionic conductivity. By soaking in 4 mol L−1 (M)
ZnSO4 and 0.1 M MnSO4 aqueous solution, the chain entanglements of short-chain NIPAM
were formed. During the soaking process, Zn2+, Mn2+ and SO4

2− ions could penetrate
into the N-SA hydrogel matrix and give it the high conductivity of the N-SA hydrogels.
Thus, due to NIPAM chain entanglements, the N-SA hydrogels show a high conductiv-
ity of 2.96 × 10−2 S cm−1 at room temperature, and this hydrogel can effectively form a
uniform Zn deposition and suppress side reactions. of particular note, the assembled
Zn/N-SA/MnO2 batteries can deliver 182 mAh g−1 (~98% retention) at their highest ca-
pacity at a current density of 0.5 A g−1 after 650 cycles (see Table S1). Therefore, this work
provides a simple method to fabricate high-performance SA-based hydrogel electrolytes,
which illustrates their potential for flexible batteries for wearable electronics.

2. Experimental Methods
2.1. Materials

Sodium alginate (SA, M = 398.31 g mol−1, AR, >99%) and ZnSO4·7H2O (ACS, 99%)
were purchased from Aladdin Chemical Reagent Co., Ltd. (Shanghai, China) MnSO4·H2O
(AR, 99%), N-isopropylacrylamide (NIPAM, AR, >99%) and ammonium chloride (NH4Cl,
AR, 99%) were purchased from Macklin Chemical Reagent Co., Ltd. Potassium perman-
ganate (KMnO4, AR, 99%) was also purchased from Macklin Chemical Reagent Co., Ltd.
(Shanghai, China) All chemicals were used directly with no purification treatment.

2.2. Preparation of α-MnO2 Powders

The α-MnO2 powder was prepared according to the literature method [30]. The
general experimental process was as follows: KMnO4 and NH4Cl were subsequently
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completely dissolved in deionized water and then mixed homogeneously. Then, the
solution was placed in a Teflon-lined reactor under hydrothermal conditions at 140 ◦C for
24 h. The obtained powder was filtered, washed with plenty of water, and dried.

2.3. Preparation of Electrolytes

The sodium alginate (SA) and NIPAM-SA (N-SA) hydrogel electrolyte was prepared
using a uniform casting method and subsequently soaked in 4 mol L−1 (M) ZnSO4 and
0.1 M MnSO4 aqueous solution. Briefly, 1.2 g SA (or 1.2 g SA and 0.15 g NIPAM) were
dissolved into 30 mL deionized water and stirred at 60 ◦C for 0.5 h. The as-prepared
homogeneous composite solution was then poured into a glass pane and then immersed in
the electrolyte solution of 4 M ZnSO4 + 0.1 M MnSO4 for 0.5 h. The resulting composite
gels were noted as SA and N-SA, respectively.

2.4. Preparation of Electrode and Battery Assembly

MnO2 electrodes included 70 wt.% of α-MnO2 powders, 20 wt.% of Super P (SP), and
10 wt.% of carboxymethyl cellulose (CMC). The current collector was the Ti foil. The active
mass loading of the MnO2 electrodes was ~1.5 mg cm−2. For the liquid electrolyte, the
2032 coin-cell was prepared to measure the electrochemical performances, the positive
electrode was MnO2, the negative electrode is Zn, separator was Whatman glass fiber, and
the amount of liquid electrolyte used, consisting of of 4 M ZnSO4 and 0.1 M MnSO4, was
about 0.03 mL. For the SA and N-SA gel electrolytes, the 2032 coin-cell was also prepared to
measure the electrochemical performances, the positive electrode was MnO2, the negative
electrode was Zn, and SA and N-SA gel electrolytes were used as both electrolyte and
separator, respectively. All 2032 coin-cells were directly assembled in air.

2.5. Characterizations

A Fourier transform infrared spectrometer (FTIR, Nicolet 6700, Thermo Fisher Sci-
entific, Carlsbad, US) was used to characterize the samples. The micrometer was used
for measuring the thickness of the N-SA hydrogel electrolyte. A field-emission scanning
electron microscope (SEM, S4800, Hitachi, Tokyo, Japan) was employed to determine the
morphology of gel electrolytes and electrodes. X-ray diffraction (XRD, D8 DISCOVER,
Bruker, Germany) was used to character the surface of negative Zn electrodes.

Linear scanning voltammetry (LSV), electrochemical impedance spectroscopy (EIS),
corrosion tests, and cyclic voltammetry (CV) were carried out on an electrochemical work-
station (CHI 660E, Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). The EIS
measurements were tested in the frequency range of 10 mHz to 10 kHz with an oscillation
amplitude of 5 mV. Galvanostatic charge–discharge (GCD) and rate performance measure-
ments were performed on a CT3001A Land battery testing system (Wuhan Land Electronic
Co., Ltd., Wuhan, China). EIS measurements were used to calculate the ionic conductiv-
ity (σ) of the electrolytes through stainless steel (SS)||electrolyte||SS symmetrical coin
cells according to the reported reference method [31]. LSV curves were measured using a
SS||electrolyte||Zn coin cells at a scan rate of 1 mV s−1 to investigate the electrochemical
window of the electrolytes. CV curves of Zn||electrolyte||MnO2 asymmetrical coin cells
were obtained at a scan rate of 1 mV s−1.

3. Results and Discussion

The preparation process of the N-SA gel electrolyte is shown in Figure 1a. The N-SA
aqueous solution was a transparent and homogeneous viscous liquid with disordered
molecular chains. After adding 4 M ZnSO4 + 0.1 M MnSO4 solution into N-SA aqueous
liquid solution for 30 min, the N-SA gel electrolyte with cross-linked structures was formed
online through the Zn2+ coordinating function [24]. Figure 1b shows an optical image
of a uniform N-SA electrolyte, which is transparent and has excellent flexibility. The N-
SA gel electrolyte can be bent at any angle and has a thickness of 325 µm, as shown in
Figure 1c. The FTIR spectra of the SA and N-SA hydrogel electrolyte, as well as pure
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SA and NIPAM powder, were collected as shown in Figures S1 and S2. For the pure
SA, the absorption bands at 1590 cm−1 and 1401 cm−1 are attributed to the asymmetric
stretching vibrations and symmetric stretching vibrations of -COO− groups on the SA
chains, respectively. In contrast, for the SA and N-SA hydrogel electrolyte, these two bands
shift to higher values because of coordinate bonds between -COO− groups and Zn2+ [19].
Bands were observed in the spectra of NIPAM at 532 cm−1 and 1517 cm−1, which were
ascribed to the -NH wagging vibration and the C=O stretching vibration, respectively [32].
For the N-SA hydrogel, these similar characteristic bands also appeared, which suggests
the presence of NIPAM. The surface morphology of the N-SA gel electrolyte has uniformity
and is even (Figure 1d). As determined by the cross-sectional morphology (Figure 1e), the
thickness of the N-SA gel electrolyte is 60 µm, which is lower than the thickness measured
using a micrometer. The reason for this is that the sample of SEM images is dried through
freezing treatment.
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Figure 1. (a) Schematic diagram of the preparation of the N-SA hydrogel electrolyte. (b) Photographs
of the N-SA hydrogel electrolyte. (c) Thickness measurement diagram of the N-SA hydrogel elec-
trolyte. The SEM image of surface (d) and cross-sectional (e) morphology of the N-SA hydrogel
electrolyte.

Figure 2a shows the EIS spectra of stainless steel (SS)/SS symmetrical batteries with
the SA and N-SA gel electrolyte at room temperature. The corresponding ionic conductivity
was calculated by the reported method [33]. Notably, the N-SA gel electrolyte shows
a high ionic conductivity of 2.96 × 10−2 S cm−1, which is higher than that of the SA
gel electrolyte. LSV tests were conducted to evaluate the electrochemical stability of the
electrolyte. As shown in Figure 2b, the oxidation potential of the N-SA gel electrolyte is
2.51 V (vs. Zn2+/Zn). The LSV curve of the cells with the N-SA gel electrolyte also exhibits
a reduction potential of (−0.15 V vs. Zn2+/Zn), which is lower than that of cells with
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liquid electrolyte (−0.094 V vs. Zn2+/Zn). These LSV results suggest that the N-SA gel
electrolyte has a wide electrochemical window. In addition, we tested the CV curves of
Zn/Zn symmetric cells at 1 mV s−1, as shown in Figure S3. The nucleation overpotential
of Zn2+ in the N-SA hydrogel electrolyte is greater than that in the liquid electrolyte. The
larger nucleation overpotential indicates a smaller nucleation radius, implying an easier
homogeneous deposition [34]. This demonstrates that the N-SA gel electrolyte is beneficial
for small, denser and homogeneous Zn deposition [35]. Furthermore, the Tafel curve was
used to measure the corrosion of Zn foil in the electrolyte, as shown in Figure 2c. Compared
to the liquid electrolyte, the corrosion potential of zinc with the N-SA gel electrolyte is
increased from −0.0084 to 0.0177 V, and the corrosion current of zinc with the N-SA gel
electrolyte is decreased from −5.984 to −5.286 A. Higher corrosion potentials and lower
corrosion currents indicate a smaller tendency for corrosion reactions and lower corrosion
rates, respectively [36].
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cells at 1 mV s−1. (c) Linear polarization curves generated for the liquid and N-SA gel electrolyte
using Zn/Zn coin cells at 1 mV s−1.

The Zn/Cu asymmetric cells with different electrolytes were used to study the cycling
stability of zinc plating/stripping in this work. As shown in Figure 3a–c, we compare
the voltage/capacity curves of Zn/Cu of the N-SA, SA hydrogel electrolyte and liquid
electrolyte for different numbers of cycles. For the N-SA cells cycled at 1 mA cm−2, the
discharge/charge behavior remained the same over 500 cycles. However, the voltage
profile of cells with the liquid electrolyte increased during both the discharge and charge
process. This means that the polarization potential of the N-SA hydrogel electrolyte was
considerably lower than those of the liquid electrolyte and SA hydrogel electrolyte. The
low polarization potential of zinc plating/stripping in the N-SA hydrogel electrolyte is
beneficial for the uniformity of zinc deposition [37]. Notably, the coulomb efficiency (CE)
is a crucial parameter for investigating the reversibility and stability of the zinc negative
electrode [38]. As shown in Figure 3d, the coulombic efficiency of the N-SA hydrogel cell
increases from 86% in the first cycle to 98% after 20 cycles and remains stable at 99% for
subsequent cycles. Meanwhile, the Zn/Cu cell with the N-SA hydrogel electrolyte can
be stably cycled at 1 mA cm−2 for more than 500 cycles. In contrast, the CE of Zn/Cu
cells with the liquid electrolyte and SA hydrogel electrolyte quickly decreases to 0 after
83 and 200 cycles, respectively. The high and stable coulombic efficiency of the N-SA cell
is probably because the side reactions and dendrite growth are significantly restrained.
Figure 3e,f shows SEM images of Cu foils after Zn deposition for 5 h at 2 mA cm−2 in the
Zn/Cu asymmetric cells with the N-SA hydrogel electrolyte and liquid electrolyte. For
the liquid electrolyte, as shown in Figure 3f, a large number of micron-grade dead Zn
particles with irregular shapes appear on the surface of Cu, which is adverse for a high
plating/stripping efficiency. Also, in the SEM picture in Figure 3f there are some filaments
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that are likely to be glass fibers from Whatman. By contrast, the Zn is deposited uniformly
and smoothly in the N-SA hydrogel electrolyte, as shown in Figure 3e. Therefore, this N-SA
hydrogel electrolyte indicates a homogeneous nucleation process of zinc deposition.
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with the liquid, N-SA and SA gel electrolyte. SEM images of Cu foils after Zn deposition for 5 h
at 2 mA cm−2 in the Zn/Cu asymmetric cells with (e) the N-SA hydrogel electrolyte and (f) liquid
electrolyte.

The long-term cycling property of the symmetric Zn/Zn cells with the N-SA hydrogel
electrolyte and liquid electrolyte at a current density of 1 mA cm−2 is shown in Figure 4a–c.
The cell with N-SA hydrogel electrolyte shows a stable voltage profile, which maintains a
low level of about 100 mV over 2600 h without an obvious short circuit or any overpotential
increasing. In contrast, the cell with the liquid electrolyte exhibits a sudden increase in
polarization during the cycling process. This indicates that the N-SA hydrogel electrolyte
possesses a stable Zn stripping/plating process. Furthermore, the voltage profiles of
the Zn/Zn symmetrical cell with the N-SA gel electrolyte and liquid electrolyte were
investigated for different current densities from 0.1 to 2.0 mA cm−2, as shown in Figure 4d.
When the current density increased from 0.1 mA cm−2 to 2.0 mA cm−2, the polarization
voltages of the N-SA cells are always below 200 mV. However, the symmetric Zn cell with
the liquid electrolyte suffer from poor voltage curves. This suggests that the N-SA gel
electrolyte is a promising candidate for ZIBs at high current densities. The XRD patterns of
the Zn negative electrode collected from the N-SA cells after 30 cycles display similar signals
compared to those of fresh Zn foils (Figure 4e). However, in the XRD patterns of the Zn
negative electrode cycled in the liquid electrolyte appear several new obvious peaks located
at 8.2◦, 16.3◦ and 24.5◦ (2θ). These peaks suggest the formation of Zn4SO4(OH)6·5H2O
(PDF#69-0688). This indicates that the N-SA hydrogel significantly inhibits interfacial side
reactions, reduces the production of “dead” zinc, and results in a highly reversible and
efficient plating/stripping of zinc ions.
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Figure 4. (a–c) Galvanostatic Zn plating/stripping of Zn/Zn symmetrical cells of the N-SA gel elec-
trolyte and liquid electrolyte at a current density of 1 mA cm−2 (capacity: 1 mAh cm−2). (d) Voltage
profiles of the Zn/Zn symmetrical cell with the N-SA gel electrolyte and liquid electrolyte for different
current densities. (e) XRD patterns of the Zn negative electrode of the symmetrical cell after 30 cycles
at 1 mA cm−2.

Electrochemical performance of Zn/MnO2 cells with the N-SA, SA hydrogel electrolyte
and liquid electrolyte at 25 ◦C was shown in Figure 5. Figure 5a shows the CV curves of the
cells with the N-SA hydrogel electrolyte at 0.1 mV s−1 in the voltage range of 0.9~1.9 V at
room temperature. The first cycle shows a single reduction peak at approximately ~1.17 V,
while two reduction peaks at ~1.34 and ~1.22 V appear in the following cycles. The change
in the peak number and position is attributed to the phase transition and morphology
evolution during the first cycle [39]. In the oxidation reaction, two overlapped peaks at
1.59 and 1.62 V are observed. This indicates a Zn2+ insertion and extraction process in
the charge storage mechanism [40]. In addition, the CV curves in the second and third
cycles nearly overlap, suggesting the electrochemical reversibility of the cells [41]. As
displayed in Figure 5b, c, the Zn/MnO2 cells with the N-SA hydrogel electrolyte exhibit
reversible capacities of 310, 266, 176 and 104 mAh g−1 at current densities of 0.1, 0.2, 0.5
and 1 A g−1, respectively. When the current density decreases back to 0.5 mA cm−2, the
capacities immediately recover to 180 mAh g−1. Thus, the cell with the N-SA hydrogel
electrolyte exhibits a good rate performance. Long-term cycling stabilities of the Zn/MnO2
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cells with the N-SA, SA hydrogel electrolyte and liquid electrolyte at 0.5 A g−1 are shown
in Figure 5d. The Zn/MnO2 cells with the N-SA hydrogel electrolyte maintain superior
cycling stability compared to the cells in the SA and liquid electrolyte. The reversible
capacities are 169, 171, 188, 185 and 182 mAh g−1 after 10, 200, 400, 500 and 600 cycles
(Figure S4), respectively. The N-SA cell even delivers a highly reversible capacity of
182 mAh g−1 after 650 cycles, indicating a superior capacity retention of 98% and near
100% coulombic efficiency (Figure S5). This indicates that the N-SA hydrogel electrolyte
possesses ultra-stable and highly reversible electrochemical performance during the long
cycling, which may be ascribed to the uniform Zn reversible deposition.
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Figure 5. Electrochemical performance of Zn/MnO2 cells with the N-SA, SA hydrogel electrolyte
and liquid electrolyte at 25 ◦C. (a) CV curves of the cells with the N-SA hydrogel electrolyte at
0.1 mV s−1 at room temperature. (b) Rate performance of the cells with the N-SA hydrogel electrolyte.
(c) Galvanostatic charge/discharge profiles at different current densities. (d) Long-term cycling
stability of the Zn/MnO2 cells at 0.5 A g−1. The SEM images of the Zn negative electrodes collected
from the cells with the liquid electrolyte (e) and N-SA hydrogel electrolyte (f) at 0.5 A g−1 after
300 cycles.
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After being charged back to 1.9 V after 300 cycles, the corresponding SEM images
of two electrodes collected from Zn/MnO2 cells are shown in Figure S6 and Figure 5e,f.
As depicted in Figure S6, some flake-like deposits are observed on the surface of the
MnO2 electrode in the liquid electrolyte after 300 cycles. In contrast to this flake-like
surface, the MnO2 surface collected from the N-SA hydrogel electrolytes remains relatively
clean without any obvious flakes after cycling. Furthermore, as shown in Figure 5e,f, the
SEM images of Zn electrodes are collected from Zn/MnO2 cells with the N-SA hydrogel
electrolyte and liquid electrolyte after 300 cycles. The corresponding SEM images of Zn
electrodes cycled after 500 cycles are also displayed in Figure S7. It can be seen that
after cycling in the liquid electrolyte, the uneven Zn surface with a large number of
sheet-like dendrites and by-products was observed, which may be due to the interfacial
degradation of Zn with liquid electrolyte. Conversely, after cycling with the S-NA hydrogel
electrolyte, the surface of Zn electrode keeps very flat and uniform. Therefore, for the N-SA
hydrogel electrolyte, the parasitic reaction between electrodes and electrolyte are effectively
suppressed, which results in satisfactory long-term cycling stabilities of the assembled
Zn/MnO2 cells.

4. Conclusions

In summary, flexible and stable N-isopropylacrylamide (NIPAM)/sodium alginate
ZIBs hydrogel gel electrolytes (noted as N-SA) are designed via a simple chain entanglement
method. We directly incorporate NIPAM into the SA hydrogel to further enhance its
mechanical strength and ionic conductivity. By soaking in 4 mol L−1 (M) ZnSO4 and
0.1 M MnSO4 aqueous solution, the chain entanglements of short-chain NIPAM were
formed. During the soaking process, Zn2+, Mn2+ and SO4

2− ions could penetrate the N-SA
hydrogel matrix and make the N-SA hydrogels highly conductive. Thus, due to NIPAM
chain entanglements, the N-SA hydrogels show a high conductivity of 2.96 × 10−2 S cm−1

at room temperature. Compared to the liquid electrolyte, the N-SA hydrogel electrolyte
can effectively form a uniform Zn deposition and suppress the generation of irreversible
by-products. The assembled symmetric Zn/Zn cells at a current density of 1 mA cm−2

show a stable voltage profile, which maintains a low level of about 100 mV over 2600 h
without an obvious short circuit or any overpotential increasing. Of particular note, the
assembled Zn/N-SA/MnO2 batteries can deliver 182 mAh g−1 (~98% retention) at their
highest capacity at a current density of 0.5 A g−1 after 650 cycles. Therefore, this work
provides a simple method to fabricate high-performance SA-based hydrogel electrolytes,
which illustrates their practical applications of aqueous ZIBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9080426/s1, Figure S1: FTIR spectra of pure SA, pure
NIPAM, SA and N-SA with ZnSO4 + MnSO4; Figure S2: FTIR spectra of N-SA with and without
ZnSO4 + MnSO4; Figure S3: CV curves of symmetrical cells of the N-SA gel electrolyte and liquid
electrolyte at 1 mV s−1; Figure S4: Discharge/charge profiles of Zn/MnO2 cells with the N-SA
hydrogel electrolyte at different cycles; Figure S5: The coulombic efficiency of the Zn/MnO2 asym-
metric cells with the liquid, N-SA and SA gel electrolyte; Figure S6: The SEM images of the positive
electrodes collected from the cells with the liquid electrolyte (a) and N-SA hydrogel electrolyte (b)
at 0.5 A g−1 after 300 cycles; Figure S7: The SEM images of the Zn negative electrodes collected
from the cells with the liquid electrolyte (a) and N-SA hydrogel electrolyte (b) at 0.5 A g−1 after 500
cycles; Table S1: The capacity retention of our Zn-MnO2 battery with N-SA at room temperatures, in
comparison with that of previously reported typical aqueous batteries (mainly including aqueous
zinc-ion batteries (AZIBs).
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